• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
MA Jinfeng, YANG Yong, DENG Xiguang, HE Gaowen, YANG Shengxiong, YU Zongze. 2021: Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific. Geological Bulletin of China, 40(2-3): 392-400.
Citation: MA Jinfeng, YANG Yong, DENG Xiguang, HE Gaowen, YANG Shengxiong, YU Zongze. 2021: Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific. Geological Bulletin of China, 40(2-3): 392-400.

Relation of the distribution of bottom polymetallic manganese nodules to multibeam backsactter in West Pacific

More Information
  • Received Date: March 31, 2020
  • Revised Date: November 29, 2020
  • Available Online: August 15, 2023
  • As the discovery of high abundance and high coverage of manganese nodules in West Pacific has attracted much attention of many countries, how to detect the distribution characteristics of manganese nodules with different coverage and abundance is the focus of current research.In our project, the multibeam backscatter intensity data acquired by EM122 system were used to analysis the distribution characteristics of nodules.The results indicate that the change of backscatter intensity is closely related to nodule coverage, while when the coverage is equal, the change of backscatter intensity reflects the size of the nodule, and when nodules are large (D>6 cm), the backscatter intensity increases obviously.Then the maximum likelihood supervised classification method was used to classify the backscatter intensity data.The results of classification reveal that spatial distribution of sediment, low abundance, medium abundance and high abundance nodules. Significantly, in the deep-sea basin, whereas obvious high-backscatter values are observed on areas of clay deposit, the important difference in backscatter between two geological classes is nearly 20 dB which are pelagic clay sediments and nodules with high abundance around 30 kg/m2 in the deep sea basin.

  • Cronan D S, Hodkinson R A, Miller S, et al. Manganese nodules in the EEZ's of island countries in the southwestern equatorial pacific[J]. Marine Geology, 1991, 98: 425-435. doi: 10.1016/0025-3227(91)90114-J
    Hein J R, Koschinsky A. Deep-ocean Ferromanganese Crusts and Nodules. Treatise on Geochemistry[M]. H D Holland and T K K Oxford, 2014.
    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015, 68(1): 97-116. http://smartsearch.nstl.gov.cn/paper_detail.html?id=736ede268d0e4fbed2c5092b35695a57
    Machida S K, Fujinaga. Geology and geochemistry of ferromanganese nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island[J]. Geochemical Journal, 2016, 50. http://ci.nii.ac.jp/naid/130005435144
    Machida S, Kikawa E, Ishill T, et al. Cross-ministerial Strategic Innovation Promotion Program (SIP), Next-generation Technology for Ocean Resources Exploration (ZIPANG in ocean)[R]. 2016.
    Spiess F N. Ocean acoustic remote sensing of the sea floor: Nat. Ocean. and Atmos. Adminis[J]. Workshop on Ocean Acoustic Remote Sensing Ⅱ, Seattle: 1980, 11-1, 11-38.
    Allen H M, Karl S. Acoustic soundings for manganese nodules[C]//Proc. 13th Annual Offshore Tech. Conf., OTC 4133.1981: 147-161.
    Moustier C D. Inference of manganese nodule coverage from SeaBeam acoustic backscattering data[J]. Geophysics, 1985, 50(6): 989-1001. doi: 10.1190/1.1441976
    Moustier C D. Beyond bathymetry: Mapping acoustic backscattering from the deep seafloor with Sea Beam[J]. Journal of Acoustical Society of American, 1986, 79(2): 316-331. doi: 10.1121/1.393570
    Huggett Q J, Somers M L. Possibilities of using the GLORIA system for manganese nodule assessment[J]. Marine Geophysical Research, 1988, 9: 255-264. doi: 10.1007/BF00309976
    Scanlon K M, Masson D G. Fe-Mn nodule field indicated Gloria, North of the Puerto Rico Trench[J]. Geo-Marine Letters, 1992, 12: 208-213. doi: 10.1007/BF02091840
    Weydert M M P. Measurements of the acoustic backscatter of selected areas of the deep seafloor and some implications for the assessment of manganese nodule resources[J]. Journal of Acoustical Society of America, 1990, 88: 350-366. doi: 10.1121/1.399910
    Chakraborty B, Kodagali V. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter[J]. Geo-Marine Letters, 2004, 24: 8-13. doi: 10.1007/s00367-003-0153-y
    Thomas K. Developing a strategy for the exploration of vast seafloor areas for prospective magnganese nodule fields[C]//Underwater Mining Institute, Shanghai, China, 2012.
    Tao C H, Jin X B, Bian A F, et al. Estimation of Manganese Nodule Coverage Using Multi-Beam Amplitude Data[J]. Marine Georesources & Geotechnology, 2015, 33: 283-288. doi: 10.1080/1064119X.2013.806973
    Polydoros A, Kim K. On the detection and classification of quadrature digital modulations in broad-band noise. IEEE Transactions on Communications[J]. 1990, 38(8): 1199-1211.
  • Related Articles

Catalog

    Article views (2737) PDF downloads (1904) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return