• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
WU Jianliang, YIN Xianke, LIU Wen, LEI Chuanyang, WANG Bo, LI Wei, PEI Yalun, ZHANG Wei. 2019: The discovery of Nb-rich volcanic rock of the Qushenla Formation in Yema area of the western segment of Bangong Co-Nujiang suture in Tibet and its implications. Geological Bulletin of China, 38(4): 471-483. DOI: 10.12097/gbc.dztb-38-4-471
Citation: WU Jianliang, YIN Xianke, LIU Wen, LEI Chuanyang, WANG Bo, LI Wei, PEI Yalun, ZHANG Wei. 2019: The discovery of Nb-rich volcanic rock of the Qushenla Formation in Yema area of the western segment of Bangong Co-Nujiang suture in Tibet and its implications. Geological Bulletin of China, 38(4): 471-483. DOI: 10.12097/gbc.dztb-38-4-471

The discovery of Nb-rich volcanic rock of the Qushenla Formation in Yema area of the western segment of Bangong Co-Nujiang suture in Tibet and its implications

More Information
  • Received Date: April 24, 2017
  • Revised Date: May 15, 2017
  • Available Online: August 15, 2023
  • The volcanic rocks from Qushenla Formation in Yema area is located in the west segment of Bangong Co-Nujiang suture zone, in reverse fault contact with the diabase slice of Bangong Co-Nujiang opiolite melange belt in the north. In this paper, detailed LA-ICP-MS zircon U-Pb dating geochronological and element geochemical studies were carried out for the basalt and andesite in the Qushenla Formation. The U-Pb dating of zircon from andesite yielded a weighted average age of 108.5±1.5Ma, indicating that the andesites were formed at the middle-late stages of Early Cretaceous. Lithogeochemical characteristics show that the Nb-rich basalts in Yema area are characterized by obvious enrichment of Nb and Al2O3, with the values of Nb being 10.5×10-6~11.1×10-6 and Al2O3 being 17.63%~17.96%, averaging 17.74%, suggesting Nb-rich, high-alumina basalt of calc alkaline series. The andesites belong to high-K calc alkaline series. All the volcanic rocks in Yama area are characterized by enriched LREE and relatively depleted HREE. The total REE of basalts are 119.20×10-6~120.49×10-6, with (La/Yb)N from 5.17 to 5.53, and the ∑REE of andesites are 179.97×10-6~184.75×10-6 and their (La/Yb)N range from 13.83 to 15.12. On primitive mantle-normalized trace element diagrams, the basalts and andesite display different degrees of enrichment of LIFEs (e.g., Rb, U, K), relative depletion of HFSE (Nb, Ta, Ti) with high content of Sr, Nb, Zr but low content of Cr, Ni, similar to features of island arc rocks. The magma source region was mainly influenced by the subduction fluid and underwent different degrees of fractionation crystallization of femic minerals with uplifting. A comprehensive study shows that the basalt and andesite of Qushenla Formation in Yema area were probably formed in the backarc tectonic rocks, which might have been the direct magma response to slab break-off caused by asthenosphere upwelling back-arcextension during the southward subduction of Bangong Co-Nujiang Tethyan Ocean at the late stage of Early Cretaceous.

  • 潘桂堂, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
    耿全如, 潘桂堂, 王立全, 等.班公湖-怒江、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110813&flag=1
    朱弟成, 潘桂堂, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J].岩石学报, 2006, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
    朱弟成, 莫宣学, 赵志丹, 等.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J].岩石学报, 2008, 24(3):401-412. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803001
    李金祥, 李光明, 秦克章, 等.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J].岩石学报, 2008, 24(3):531-543. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803013
    康志强, 许继峰, 王保弟, 等.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境[J].地球科学-中国地质大学学报, 2009, 34(1):89-104. doi: 10.3321/j.issn:1000-2383.2009.01.009
    康志强, 许继峰, 王保弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-16. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201010022
    Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168:144-159. https://www.researchgate.net/publication/256806817_Compositional_diversity_of_ca_110_Ma_magmatism_in_the_northern_Lhasa_Terrane_Tibet_Implications_for_the_magmatic_origin_and_crustal_growth_in_a_continent-continent_collision_zone
    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2015, 245:7-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4c438f22b463f182154e4494786812
    Zhang K, Xia B, Wang G, et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America Bulletin, 2004, 116(9):1202-1222. doi: 10.1130/B25388.1
    Liu Y S, Hu Z C, Cao S, et al. In Situ Analysis of Major and Trace Elments of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://cn.bing.com/academic/profile?id=f10fa454267bcd9d2c140163950f1005&encoded=0&v=paper_preview&mkt=zh-cn
    Hoskin P W, Black L P. Metamorphic zircon formation by solid, state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=20f7cb4f6d72be021ecb081c5fa74229
    李伟.西藏改则地区去申拉组火山岩地球化学特征及锆石年代学制约[D].中国地质大学(北京)硕士学位论文, 2012. http://cdmd.cnki.com.cn/Article/CDMD-11415-1012364960.htm
    于枫.西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因[D].中国地质大学(北京)硕士学位论文, 2012. http://cdmd.cnki.com.cn/article/cdmd-11415-2010085574.htm
    马义明.拉萨地块早白垩世火山岩古地磁学和年代学研究对亚洲南缘的古地理限制[D].中国地质大学(北京)硕士学位论文, 2013. http://cdmd.cnki.com.cn/Article/CDMD-11415-1013272977.htm
    隋清霖.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].中国地质大学(北京)硕士学位论文, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11415-1014239465.htm
    Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman, 1989:101-149.
    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2
    Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745
    Streckeisen A, Bonin B, Le Bas M J, et al. Igneous Rocks:a classification and glossary of terms[M]. Oxford:Cambridge University Press, 2005:1-256.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Crawford A J, Falloon T J, Eggins S. The origin of island arc high alumina basalts[J]. Contributions to Mineralogy and Petrology, 1987, 97:417-430. doi: 10.1007/BF00372004
    徐夕生, 邱检生.火成岩岩石学[M].北京:科学出版社, 2010:1-346.
    Sajona F G, Maury R C, Bellon H, et al. Initiation of subduction and the generation of slab melt in western and eastern Mindanao Philippines[J]. Geology, 1993, 21(11):1007-1010. doi: 10.1130/0091-7613(1993)021<1007:IOSATG>2.3.CO;2
    Sajona F G, Maury R C, Bellon H, et al. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamrboanga Peninsula, western Mindanao (Philippines)[J]. Journal of Petrology, 1996, 37(3):693-726. doi: 10.1093/petrology/37.3.693
    Zhang H R, Yang T N, Hou Z Q, et al. Evonian Nb-enriched basalts and andesites of north-central Tibet:Evidence for the early subduction of the Paleo-Tethyan oceanic crust beneath the North Qiangtang Block[J]. Tectonophysics, 2016, 682:96-107. doi: 10.1016/j.tecto.2016.06.009
    Mao Q G, Xiao W J, Fang T H, et al. Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China:Implications for early Paleozoic slab-melting and crustal growth in the southern Altaids[J]. Gondwana Research, 2012, 22:534-553. doi: 10.1016/j.gr.2011.06.006
    Wang Q, Wyman D A, Zhao Z H, et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):Implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology, 2007, 236:42-64. doi: 10.1016/j.chemgeo.2006.08.013
    李永军, 沈锐, 王冉, 等.新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J].岩石学报, 2014, 30(12):3501-3511. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201412002
    Defant M J, Xu J F, Kepezhinskas P. Adakite:some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18:129-142. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201002023
    Kepezhinskas P K, Defant M J, Drummond M S. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths[J]. Geochimica et Cosmochimica Acta, 1996, 60:1217-1229. doi: 10.1016/0016-7037(96)00001-4
    Rogers R D, Kárason H, Van der Hilst R D. Epeirogenic uplift above a detached slab in northern Central America[J]. Geology, 2002, 30(11):1031-1034. doi: 10.1130/0091-7613(2002)030<1031:EUAADS>2.0.CO;2
    Lassiter J C, DePaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts:chemical and isotopic constraints[J]. Geophysical Monograph-American Geophysical Union, 1997, 100(1):335-356. http://cn.bing.com/academic/profile?id=2c194009ec9424dd6ac8a6f8094da612&encoded=0&v=paper_preview&mkt=zh-cn
    Tuner S, Arnaud N, Liu J. Post-collisional, shoshonitic volcanism on the Tibetan plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37:45-71. doi: 10.1093/petrology/37.1.45
    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3):463-513. doi: 10.1093/petrology/19.3.463
    Jung S, Masberg P. Major-and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany):constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources[J]. Journal of Volcanology and Geothermal Research, 1998, 86(1):151-177. http://cn.bing.com/academic/profile?id=ad6dc3b2394d3845d0bab4a8fddb1385&encoded=0&v=paper_preview&mkt=zh-cn
    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23(1):251-285. doi: 10.1146/annurev.ea.23.050195.001343
    Scaillet B, Prouteau G. Oceanic slab melting and mantle metasomatism[J]. Science Progress, 2001, 84:335-354. doi: 10.3184/003685001783238943
    La Flèche M R, Camiré G, Jenner G A. Geochemistry of postAcadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada[J]. Chemical Geology, 1998, 149:115-136.
    Woodhead J D, Eggins S M, Johnson R W. Magma genesis in the New Britain island arc:further insights into melting and mass transfer processes[J]. Journal of Petrology, 1998, 39(9):1641-1668. doi: 10.1093/petroj/39.9.1641
    Floyd P A, Kelling G, Gökçen S L, et al. Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey[J]. Chemical Geology, 1991, 89(3/4):263-280.
    Sandeman H A, Hanmer S, Tella S, et al. Petrogenesis of Neoarchaean volcanic rocks of the MacQuoid supracrustal belt:a backarc setting for the northwestern Hearne subdomain, western Churchill Province, Canada[J]. Precambrian Research, 2006, 144(1):140-165. https://www.researchgate.net/publication/248450744_Petrogenesis_of_Neoarchaean_volcanic_rocks_of_the_MacQuoid_supracrustal_belt_A_back-arc_setting_for_the_northwestern_Hearne_subdomain_western_Churchill_Province_Canada
    Taylor B. Martinez F. Back-arc basin basalt systematics[J]. Earth and Planetary Science Letters, 2003, 210(3):481-497. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025576863/
    Gamble J A, Wright I C, Woodhead J D, et al. Arc and backarc geochemistry in the southern Kermadec arc-Ngatoro Basin and off shore Taupo Volcanic Zone, SW Pacific[J]. Geological Society, London, Special Publications, 1994, 81:193-212. doi: 10.1144/GSL.SP.1994.081.01.11
    Woodhead J D, Eggins S M, Gamble J A. High field strength and transition element systematics in island arc and back-arc basin basalts:Evidence for multi-phase melt extraction and a depleted mantle wedge[J]. Earth and Planetary Science Letters, 1993, 114:491-504. doi: 10.1016/0012-821X(93)90078-N
    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:Relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1/2):1-24. http://cn.bing.com/academic/profile?id=7371dfa5724c0893c0b1241c8ad6e418&encoded=0&v=paper_preview&mkt=zh-cn
    Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin[J]. Geochimica et Cosmochimica Acta, 1996, 60:2153-2166. doi: 10.1016/0016-7037(96)00078-6
    Wang Y J, Zhao G C, Fan W M, et al. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:Implications for back-arc basin magmatism in the Eastern Block, North China Craton[J]. Precambrian Research, 2007, 154:107-124. doi: 10.1016/j.precamres.2006.12.010
    Fan W M, Wang Y J, Zhang A M, et al. Permian arc-back-arc basin development along the Ailaoshan tectonic zone:Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China[J]. Lithos, 2010, 119(3):553-568. http://cn.bing.com/academic/profile?id=4ea77730cd2e221637452dac3e2b4003&encoded=0&v=paper_preview&mkt=zh-cn
    Zhu D C, Mo X X, Niu Y, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
    Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letters, 1982, 59(1):101-118. doi: 10.1016/0012-821X(82)90120-0
    Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117:865-878. doi: 10.1130/B25595.1
    Kapp P, De Celles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1
    Decelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau:Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of American Bulletin, 2007, 119:654-680. doi: 10.1130/B26074.1
    Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79:281-302. doi: 10.1016/0012-821X(86)90186-X
    马国林, 岳雅慧.西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J].岩石矿物学杂志, 2010, 29(5):525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008
    Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
    Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 2009, 262:229-245. doi: 10.1016/j.chemgeo.2009.01.020
    陈越, 朱弟成, 赵志丹, 等.西藏北冈底斯巴木错安山岩的年代学、地球化学及岩石成因[J].岩石学报, 2010, 26(7):2193-2206. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201007020
    张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107003
    Von Blanckenburg F, Davis J H. Slab break off:A model for syncollisional magmatism and tectonics in the Alps[J]. Tectonics, 1995, 14:120-131. doi: 10.1029/94TC02051
    四川省地质调查院.革吉县幅1: 25万地质图. 2004.
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. 吴建亮,廖芝华,白云,王波,秦宇龙,刘文,徐云峰,张彤,景阳,熊昌利. 班公湖-怒江缝合带西段昂龙岗日地区中新世岩浆作用. 岩石矿物学杂志. 2024(05): 1251-1267 .
    2. Chuanyang Lei,Liqiang Wang,Juxing Tang,Wei Li,Teng Gao,Huayun Yuan. Origin of Qushenla Formation Volcanic Rocks in the Nawucuo Area, Northern Tibet, and Constraints on the Subduction Polarity of the Bangong-Nujiang Tethys Ocean. Journal of Earth Science. 2023(02): 467-486 .
    3. 刘飞,李观龙,薄容众,杨经绥. 班公湖-怒江洋的扩张脊俯冲:宗白增生杂岩中侏罗世辉长岩脉地球化学和Sr-Nd同位素特征. 地质通报. 2021(08): 1247-1264 . 本站查看
    4. 曾庆高,王保弟,西洛郎杰,毛国正,刘海永,刘恭喜. 西藏的缝合带与特提斯演化. 地球科学. 2020(08): 2735-2763 .
    5. 尹滔,张伟,尹显科,裴亚伦. 西藏江玛地区闪长玢岩锆石U-Pb年龄、地球化学特征及其地质意义. 地球科学. 2020(11): 4128-4142 .
    6. 肖永春,马超,于琪,刘振宇. 西藏色哇地区中新生代构造演化史讨论. 吉林地质. 2020(04): 51-59 .

    Other cited types(3)

Catalog

    Article views (3343) PDF downloads (2718) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return