• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征

岳维好, 周家喜

岳维好, 周家喜. 2019: 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征. 地质通报, 38(2-3): 328-338.
引用本文: 岳维好, 周家喜. 2019: 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征. 地质通报, 38(2-3): 328-338.
YUE Weihao, ZHOU Jiaxi. 2019: Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai Province. Geological Bulletin of China, 38(2-3): 328-338.
Citation: YUE Weihao, ZHOU Jiaxi. 2019: Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai Province. Geological Bulletin of China, 38(2-3): 328-338.

青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征

基金项目: 

国家自然科学基金项目《滇中碳酸盐型铅锌矿床流体混合成矿机理研究》 41272111

山东黄金集团基本科研业务费专项基金项目《青海东昆仑东段沟里地区金矿(化)集区多元成矿信息融合与高效勘查示范研究》 201122010100

详细信息
    作者简介:

    岳维好(1978-), 男, 博士, 高级工程师, 从事矿产地质及综合信息成矿预测方面的教学和科研工作。E-mail:137053132@qq.com

  • 中图分类号: P588.12+2;P597+.3

Geochemistry, zircon U-Pb age and Hf isotopic characteristics of the Asiha diorite in Dulan County, Qinghai Province

  • 摘要:

    都兰县阿斯哈石英闪长岩体呈岩基状产出。闪长岩全岩样品具有低SiO2(56.82%~61.15%)、富碱(Na2O+K2O为5.31%~6.02%)、低TFeO(6.09%~6.65%)和低TiO2(1.02%~1.25%)含量特征,属高钾钙碱性系列岩石。岩石中Cr(24.6×10-6~47.6×10-6)和Ni(12.8×10-6~17.6×10-6)含量不高,K、Ba、Rb、Th、U等大离子亲石元素富集,而Nb、Ta、P、Ti等高场强元素亏损,具有岛弧或活动大陆边缘弧岩浆的特征。用LA-ICP-MS测得锆石206Pb/238U年龄为232.6±1.4Ma,表明岩体为中三叠世形成。锆石具有明显偏低的εHft)值(-3.71~-0.84,平均为-2.31,t=232.6Ma)和偏老的t2DM年龄(1.32~1.50Ga,平均为1.41Ga),表明岩浆来源于古老地壳物质的熔融,很可能为研究区中元古代俯冲地壳物质。阿斯哈石英闪长岩的源区具有壳-幔混合特征,是幔源基性岩浆与古老壳源花岗质岩浆混合作用的产物,岩石形成于中三叠世晚期俯冲向碰撞转换的动力学背景下,代表东昆仑晚古生代—早中生代造山过程的岩浆记录。

    Abstract:

    The Asiha diorite in Dulan County is batholith shaped output. The whole rock samples have characteristics by SiO2 (56.82%~61.15%), rich alkali (Na2O+K2O=5.31%~6.02%), low total iron (TFeO=6.09%~6.65%) and low TiO2 (1.02%~1.25%). Therefore, the diorite belongs to of high-K calc-alkaline rocks. The values of Cr (24.6×10-6~47.6×10-6) and Ni (12.8×10-6~17.6×10-6) are not high. The diorite is enriched in the LILE such as K, Ba, Rb, Th, U and LREE and depleted in HFSE such as Nb, Ta, P and Ti. LA-ICP-MS zircon U-Pb dating results show that the crystallization age of the diorite is 232.6+1.4Ma, and the age belongs to the Middle Triassic. The zircons have relatively low εHf(t) values (t=232Ma, εHf(t)=-3.71~-0.84, -2.31 on average) and relatively old t2DM (1.32~1.50Ga, 1.41Ga on average), thus the magma should be derived from Proterozoic subducted crust. In summary, the magma had crust-mantle mixing characteristics, and the diorite was mainly derived from granitic magma of crust (Proterozoic subducted crust) and experienced activity of basic magma of the mantle. The rock was formed under the geodynamic background of conversion from subduction to collision, which represented the magma records of oceanic crust subduction from Late Paleozoic to Early Mesozoic in East Kunlun.

  • 中国东北地区位于西伯利亚板块、华北板块和西太平洋板块的交汇部位[1],由额尔古纳地块、兴安地块、松嫩地块、佳木斯地块、兴凯地块等造山微陆块(图 1-a)在古生代拼合而成[2-5]。大兴安岭包含额尔古纳地块、兴安地块和松嫩地块南西部(图 1-b),以发育巨量显生宙岩浆岩为典型特征,为研究东亚地区构造演化提供了天然的实验室。以往研究表明,大兴安岭显生宙岩浆活动可分为古生代和中生代2个阶段,其中古生代岩浆活动常作为古亚洲洋闭合的产物,标志中亚造山带东段构造演化的结束[2, 6-7];而中生代岩浆活动则与软流圈地幔上涌[8-9]和新生地壳的卷入[2, 10-15]密切相关。

    图  1  东北地区构造分区图(a)和主要地理单元(b)(据参考文献[2-3]修改)
    Figure  1.  Tectonic subdivision (a) and main geographical units in Northeast China(b)

    受大兴安岭中生代岩浆活动分布面积广、时间跨度大等因素制约,相关构造背景和动力学机制仍存有较多分歧,目前主要有3种主流观点:①幔柱模式[16-18]; ②蒙古-鄂霍茨克洋闭合及后碰撞造山模式[19-23];③古太平洋板块俯冲模式[7, 24-31]。大兴安岭中生代岩浆岩呈北东向展布,岩浆活动时间跨度可达70 Ma,且未见同时代OIB的发育,加之地震层析成像识别出板片状高速异常[32],因此,本区发育地幔柱的可能性较小。蒙古-鄂霍茨克洋的闭合常被认为发生于中侏罗世[19, 21],大兴安岭仅额尔古纳等少数区域受其控制。另外,据前人对东亚晚中生代岩浆活动的统计分析可知,自大兴安岭向松辽盆地、吉黑东部直至朝鲜半岛,中生代岩浆岩年龄呈现逐渐年轻的趋势[25],蒙古-鄂霍茨克洋的闭合及后造山拉伸很难造成如此宽广的影响。但若为古太平洋板块的西向俯冲的结果,那古太平洋板块是如何俯冲如此远的距离(大于2000 km)触发额尔古纳等地区大规模的钙碱性系列岩浆活动,而对松辽盆地及其东部地区无明显影响呢?

    基于此,本文详细研究大兴安岭北段吉峰地区火山岩-花岗岩岩石学、年代学和地球化学特征,并结合大兴安岭及其邻区晚中生代岩浆岩的成岩时代、岩石成因类型及其空间展布规律,深入探讨大兴安岭及其邻区中生代构造演化特征及动力学机制。

    吉峰地区火山-侵入杂岩体位于大兴安岭北段金河-三望山火山喷发带金河火山岩盆地和阿南林场火山岩盆地,大地构造位置属兴安地块鄂伦春褶皱带(图 1图 2-a)。区内植被茂密、露头条件不佳,仅出露秀山、旭光等小型花岗岩体,而广泛发育大面积中生代火山岩地层,两者呈侵入接触关系(图 2-b)。

    图  2  大兴安岭北段(a)(据参考文献[32]修改)和吉峰地区地质图(b)(据参考文献修改)
    Figure  2.  Geological map of the middle part of the Da Hinggan Mountains(a)and Jifeng area(b)

    吉峰花岗岩主要为二长花岗岩和石英二长斑岩。二长花岗岩主要由长石(约70%)、石英(约25%)和黑云母(约5%)组成,其中斜长石粒度0.2~2 mm,轻微粘土化,碱性长石粒度一般为2~5 mm,可见文象结构,石英呈他形粒状,粒度0.2~2 mm,可见轻微波状消光(图 3-a)。二长斑岩斑晶由斜长石、少量钾长石和暗色矿物构成,粒度一般0.5~3.5 mm;基质由长石、石英、少量暗色矿物构成,粒度一般小于0.05 mm(图 3-b)。

    图  3  吉峰地区花岗质岩石岩石学特征
    a—二长花岗岩(+);b—石英二长斑岩(+);c—满克头鄂博组流纹岩(+);d—玛尼吐组熔结凝灰岩(-) Qtz—石英;Pl—斜长石;Kfs—钾长石;Bi—黑云母;Cry—晶屑;Det—岩屑;Hya—玻屑
    Figure  3.  Petrological characteristics of granitic rocks in Jifeng area

    火山岩地层主要为满克头鄂博组(J3mk)和玛尼吐组(J3mn)。满克头鄂博组流纹岩斑晶由斜长石、钾长石、石英、黑云母组成,粒度0.2~2.5 mm,其中斜长石多高岭土化和绢云母化,钾长石轻微高岭土化,石英部分被熔蚀呈浑圆状、港湾状,黑云母呈片状,多色性明显;基质由长石、石英组成(图 3-c)。玛尼吐组熔结凝灰岩由晶屑、岩屑、玻屑及少量火山尘组成,以小于2.0 mm的凝灰物为主。其中晶屑由长石、黑云母构成,可见熔蚀现象,且长石可见强绢云母化,黑云母长轴多定向排列;岩屑以塑性为主、刚性次之;玻屑呈蚯蚓状、细纹状等,均脱玻为隐晶状长英质,被少量粘土交代(图 3-d)。

    锆石挑选在河北省区域地质矿产调查研究所进行,将岩石样品粉碎至100 μm后,磁选和浮选出锆石精样,并在双目镜下手工挑选具代表性的锆石,粘靶、抛光和镀金后,在北京燕都中实测试技术有限公司进行阴极发光(CL)内部结构照相。LA-ICP-MS锆石U-Pb同位素定年使用布鲁克M90等离子质谱与NewWaveUP213深紫外激光剥蚀系统测定,束斑直径为30 μm,应用标准样GJ-1进行分馏校正,元素含量采用SRM610为外标,具体原理、测试条件及流程见参考文献[33]。LA-ICP-MS锆石U-Pb同位素数据列于表 1,误差为1σ,普通铅校正使用标定的240Pb,年龄加权平均值及谐和图采用Isoplot程序[34]完成。

    表  1  吉峰花岗质岩石LA-ICP-MS锆石U-Th-Pb定年数据
    Table  1.  LA-ICP-MS zircon U-Th-Pb age data of granitic rocks in Jifeng area
    分析点Pb/10-6Th/10-6U/10-6Th/U同位素比值年龄/Ma
    207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb
    TW426,英安质熔结凝灰岩,18个测点年龄加权平均值为145.2±1.1 Ma,MSWD=1.4
    TW426-042.3357.4766.860.860.44500.02910.02430.00050.12840.0072373.820.51553.32076.898.2
    TW426-021.2934.3241.160.830.31230.01410.02430.00060.10520.0058275.910.9154.73.51718.2101.7
    TW426-072.2167.1269.670.960.22900.01000.02300.00040.07730.0040209.38.3146.82.71127.8103.2
    TW426-011.9553.8663.030.850.23090.01020.02340.00040.07670.0038210.98.5148.92.71114.598.2
    TW426-093.61142.07101.321.400.22840.01040.02310.00040.08010.0049208.98.6147.22.41199.1120.4
    TW426-052.86106.6182.761.290.22820.01070.02330.00040.07650.0039208.78.8148.42.61109.399.1
    TW426-081.8959.6963.840.940.22460.01080.02290.00050.07590.0040205.79.0146.32.91094.4106.0
    TW426-063.22113.4790.031.260.22660.00950.02350.00040.07460.0037207.47.8149.92.21057.493.5
    TW426-103.0496.7397.660.990.20840.01000.02300.00030.06900.0035192.28.4146.62.2901.9110.2
    TW426-032.8494.9486.751.090.20450.00960.02310.00040.06750.00321898.1147.42.3853.797.4
    TW426-01-12.95120.0892.551.300.16410.00570.02220.00030.05500.0020154.35.0141.31.741384.3
    TW426-03-13.34113.37105.891.070.16650.00510.02300.00020.05320.0017156.44.5146.51.5338.972.2
    TW426-07-13.15122.8198.271.250.16490.00550.02270.00020.05340.00181554.8144.81.5346.443.5
    TW426-05-12.2275.7875.251.010.16060.00610.02260.00030.05280.0022151.25.41441.7320.488.0
    TW426-04-12.66106.7884.301.270.15930.00570.02270.00030.05170.0018150.15.0144.91.7272.383.3
    TW426-10-13.07115.4399.191.160.15600.00560.02260.00020.05050.0018147.24.9144.31.5220.449.1
    TW426-02-12.85101.9194.981.070.14960.00530.02260.00030.04910.0018141.64.7143.91.6150.185.2
    TW426-06-13.21128.53104.891.230.15320.00490.02230.00020.05050.0017144.84.3142.11.5216.780.5
    TW426-08-12.8391.8995.320.960.15600.00520.02290.00020.05080.0018147.24.6145.71.4231.681.5
    TW426-09-12.61104.5781.181.290.15560.00570.02300.00030.05030.0019146.85.0146.41.7205.691.7
    TW3,流纹岩,16个测点年龄加权平均值为125.4±0.8 Ma,MSWD=0.36
    TW3-06-12.7346.94115.340.410.15820.00660.01990.00030.06070.0027149.25.81271.8627.896.3
    TW3-093.0576.01125.660.600.15630.00760.01970.00030.05930.0030147.46.7125.92.0588.9109.2
    TW3-03-13.4095.66137.310.700.15260.00580.01950.00030.05810.0022144.25.1124.51.660083.3
    TW3-09-13.8292.93152.110.610.15090.00560.01970.00020.05720.0023142.75.01261.5498.287.0
    TW3-02-12.9274.51113.790.650.15510.00570.02050.00030.05620.0021146.45.0130.91.9457.583.3
    TW3-064.70143.10183.690.780.14650.00530.01970.00030.05470.0020138.84.7125.61.6398.278.7
    TW3-04-13.1467.78128.150.530.14500.00590.01970.00020.05460.0023137.55.21261.6398.292.6
    TW3-07-14.94159.41186.530.850.14040.00480.01950.00020.05310.0019133.44.3124.31.4344.579.6
    TW3-024.38114.83176.930.650.14300.00570.01970.00030.05410.0022135.85.1125.71.7372.392.6
    TW3-10-14.5797.84187.070.520.14190.00520.01980.00020.05330.0021134.74.7126.51.6342.788.9
    TW3-013.71100.82152.500.660.13960.00690.01960.00030.05420.0028132.76.1124.81.8388.9118.5
    TW3-076.47225.87254.280.890.13520.00460.01930.00020.05140.0018128.84.1123.51.4257.584.3
    TW3-05-16.51234.01239.650.980.13700.00430.01970.00020.05140.0017130.43.9125.51.5257.577.8
    TW3-053.6995.75147.270.650.13850.00650.01990.00030.05240.0026131.75.8126.91.9301.9111.1
    TW3-01-14.75112.59194.060.580.13140.00470.01960.00020.04920.0018125.34.3125.31.4166.882.4
    TW3-045.03154.98194.500.800.13250.00520.01970.00030.04910.0019126.34.6125.61.6153.890.7
    TW3-084.18116.38168.970.690.13130.00550.01960.00030.04940.0021125.34.91251.6168.6100.0
    TW3-08-17.44249.24250.011.000.14620.00470.02190.00030.04890.0016138.54.2139.51.6142.774.1
    TW4,二长花岗岩,19个测点年龄加权平均值为125.5±1.8 Ma,MSWD=6.7
    TW4-06-12.2553.7391.690.590.16590.00720.01960.00030.06650.0034155.86.3125.32.0821.9100.9
    TW4-10-13.5587.37140.580.620.15690.00680.02010.00030.05770.00261485.9128.11.8520.496.3
    TW4-05-12.4755.0799.000.560.15830.00700.02030.00030.05930.0027149.26.2129.82.057698.1
    TW4-09-14.74112.86179.780.630.15940.00550.02070.00030.05690.0020150.14.8132.11.8487.179.6
    TW4-07-18.18199.41316.380.630.15090.00460.02080.00020.05280.0015142.74.01331.4320.466.7
    TW4-053.54110.76145.870.760.14110.00440.01980.00020.05240.00161343.9126.21.4305.670.4
    TW4-023.82125.50158.370.790.13010.00370.01900.00020.05070.0015124.23.3121.51.4233.473.1
    TW4-084.24136.70179.380.760.12620.00380.01910.00020.04830.0014120.73.4122.11.3122.373.1
    TW4-063.73116.73156.960.740.12860.00370.01920.00020.04970.0015122.83.4122.41.318970.4
    TW4-0310.78457.45413.131.110.12810.00250.01920.00010.04870.0010122.42.3122.40.9131.646.3
    TW4-08-18.35211.54348.210.610.13180.00410.01920.00020.04990.0015125.73.7122.41.3187.170.4
    TW4-147.42304.99297.871.020.13490.00620.01920.00030.05120.0023128.55.6122.52.0250.1101.8
    TW4-04-115.37476.94598.790.800.12730.00300.01940.00020.04780.0011121.62.7123.91.1100.157.4
    TW4-029.67487.47333.541.460.12900.00570.01970.00020.04780.0021123.25.1125.71.587.1103.7
    TW4-073.2998.98136.250.730.13460.00440.01980.00020.05070.0018128.24.0126.51.5233.481.5
    TW4-01-13.4471.52137.850.520.14000.00510.01980.00030.05360.00211334.5126.61.7366.788.9
    TW4-044.41110.45184.670.600.13790.01000.02020.00040.05100.0041131.28.91292.7239185.2
    TW4-03-16.06142.05239.110.590.14090.00490.02050.00020.05050.0018133.84.3130.71.6220.449.1
    TW4-069.23293.04347.050.840.14630.00780.02080.00030.05170.0028138.76.91331.9272.3127.8
    TW4-0316.41500.73502.201.000.17120.00690.02480.00030.05030.0020160.46.0157.81.8209.388.0
    TW4-02-16.78146.85209.130.700.17410.00500.02490.00030.05200.00161634.4158.31.8283.470.4
    TW4-0816.28791.81392.012.020.17650.00610.02490.00030.05200.00191655.3158.31.9283.483.3
    TW4-1213.66308.29437.330.700.17090.00910.02500.00030.04960.0026160.27.9159.42.2172.3122.2
    TW6,花岗斑岩,19个测点年龄加权平均值为125.8±1.0 Ma,MSWD=2.4
    TW6-09-13.6990.47153.580.590.15260.00620.01920.00030.06000.0026144.25.4122.51.6611.194.4
    TW6-07-14.06137.21155.140.880.14840.00550.01940.00030.05660.0022140.54.91241.647685.2
    TW6-088.25234.92337.240.700.14620.00450.01970.00020.05440.0017138.54.0125.61.4387.168.5
    TW6-05-16.96174.85273.190.640.14410.00420.01990.00020.05320.0016136.73.81271.4344.5100.9
    TW6-06-111.20418.86385.641.090.14300.00380.02070.00020.05080.0013135.73.4131.81.4227.865.7
    TW6-074.00117.11162.720.720.12570.00560.01910.00030.04990.0026120.25.1121.71.7190.8120.4
    TW6-08-16.87192.56277.460.690.13690.00440.01940.00020.05220.0018130.33.9123.61.3294.577.8
    TW6-0110.25394.76373.871.060.12800.00370.02000.00020.04710.0014122.33.3127.41.453.866.7
    TW6-02-112.42403.63472.630.850.13410.00340.01950.00020.05030.0013127.73.1124.61.2209.393.5
    TW6-04-132.851132.261223.710.930.13590.00260.01980.00020.04950.0008129.42.3126.61.3172.338.9
    TW6-034.42133.86176.600.760.13730.00590.02000.00030.05100.0022130.65.3127.72.1242.7102.8
    TW6-01-111.08474.07386.391.230.12940.00340.01960.00020.04840.0013123.53.11251.3116.867.6
    TW6-046.76175.91279.380.630.13630.00460.02000.00030.05010.0017129.74.2127.81.7211.281.5
    TW6-0611.03296.75455.480.650.13630.00380.02000.00020.04980.0014129.83.4127.61.4183.469.4
    TW6-105.33159.45210.360.760.13320.00540.01960.00020.04990.00211274.9125.21.6190.893.5
    TW6-03-118.44554.42693.880.800.13310.00270.01970.00020.04920.0010126.82.5125.81.1166.848.1
    TW6-10-110.45420.23382.961.100.13090.00410.01950.00020.05070.0020124.93.7124.51.5233.495.4
    TW6-028.77253.19359.050.710.13340.00440.01990.00020.04930.0017127.14.0127.11.5161.279.6
    TW6-0916.49581.43623.690.930.13280.00300.01970.00020.04920.0011126.62.7125.61.3166.853.7
    下载: 导出CSV 
    | 显示表格

    全岩地球化学分析在北京燕都中实测试技术有限公司完成。主量元素使用日本岛津XRF-1800型波长色散X射线荧光光谱仪测定,分析误差优于5%;微量元素使用布鲁克(Bruker)公司生产的aurora M90 ICP-MS电感耦合等离子质谱仪测定,分析误差优于10%。全岩地球化学数据见表 2

    表  2  吉峰地区花岗质岩石全岩地球化学数据
    Table  2.  Whole rock geochemical data of granitic rocks in Jifeng area
    元素TW4TW5JP6TW06JP6TW08TW6JP11TW02TW426TW362TW3TW302TW383TW082
    二长花
    岗岩
    二长花
    岗岩
    二长花
    岗岩
    二长花
    岗岩
    花岗斑岩花岗斑岩英安质
    凝灰岩
    流纹岩流纹岩流纹岩流纹岩粗面岩
    SiO275.0373.9774.3674.2366.8873.4967.6874.9171.9073.6171.1962.67
    TiO20.200.170.200.200.390.180.770.200.270.250.370.91
    Al2O313.5614.2113.3113.4416.2214.0616.6613.2614.6114.6415.3816.44
    Fe2O30.931.020.920.931.261.212.901.130.801.101.124.17
    MgO0.060.040.050.050.100.040.060.080.030.020.050.10
    MnO0.240.130.240.240.640.130.850.230.190.070.391.18
    CaO0.680.220.820.761.610.390.470.240.530.471.201.84
    Na2O3.124.213.873.923.344.261.763.525.034.813.623.39
    K2O5.154.695.115.166.535.605.694.994.783.624.615.07
    P2O50.030.030.030.040.100.030.200.040.050.040.130.27
    烧失量0.540.910.580.541.440.482.400.940.511.201.373.44
    FeO0.440.220.460.451.300.090.310.361.080.070.410.26
    总计100.0399.85100.00100.0099.9699.9699.7999.9399.9199.9099.8899.77
    K2O/Na2O1.651.111.321.321.961.323.231.420.950.751.271.49
    FeO*/MgO5.258.455.325.283.828.913.446.009.3014.923.603.41
    A.R.3.774.224.494.553.485.292.544.424.683.522.972.72
    A/CNK1.141.150.991.001.051.021.681.141.011.161.171.14
    A/NK1.271.181.121.121.291.081.841.181.091.241.401.49
    Q35.6331.3230.4929.9918.2626.5034.8834.9722.7931.2230.1419.36
    C1.701.920.010.110.990.377.431.750.322.092.592.78
    Or30.6128.0130.3730.6939.2333.2734.5429.8028.4721.6527.6931.09
    Ab26.5536.0232.9333.3428.6936.2015.3130.1142.8841.2331.1129.78
    An3.200.863.853.557.461.751.060.912.312.065.197.65
    Di(FS)0.000.000.000.000.000.000.000.000.000.000.000.00
    Di(MS)0.000.000.000.000.000.000.000.000.000.000.000.00
    Hy(MS)0.610.340.610.611.610.332.170.580.490.181.003.05
    Hy(FS)0.000.000.000.000.900.000.000.000.940.000.000.00
    Mt1.040.311.071.041.860.000.000.861.160.000.420.00
    Il0.380.330.390.380.760.270.820.380.520.200.710.81
    Hm0.220.820.190.210.001.222.980.550.001.110.854.33
    Ap0.070.080.080.080.240.060.470.100.120.100.300.64
    DI92.7995.3593.8094.0186.1895.9684.7394.8794.1494.1088.9480.22
    Rb222.17175.89189.92217.42280.54189.92220.61169.65201.37199.29156.52266.24
    Sr114.62143.9948.7253.01160.0532.93302.50162.47331.65202.84250.80193.82
    Ba374.76818.52117.55127.84895.44126.16555.12793.801004.40265.32545.52959.64
    Nb21.5812.3123.0330.1524.0317.3215.1512.0917.1121.5213.5718.01
    Ta1.911.191.823.961.982.011.281.211.811.981.141.36
    Zr170.59218.33177.91194.18523.10208.69369.65332.98324.31254.52238.68469.60
    Hf7.365.556.878.1014.046.5010.748.919.758.908.3611.90
    V31.0737.2511.2412.9061.5413.6237.3643.7668.9235.8633.5975.84
    Ni1.541.640.320.276.721.072.551.632.242.011.404.69
    Be4.092.494.395.375.743.613.123.103.844.493.573.61
    Co1.410.611.181.216.050.754.541.494.820.832.488.67
    Li51.0621.0012.0414.0431.176.7224.7313.3447.7713.5815.9221.47
    Th22.5317.1516.9325.2123.1913.4919.8616.0320.6525.2815.8118.69
    U3.493.153.565.244.442.344.293.434.534.071.532.97
    Sc5.766.882.222.689.951.108.578.219.916.535.5811.56
    La31.6625.1641.1041.4957.8114.2246.5135.0738.7255.7332.5748.13
    Ce59.1961.5277.1178.63142.5937.8292.5876.1681.2099.7763.24109.73
    Pr5.775.779.029.3715.303.3810.158.809.1610.866.5413.70
    Nd17.9619.7532.6433.2758.3011.7836.2732.7834.3137.1721.7754.12
    Sm2.432.875.305.649.062.255.335.495.645.383.048.81
    Eu0.310.470.340.371.480.251.010.661.020.600.631.66
    Gd2.722.964.674.938.072.045.174.995.415.082.977.36
    Tb0.390.500.720.791.190.360.790.850.840.750.441.09
    Dy2.222.733.914.506.022.283.984.714.774.082.185.58
    Ho0.450.560.770.871.130.470.790.950.960.820.431.02
    Er1.401.642.422.803.031.572.222.662.642.371.202.64
    Tm0.290.330.440.500.520.300.420.520.500.430.230.45
    Yb2.082.292.983.443.382.122.813.433.353.041.602.90
    Lu0.390.530.510.600.730.530.610.660.590.550.320.67
    Y14.2416.3222.4325.9031.2212.8922.2526.5927.7923.8912.4329.05
    Ga17.8417.4618.2324.5415.9520.0016.0621.98
    Pb35.9421.8320.8536.7023.5324.7915.2021.98
    TZr/℃803825792801890807908868845840833885
    注:FeO*=0.8998×TFe2O3; A/NK=摩尔Al2O3/(Na2O+K2O); A/CNK=摩尔Al2O3/(CaO+Na2O+K2O); A.R.=wt%(Al2O3+CaO+(Na2O+K2O))/(Al2O3+CaO-(Na2O+K2O));DI=Q+Or+Ab+Ne+Lc+Kp; TZr=12900/(2.95+0.85M+ln(49600/Zr), 其中M=摩尔(K+Na+2Ca)/(Si×Al);主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    LA-ICP-MS锆石U-Pb同位素定年选取典型花岗岩样品2件(TW4和TW6)、满克头鄂博组流纹岩样品1件(TW3)、玛尼吐组英安质熔结凝灰岩样品1件(TW462)。锆石阴极发光(CL)与测点视年龄图、U-Pb谐和年龄与年龄加权平均值图见图 4。所挑选的锆石颗粒粒径80~130 μm,晶形较好,以长柱状为主,长宽比为1:1~3:1,晶体具有明显的生长环带和韵律结构,Th/U值多大于0.7,具有典型的岩浆成因锆石特征,所测年龄能够代表岩浆的侵位时间[35]。由图 4可知,4个样品的测试结果较理想,大部分测点位于U-Pb谐和线附近,少量测点206Pb/238U年龄偏大,可能为残留锆石,在加权平均计算时予以剔除。其中花岗岩样品TW4的206Pb/238U年龄加权平均值为125.5±1.8 Ma(MSWD=6.7);样品TW6的206Pb/238U年龄加权平均值为125.8±1.0 Ma(MSWD=2.4);满克头鄂博组流纹岩样品TW3的206Pb/238U年龄加权平均值为125.4±0.8 Ma(MSWD=0.36);玛尼吐组凝灰岩样品TW426的206Pb/238U年龄加权平均值为145.2±1.1 Ma(MSWD=1.4)。

    图  4  吉峰地区岩浆岩锆石U-Pb谐和图、阴极发光(CL)图像及年龄值(Ma)
    Figure  4.  LA-ICP-MS zircon U-Pb concordia diagrams, CL images and ages of Jifeng igneous rocks

    (1) 主量元素

    在使用主量元素地球化学图解前,均去除烧失量,重新换算成100%。在TAS图解上,玛尼吐组凝灰岩(TW426)落入流纹岩与英安岩边界;早白垩世花岗岩和满克头鄂博组火山岩样品点分布于流纹岩与粗面岩区域(图 5-a)。

    图  5  吉峰地区花岗质岩石判别图
    a—TAS图解;b—A/CNK-A/NK图解;c—SiO2-K2O图解;d—A.R.-SiO2图解
    Figure  5.  Discrimination diagrams of Jifeng granites and tuffs

    表 2可知,早白垩世花岗岩和满克头鄂博组火山岩地球化学特征较一致:①大多数样品SiO2含量(66.88%~75.03%)与分异指数(87.4~97.2)较高(除粗面岩TW082外);②岩石Al2O3含量高(13.26%~16.44%),铝饱和指数(A/CNK)介于0.99~1.17之间,在A/CNK-A/NK图解上大体投影于过铝质岩区域(图 5-b),在CIPW标准矿物中则可见刚玉分子的出现;③全碱含量高,K2O+Na2O值为8.23%~9.87%,K2O/Na2O值多大于1.1,在SiO2-K2O图解上,样品点主要落入橄榄粗玄系列和高钾钙碱性系列(图 5-c),而在A.R.-SiO2图解上,大体落入碱性岩区域(图 5-d);④在Harker图解中,TiO2、Al2O3、TFe2O3、CaO、P2O5含量随SiO2含量增高而降低(图 6)。

    图  6  吉峰花岗质火山-侵入杂岩哈克图解
    Figure  6.  Harker diagrams of Jifeng granitic volcanic-intrusive complex

    而玛尼吐组火山岩样品TW426地球化学特征则稍有不同,具有较低的SiO2含量(67.68%),高的Al2O3含量(16.66%)和铝饱和指数(1.68),在A/CNK-A/NK图解上位于强烈过铝质区域,低全碱含量(7.65%)和Wright碱度率(2.54)及高K2O/Na2O值(3.23)等特征。

    (2) 微量元素

    表 2可知,早白垩世花岗岩、满克头鄂博组流纹岩及玛尼吐组凝灰岩微量元素地球化学特征较一致。在球粒陨石标准化稀土元素配分模式图(图 7-a)中,所有样品均表现出右倾的海鸥式配分模式,具有相对富集的LREE、较高的(La/Yb)N值(4.82~14.60)及轻微-中等的负Eu异常。在微量元素原始地幔标准化蛛网图(图 7-b)中,大离子亲石元素(LILE)Rb、U、Th、K及Pb富集,Ba和高场强元素(HSFE)Ti、Nb、Ta、Sr、P等则明显亏损。

    图  7  吉峰花岗岩-火山岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据参考文献[36])
    Figure  7.  Chondrite-normalized REE patterns(a)and primitive-mantle-normalized trace element spidergrams(b)for the Jifeng granites and tuffs

    前文已述,大兴安岭北段吉峰地区秀山花岗岩、旭光花岗岩、满克头鄂博组流纹岩和玛尼吐组凝灰岩的锆石U-Pb年龄分别为125.5±1.8 Ma,125.8±1.0 Ma,125.4±0.78 Ma,145.2±1.1 Ma,指示该区至少经历了约145 Ma和约125 Ma两期岩浆活动。

    本文采集的岩石样品的A/CNK=0.99~1.68(平均1.14),CIPW标准矿物计算中出现刚玉分子(0.01%~7.43%),表现出准铝质-过铝质岩石的特征,暗示其与S型花岗岩的亲缘性。但其P2O5含量低(0.03%~0.28%),P2O5与SiO2表现出明显的负相关趋势(图 6),且岩石未见堇青石、石榴子石等矿物,因而基本排除其为S型花岗岩的可能[37-40]

    同时,岩石具有高硅、高铝、高分异指数、轻重稀土元素中等分异、LILE富集、HSFE强烈亏损、部分主量、微量元素与SiO2呈负相关等高分异特征,与I型花岗岩有较好的相似性。Chappell等[41]指出,在高分异的情况下,A型花岗岩原本高的Zr、Nb、Ce、Y含量会明显降低[42],导致其与I型花岗岩之间成因类型判别困难。在花岗岩成因判别图解中,大部分样品具有Ga/Al×10000>2.6、(Zr+Nb+Ce+Y)>350×10-6、Zr>250×10-6等特征,投影于A型花岗岩区域[43](图 8)。加之吉峰地区岩浆岩锆石饱和温度为792~908 ℃,平均841 ℃,高于I型和S型花岗岩形成温度(表 2)。因此,在无较富镁铁质岩石伴生的情况下,笔者倾向于利用Whalen等[43]的指标,将吉峰地区上述2期花岗质岩石归为A型花岗岩。

    图  8  吉峰花岗岩成因类型判别图解(底图据参考文献[43])
    a—K2O-Na2O图解;b—10000Ga/Al-K2O+Na2O图解;c—10000Ga/Al-Nb图解;d—10000Ga/Al-Zr图解;e—(Zr+Nb+Ce+Y)-FeO*/MgO图解;f—(Zr+Nb+Ce+Y)-(K2O+Na2O)图解。FG—分异的长英质花岗岩; OGT—未分异的M、I、S花岗岩
    Figure  8.  Classification diagrams indicating Jifeng granites belonging to A-types granite

    前文已述,大兴安岭北段吉峰地区2期岩浆岩均为A型花岗岩。通常认为,A型花岗岩形成于较高温度、来源于较浅部的中上地壳(成岩压力较低),与大陆裂谷、大洋热点区、后造山等拉张构造背景息息相关[37, 43-47]。在构造背景判别图上,吉峰地区大部分样品点落入后碰撞区域(图 9),指示大兴安岭北段在晚侏罗世(145.2 Ma)和早白垩世(125.4~125.8 Ma)均处于伸展的大地构造背景。

    图  9  吉峰地区花岗质岩石大地构造背景判别图(底图据参考文献[48])
    Figure  9.  Tectonic background discriminant diagram of granitic rocks in Jifeng area

    为更全面地理解大兴安岭北段吉峰地区晚中生代的构造背景和成岩动力学机制,本文系统分析了大兴安岭及其邻区已发表的170~100 Ma的年龄和地球化学数据。由图 10可知,大兴安岭岩浆活动自170 Ma开始逐渐增强,在约132 Ma达到高峰,之后逐渐减弱,在约120 Ma后岩浆活动近于停歇。但若依据岩石成因类型进行分类统计,可见岩浆活动随时间有规律地进行:①晚侏罗世(170~145 Ma),在大兴安岭全区广泛发育,其中158 Ma和150 Ma存在2个小的活动峰期,岩石介于碱性-亚碱性之间,以钙碱性为主[3, 49-55];②早白垩世早期(145~135 Ma),岩石以高钾钙碱性I型(部分为埃达克质岩)和A型花岗质岩浆岩共同发育为典型特征(图 10)[25, 56-69],相对晚侏罗世,该期岩浆活动进一步活跃,岩石极性显著增大;③早白垩世中期(135~120 Ma),岩浆活动强烈发育,在约132 Ma达到峰值,岩石主要为A型花岗质岩石和后碰撞花岗岩[2, 25, 52, 58, 67, 70-76],岩石极性进一步增大;④早白垩世晚期(120~100 Ma),大兴安岭地区岩浆活动迅速减弱,而松辽盆地开始发育大量A型花岗岩和双峰式火山岩(图 10)[77-85];吉黑东部则以钙碱性组合为主兼有碱性岩特征,并具有自陆缘向陆内极性成分增加的趋势[3]

    图  10  大兴安岭及其邻区晚中生代年龄直方图
    (图a数据据本文及参考文献[4, 49-162],图b数据据参考文献[52])
    Figure  10.  Histogram of the Late Mesozoic ages in the Da Hinggan Mountains and their adjacent areas

    基于前文大兴安岭及其邻区岩浆岩年龄框架,笔者认为,大兴安岭及其邻区构造演化可能并非受单一构造体系域的控制。

    (1) 中晚侏罗世(170~145 Ma)

    大兴安岭、东蒙古和外贝加尔地区在该期岩浆活动强烈[7, 26, 52-53, 89, 163-164],而松辽盆地及其东部地区岩浆作用却十分少见。古太平洋板块很难俯冲如此远的距离(大于2000 km)触发大兴安岭以西地区大规模岩浆活动,而对松辽盆地及其东部地区无显著影响。因而大兴安岭地区中晚侏罗世钙碱性岩石组合可能更多地受蒙古-鄂霍茨克洋闭合制约[3]。但同时需明白,古太平洋板块西向俯冲及南部特提斯洋向北俯冲的远程效应,驱动华北北缘增生带向北与西伯利亚板块俯冲碰撞,并导致大兴安岭岩石圈挤压和增厚[165]

    (2) 早白垩世早期(145~135 Ma)

    高Sr、低Y的埃达克质岩石的发育,指示大兴安岭地区在该期仍以蒙古-鄂霍茨克构造体系域为主,发生了加厚地壳的部分熔融,而A型花岗岩则可能为加厚条件下岩浆底侵下地壳部分熔融的产物,也表明该时期大兴安岭地区即将发生由挤压加厚向伸展的转换。

    (3) 早白垩世中期(135~120 Ma)

    尽管该期仍可见埃达克质岩的发育,但A型花岗质火山-侵入岩和后碰撞花岗岩比例逐渐增大,岩石极性亦逐步增大,指示大兴安岭地区处于强烈的拉张环境,可能为蒙古-鄂霍茨克后造山阶段或拆沉阶段。但值得注意的是,该时期黑龙江、饶河等地可见构造核杂岩[2],指示中国东北地区伸展作用的广泛分布。因此,也不能排除古太平洋板块后撤导致的加厚地壳拆沉的可能。

    (4) 早白垩世晚期(120~100 Ma)

    本阶段大兴安岭地区岩浆活动迅速减弱,指示蒙古-鄂霍茨克构造体系域控制作用的结束。而松辽盆地大规模的A型花岗岩和双峰式火山岩,指示东北地区拉伸作用的快速东移;吉黑东部岩浆岩呈现出由东向西极性增大的趋势[3],则可能受东部俯冲板片的局部挤压的控制。这表明东北地区在该期主要受古太平洋构造体系域的控制。

    (1) 大兴安岭北段吉峰地区发育约145.2 Ma和约125.4 Ma两期岩浆活动,2期岩浆岩均具有A型花岗岩的地球化学特征。其中第一期A型花岗岩可能为以挤压加厚为主、向伸展转换的构造背景下地壳部分熔融的产物;而第二期A型花岗岩可能为强烈拉伸环境下大兴安岭加厚地壳大规模拆沉的产物。

    (2) 大兴安岭晚中生代大规模岩浆活动受蒙古-鄂霍茨克和古太平洋构造体系域的共同控制,其中早白垩世中期以前主要受蒙古-鄂霍茨克构造体系域控制,早白垩世晚期则以古太平洋构造体系域为主。

    致谢: 野外工作得到昆明理工大学贾福聚博士的大力帮助, 高建国教授/博导在成文过程中给予有益指导, 审稿专家对论文进行了详细审阅并提出宝贵的修改意见, 在此一并表示感谢。
  • 图  1   东昆仑东段阿斯哈金矿区地质图[1]

    1-第四系; 2-古元古界金水口群白沙河组; 3-早古生代灰白色片麻状斜长花岗岩; 4-晚古生代-早中生代灰白色中粗粒花岗闪长岩、闪长岩; 5-晚古生代-早中生代灰白色-肉红色花岗岩、钾质花岗岩; 6-早中生代肉红色花岗岩、钾质花岗岩; 7-地质界线; 8-断层; 9-矿床(点); 10-取样点位置

    Figure  1.   Geological map of the Asiha gold deposit in the east section of East Kunlun Orogenic Belt

    图版Ⅰ  

    a、b.闪长岩手标本, b中见团块状暗色包体; c~f.闪长岩镜下照片(正交偏光, 描述见正文)。Am-角闪石; Ap-磷灰石; Bt-黑云母; Pl-斜长石; Qtz-石英

    图版Ⅰ.  

    图  2   阿斯哈石英闪长岩SiO2-K2O图解(a, 底图据参考文献[24])和A/CNK-A/NK图解(b, 底图据参考文献[25])

    Figure  2.   Diagrams of SiO2-K2O (a) and A/CNK-A/NK (b) of the Asiha diorite

    图  3   阿斯哈石英闪长岩稀土元素球粒陨石标准化配分图(a, 标准化值据参考文献[26])和微量元素原始地幔标准化蛛网图(b, 标准化值据参考文献[27])

    Figure  3.   Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) of the Asiha diorite

    图  4   阿斯哈石英闪长岩(ASH-08)锆石阴极发光图像和锆石U-Pb同位素年龄

    Figure  4.   Cathodoluminescence images and U-Pb ages of the zircons from the Asiha diorite(ASH-08)

    图  5   阿斯哈石英闪长岩锆石U-Pb谐和图(a)和年龄加权平均值直方图(b)

    Figure  5.   U-Pb concordia diagram (a) and histogram of weighted average ages (b) of zircons in the Asiha diorite

    图  6   阿斯哈石英闪长岩锆石εHf(t)直方图(a)和锆石U-Pb年龄-εHf(t)相关图(b)

    Figure  6.   Histogram of εHf(t) for zircon (a) and zircon U-Pb age-εHf(t) diagram (b) of the Asiha diorite

    图  7   阿斯哈石英闪长岩的R1-R2图解(底图据参考文献[34])

    Figure  7.   R1-R2 diagram of the Asiha diorite

    表  1   阿斯哈石英闪长岩主量、微量和稀土元素含量分析结果

    Table  1   Major, trace and rare earth element content of the Asiha diorite

    样号 SiO2 TiO2 AI2O3 TFeO MnO MgO CaO Na2O K2O P2O5 烧失量 总量 A/CNK A/NK σ Mg# Be Sc V Cr Co
    ASH-11 56.82 1.17 15.67 6.65 0.08 6.25 6.02 3.19 2.83 0.14 1.12 99.94 0.81 1.89 2.62 63 2.09 13.3 130.0 32.0 165
    ASH-12 57.85 1.16 15.83 6.21 0.11 6.44 6.12 2.78 2.72 0.12 0.58 99.92 0.85 2.11 2.04 65 2.07 18.8 143.0 47.6 196
    ASH-13 60.11 1.02 16.03 6.45 0.09 4.74 5.37 3.11 2.44 0.17 0.49 100.02 0.91 2.07 1.80 57 2.23 13.1 101.0 26.7 136
    ASH-14 59.32 1.05 16.37 6.17 0.05 4.47 5.87 2.82 2.85 0.13 0.86 99.96 0.89 2.12 1.97 56 2.05 12.4 93.3 24.6 188
    ASH-15 60.79 1.25 15.34 6.57 0.08 4.05 5.81 3.13 2.18 0.20 0.61 100.01 0.85 2.04 1.58 52 2.00 15.2 111.0 26.8 144
    ASH-16 61.15 1.15 15.95 6.09 0.11 3.56 5.82 3.14 2.43 0.21 0.59 100.20 0.87 2.05 1.71 51 1.85 13.6 96.5 28.5 200
    ASH-17 60.08 1.07 15.98 6.53 0.12 4.73 5.33 3.15 2.41 0.10 0.57 100.07 0.91 2.05 1.81 56 2.04 16.5 105.0 36.3 124
    样号 Ni Cu Zn Ga Rb Sr Zr Nb Ba Hf Ta Pb Th U La Ce Pr Nd Sm Eu Gd
    ASH-11 16.3 23.5 95.4 21.03 72.8 504 47.32 10.4 493.74 1.52 0.60 15.65 8.40 2.59 25.4 49.1 5.80 21.0 4.03 1.22 3.43
    ASH-12 17.6 144.0 93.5 21.03 66.9 526 99.31 10.9 520.78 2.82 0.69 13.77 7.84 1.34 26.8 53.9 6.45 24.7 4.85 1.25 4.06
    ASH-13 15.4 30.0 96.7 19.93 88.7 448 76.43 10.7 668.00 2.55 0.73 18.10 11.40 1.99 35.2 66.3 7.45 27.2 5.10 1.14 4.49
    ASH-14 12.8 33.5 76.0 20.13 103.0 437 70.97 10.6 679.01 2.20 0.73 18.87 11.80 2.61 35.0 65.6 7.23 26.4 4.63 1.07 4.03
    ASH-15 13.9 35.7 98.4 20.43 91.9 505 74.87 11.1 669.00 2.44 0.74 20.32 9.90 1.62 35.0 64.8 7.26 26.6 4.89 1.17 4.41
    ASH-16 13.7 23.3 98.7 19.33 87.4 452 69.22 10.8 724.08 2.37 0.73 16.88 9.05 3.07 26.6 52.9 6.21 23.8 4.56 1.18 4.23
    ASH-17 16.3 17.1 75.9 20.63 74.9 491 89.08 12.9 445.66 2.83 0.92 12.77 10.60 1.75 26.9 54.1 6.41 24.7 4.89 1.22 4.31
    样号 Tb Dy Ho Er Tm Yb Lu Y SREE LREE HREE LREE
    /HREE
    (La/Yb)N 5Eu 5Ce
    ASH-11 0.56 2.96 0.57 1.64 0.23 1.46 0.22 15.6 117.62 106.55 11.07 9.62 12.48 0.98 0.95
    ASH-12 0.71 3.63 0.68 2.01 0.29 1.90 0.28 19.8 131.50 117.95 13.55 8.71 10.12 0.84 0.97
    ASH-13 0.7 3.69 0.69 2.11 0.30 1.99 0.27 20.1 156.64 142.39 14.24 10.00 12.69 0.71 0.95
    ASH-14 0.67 3.47 0.63 1.92 0.27 1.72 0.26 18.0 152.91 139.93 12.97 10.79 14.60 0.74 0.96
    ASH-15 0.68 3.50 0.65 1.91 0.27 1.80 0.26 18.7 153.2 139.72 13.48 10.37 13.95 0.75 0.94
    ASH-16 0.63 3.28 0.65 1.92 0.26 1.70 0.26 17.5 128.17 115.25 12.92 8.92 11.22 0.81 0.97
    ASH-17 0.72 3.57 0.71 2.08 0.28 1.88 0.29 19.2 132.06 118.22 13.84 8.54 10.26 0.79 0.98
    注:主量元素含量单位为%, 微量和稀土元素含量为10-6。A/CNK=摩尔(Al2O3)/(CaO+K2O+Na2O), A/NK=摩尔(Al2O3)/(K2O+Na2O), Mg#= 100×摩尔MgO/(MgO+FeO), TFeO指全铁
    下载: 导出CSV

    表  2   阿斯哈石英闪长岩(ASH-08)LA-ICP-MS锆石U-Th-Pb分析结果

    Table  2   Zircon U-Th-Pb isotope compositions of the Asiha diorite sample (ASH-08) as measured by LA-ICP-MS technique

    测试
    点号
    元素含量/10-6 Th/U 同位素比值 年龄/Ma
    206Pb 232Th 238U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    01 18.6 109.7 131.4 0.83 0.0541 0.0024 0.2723 0.0092 0.0365 0.0006 374 95 244.5 7.4 231.2 3.6
    02 13.1 64.5 92.7 0.70 0.0544 0.0028 0.2730 0.0119 0.0364 0.0006 389 112 245.1 9.5 230.3 3.8
    03 11.3 46.6 77.9 0.60 0.0561 0.0029 0.2872 0.0126 0.0372 0.0006 455 112 256.3 9.9 235.1 3.9
    04 21.3 120.6 145.5 0.83 0.0564 0.0024 0.2890 0.0093 0.0372 0.0006 466 92 257.8 7.3 235.4 3.6
    05 18.1 101.5 124.2 0.82 0.0555 0.0024 0.2796 0.0095 0.0365 0.0006 433 95 250.3 7.5 231.2 3.6
    06 14.8 49.4 102.3 0.48 0.0532 0.0025 0.2682 0.0103 0.0365 0.0006 339 104 241.3 8.3 231.3 3.7
    07 11.4 56.1 79.1 0.71 0.0551 0.0028 0.2795 0.0118 0.0368 0.0006 417 109 250.3 9.3 232.8 3.8
    08 12.0 57.0 84.8 0.67 0.0519 0.0027 0.2604 0.0111 0.0364 0.0006 280 113 235.0 8.9 230.5 3.8
    09 12.0 47.2 82.9 0.57 0.0558 0.0028 0.2850 0.0115 0.0370 0.0006 445 106 254.6 9.1 234.3 3.8
    10 52.1 177.6 360.0 0.49 0.0527 0.0019 0.2650 0.0061 0.0365 0.0005 315 79 238.7 4.9 231.0 3.3
    11 19.0 95.8 129.7 0.74 0.0524 0.0024 0.2656 0.0095 0.0368 0.0006 302 100 239.1 7.6 232.8 3.6
    12 12.4 53.4 85.4 0.63 0.0540 0.0029 0.2747 0.0123 0.0369 0.0006 371 115 246.4 9.8 233.5 4.0
    13 18.1 86.8 126.4 0.69 0.0540 0.0025 0.2736 0.0103 0.0368 0.0006 370 102 245.5 8.2 232.7 3.7
    14 17.1 93.6 117.1 0.80 0.0543 0.0024 0.2758 0.0095 0.0368 0.0006 383 95 247.3 7.5 233.2 3.6
    15 12.7 62.9 85.7 0.73 0.0527 0.0029 0.2663 0.0123 0.0367 0.0006 314 119 239.7 9.9 232.1 3.9
    16 18.6 108.1 125.6 0.86 0.0539 0.0026 0.2729 0.0108 0.0367 0.0006 369 105 245.0 8.6 232.2 3.8
    17 40.8 184.0 275.5 0.67 0.0519 0.0019 0.2641 0.0065 0.0369 0.0006 280 82 238.0 5.2 233.7 3.4
    18 23.7 117.9 163.4 0.72 0.0529 0.0022 0.2676 0.0085 0.0367 0.0006 323 92 240.8 6.8 232.4 3.5
    19 24.5 135.9 163.7 0.83 0.0553 0.0022 0.2828 0.0084 0.0371 0.0006 423 88 252.8 6.7 234.8 3.5
    20 12.1 58.9 82.6 0.71 0.0514 0.0026 0.2611 0.0110 0.0369 0.0006 257 112 235.6 8.8 233.4 3.8
    21 18.9 108.2 132.8 0.81 0.0517 0.0025 0.2621 0.0102 0.0368 0.0006 271 106 236.3 8.2 232.9 3.7
    22 13.4 67.6 92.2 0.73 0.0515 0.0027 0.2615 0.0114 0.0368 0.0006 264 115 235.8 9.2 233.0 3.9
    23 21.4 119.5 146.8 0.81 0.0503 0.0021 0.2521 0.0078 0.0363 0.0006 210 93 228.3 6.4 230.0 3.5
    24 19.8 90.0 137.2 0.66 0.0499 0.0022 0.2524 0.0089 0.0367 0.0006 192 101 228.5 7.3 232.1 3.6
    25 39.1 188.2 264.9 0.71 0.0520 0.0019 0.2641 0.0065 0.0369 0.0006 284 82 238.0 5.3 233.3 3.4
    下载: 导出CSV

    表  3   阿斯哈石英闪长岩锆石原位Lu-Hf同位素组成

    Table  3   Zircon in-situ Lu-Hf isotopic compositions of the Asiha diorite

    样号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) t2DM/Ga t2DM/Ga fLu/Hf
    01 0.024715 0.000602 0.282586 0.000013 -6.58 -1.57 0.46 0.93 1.37 -0.98
    02 0.019472 0.000471 0.282606 0.000013 -5.87 -0.84 0.46 0.90 1.32 -0.99
    03 0.032698 0.000769 0.282564 0.000016 -7.36 -2.37 0.57 0.97 1.42 -0.98
    04 0.028040 0.000654 0.282546 0.000012 -7.99 -2.99 0.42 0.99 1.46 -0.98
    05 0.044469 0.001124 0.282572 0.000012 -7.07 -2.14 0.42 0.97 1.40 -0.97
    06 0.031770 0.000744 0.282569 0.000013 -7.18 -2.19 0.46 0.96 1.41 -0.98
    07 0.015334 0.000389 0.282542 0.000015 -8.13 -3.09 0.53 0.99 1.46 -0.99
    08 0.017352 0.000417 0.282535 0.000016 -8.38 -3.34 0.57 1.00 1.48 -0.99
    09 0.027271 0.000638 0.282594 0.000017 -6.29 -1.29 0.60 0.92 1.35 -0.98
    10 0.015524 0.000376 0.282577 0.000018 -6.90 -1.85 0.64 0.94 1.38 -0.99
    11 0.037519 0.000899 0.282529 0.000017 -8.59 -3.63 0.60 1.02 1.50 -0.97
    12 0.023285 0.000563 0.282571 0.000013 -7.11 -2.09 0.46 0.95 1.40 -0.98
    13 0.024445 0.000574 0.282569 0.000014 -7.18 -2.16 0.50 0.96 1.40 -0.98
    14 0.022212 0.000522 0.282564 0.000016 -7.36 -2.33 0.57 0.96 1.41 -0.98
    15 0.020043 0.000476 0.282580 0.000015 -6.79 -1.76 0.53 0.94 1.38 -0.99
    16 0.034992 0.000796 0.282589 0.000016 -6.47 -1.49 0.57 0.93 1.36 -0.98
    17 0.040988 0.000968 0.282527 0.000015 -8.66 -3.71 0.53 1.03 1.50 -0.97
    18 0.021658 0.000502 0.282585 0.000015 -6.61 -1.59 0.53 0.93 1.37 -0.98
    19 0.015955 0.000373 0.282537 0.000011 -8.31 -3.27 0.39 1.00 1.47 -0.99
    20 0.057680 0.001296 0.282550 0.000016 -7.85 -2.95 0.57 1.00 1.45 -0.96
    21 0.036378 0.000808 0.282569 0.000017 -7.18 -2.20 0.60 0.96 1.41 -0.98
    22 0.028673 0.000641 0.282575 0.000017 -6.97 -1.96 0.60 0.95 1.39 -0.98
    注: t为样品形成年龄, 本文取232.6Ma; 现今球粒陨石和亏损地幔的176Hf/177Hf、176Lu/177Hf值分别为0.282772、0.03321和0.28325、0.03842[23]; λ=1.867×10-11 [29]
    下载: 导出CSV
  • 李碧乐, 孙丰月, 于晓飞, 等.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J].岩石学报, 2012, 28(4):1163-1172. http://d.old.wanfangdata.com.cn/Conference/7667375
    许志琴, 杨经绥, 李海兵, 等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报, 2006, 80(12):1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002
    莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
    姜春发, 杨经绥, 冯秉贵, 等.昆仑开合构造[M].北京:地质出版社, 1992:183-217.
    姜春发, 王宗起, 李锦轶.中央造山带开合构造[M].北京:地质出版社, 2000:1-54.
    郭正府, 邓晋福, 许志琴, 等.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J].现代地质, 1998, 12(3):344-352. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ803.006.htm
    罗照华, 邓晋福, 曹永清, 等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质, 1999, 13(1):51-56. doi: 10.1038-ajg.2011.100/
    崔军文, 朱红, 武长得.青藏高原岩石圈变形及其动力学[M].北京:地质出版社, 1992:1-164.
    殷鸿福, 张克信.东昆仑造山带的一些特点[J].地球科学——中国地质大学学报, 1997, 22(4):339-342. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267862.htm
    殷鸿福, 张克信.中央造山带的演化及其特点[J].地球科学——中国地质大学学报, 1998, 23(5):437-441. http://d.old.wanfangdata.com.cn/Periodical/dqkx199805001
    王国灿, 魏启荣, 贾春兴, 等.关于东昆仑地区前寒武纪地质的几点认识[J].地质通报, 2007, 26(8):929-937. doi: 10.3969/j.issn.1671-2552.2007.08.003
    岳维好, 高建国, 周家喜.青海果洛龙洼金矿基性岩脉锆石UPb年龄及岩石地球化学特征[J].矿物岩石, 2013, 33(3):93-102. doi: 10.3969/j.issn.1001-6872.2013.03.014
    岳维好, 周家喜, 高建国, 等.青海都兰县色德日辉绿岩地球化学特征、锆石U-Pb年龄及其地质意义[J].矿物岩石地球化学通报, 2017, 26(2):270-278. doi: 10.3969/j.issn.1007-2802.2017.02.010
    岳维好, 周家喜, 高建国, 等.青海都兰县阿斯哈金矿区花岗斑岩岩石地球化学、锆石U-Pb年代学与Hf同位素研究[J].大地构造与成矿学, 2017, 41(4):776-789. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201704013

    Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J]. Talanta, 2000, 51(3):507-513. doi: 10.1016/S0039-9140(99)00318-5

    侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://www.sciencedirect.com/science/article/pii/S0009254108003501

    Ludwig K R. Isoplot 3.0:A geochronological toolkit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2003:1-70. doi: 10.1016-j.immuni.2011.10.010/

    Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234:105-126. doi: 10.1016/j.chemgeo.2006.05.003

    Goolaerts A, Mattielli N, De Jong J, et al. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS[J]. Chemical Geology, 2004, 206:1-9. doi: 10.1016/j.chemgeo.2004.01.008

    Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 20:121-135. http://www.sciencedirect.com/science/article/pii/S0009254104001731

    Blichert Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1998, 148:243-258. http://www.sciencedirect.com/science/article/pii/S0012821X99002228

    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimia et Cosmochimica Acta, 2003, 64:133-147. http://www.sciencedirect.com/science/article/pii/S0016703799003439

    Peccerillo R, Talor S R. Geochemistry of Eocene cal-alkaline vaocanic rocks from the Kastamonu area, northern Turkey[J]. Contrib. Mineral. Petrol., 1976, 58:63-81. doi: 10.1007/BF00384745

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Developments in Geochemistry 2. Amsterdam: Elsevier, 1984: 63-114.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 1989, 42: 313-345.

    Belousova E A, Griffin W L, O'Reilly S Y. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol., 2002, 143:602-622. doi: 10.1007/s00410-002-0364-7

    Söderlund U, Pathcett P J, Verrot J D, et al. The 176Lu decay contant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusion[J]. Earth and Planetary Scicence Letters, 2004, 219:311-324. doi: 10.1016/S0012-821X(04)00012-3

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 1995, 33(2):241-265. doi: 10.1029/95RG00262

    Griffin W L, Wang X, Jackon S E, et al. Zircon chemistry and magma genesis, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61:237-269. doi: 10.1016/S0024-4937(02)00082-8

    Kemp A I S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O Isotopes in Zircon[J]. Science, 2007, 16:980-983. doi: 10.1126-science.1136154/

    Batchelor R A, Bowden P. Petrorgenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemistry Geology, 1985, 50:63-81. http://www.sciencedirect.com/science/article/pii/0009254185900348

    Condie K C. Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary:Identification and significance[J]. Lithos, 1989, 23:1-18. doi: 10.1016/0024-4937(89)90020-0

    Salters V J M, Hart S R. The mantle sources of ocean ridges, island arcs:The Hf-isotope connection[J]. Earth Planet. Sci. Lett., 1991, 104:364-380. doi: 10.1016/0012-821X(91)90216-5

    Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonolphysics, 1996, 258(1/4):215-231. http://www.sciencedirect.com/science/article/pii/0040195195001999

    杨经绥, 许志琴, 李海兵, 等.东昆仑阿尼玛卿地区古提特斯火山作用和板块构造体系[J].岩石矿物杂志, 2005, 24(5):369-380.
    熊富浩, 马昌前, 张金阳, 等.东昆仑造山带早中生代镁铁质岩墙群LA-ICP-MS锆石U-Pb定年、元素和Sr-Nd-Hf同位素地球化学[J].岩石学报, 2011, 27(11):3350-3364. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201111016
    长安大学和青海省有色地质八队.青海省都兰县沟里地区Ⅰ 47E003010(沟里乡)1: 5万矿产地质、水系沉积物测量综合调查成果报告. 2007.
    青海省地质局. 1: 20万加鲁河幅区域地质调查报告. 1973.
  • 期刊类型引用(9)

    1. 孔会磊,李青,李金超,张江伟,南卡俄吾,国显正,贾群子. 东昆仑波洛尕熊金矿区石英闪长玢岩锆石U-Pb测年、岩石地球化学及地质意义. 西北地质. 2025(01): 150-165 . 百度学术
    2. 李斌,高强,魏俊浩,赖联新,李笑龙. 东昆仑东段浪木日地区地球化学异常信息提取方法研究及异常查证. 矿产勘查. 2024(03): 403-419 . 百度学术
    3. 王晓云,井国正,李文君,何俊江,王艺龙,刘晓阳,谭俊,石文杰. 基于多源遥感卫星数据的青海东昆仑沟里地区线性构造识别及找矿预测. 地质科技通报. 2024(01): 326-342 . 百度学术
    4. 王秉璋,李五福,郑英,王春涛,赵忠国,金婷婷,曹锦山,付长垒. 东昆仑印支晚期埃达克质花岗岩的成因和地质意义. 地质力学学报. 2024(05): 834-864 . 百度学术
    5. 岳维好,周家喜,高建国,贾福聚. 青海东昆仑阿斯哈金矿床成矿物质来源:C-H-O-S-Pb同位素约束. 地球化学. 2023(04): 517-530 . 百度学术
    6. 岳维好,周家喜. 青海东昆仑阿斯哈金矿床含金黄铁矿微量元素地球化学特征及其地质意义. 矿床地质. 2022(01): 106-120 . 百度学术
    7. 李豪,李建龙,杨德,张国鹏. 帕龙沟地区铅锌矿矿床地质特征及找矿规律. 中国锰业. 2022(05): 31-36 . 百度学术
    8. 张士贞,李奋其,刘函,李俊,苟正彬,秦雅东. 中拉萨地块亚热地区早白垩世辉长岩:班公湖-怒江洋南向俯冲板片断离的岩浆作用响应. 地质通报. 2021(11): 1852-1864 . 本站查看
    9. 张新远,李五福,欧阳光文,王春涛,陈海清. 东昆仑东段青海战红山地区早三叠世火山岩的发现及其地质意义. 地质通报. 2020(05): 631-641 . 本站查看

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  3353
  • HTML全文浏览量:  499
  • PDF下载量:  1984
  • 被引次数: 12
出版历程
  • 收稿日期:  2017-09-22
  • 修回日期:  2018-05-21
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2019-03-14

目录

/

返回文章
返回