Processing math: 100%
  • 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

中拉萨地块亚热地区早白垩世辉长岩: 班公湖-怒江洋南向俯冲板片断离的岩浆作用响应

张士贞, 李奋其, 刘函, 李俊, 苟正彬, 秦雅东

张士贞, 李奋其, 刘函, 李俊, 苟正彬, 秦雅东. 2021: 中拉萨地块亚热地区早白垩世辉长岩: 班公湖-怒江洋南向俯冲板片断离的岩浆作用响应. 地质通报, 40(11): 1852-1864.
引用本文: 张士贞, 李奋其, 刘函, 李俊, 苟正彬, 秦雅东. 2021: 中拉萨地块亚热地区早白垩世辉长岩: 班公湖-怒江洋南向俯冲板片断离的岩浆作用响应. 地质通报, 40(11): 1852-1864.
ZHANG Shizhen, LI Fenqi, LIU Han, LI Jun, GOU Zhengbin, QIN Yadong. 2021: The Early Cretaceous gabbro in Yare area, middle Lhasa Block: Magmatism response to the slab break-off of the southward subduction Bangong-Nujiang Ocean lithosphere. Geological Bulletin of China, 40(11): 1852-1864.
Citation: ZHANG Shizhen, LI Fenqi, LIU Han, LI Jun, GOU Zhengbin, QIN Yadong. 2021: The Early Cretaceous gabbro in Yare area, middle Lhasa Block: Magmatism response to the slab break-off of the southward subduction Bangong-Nujiang Ocean lithosphere. Geological Bulletin of China, 40(11): 1852-1864.

中拉萨地块亚热地区早白垩世辉长岩: 班公湖-怒江洋南向俯冲板片断离的岩浆作用响应

基金项目: 

中国地质调查局项目《中尼铁路(境内段)沿线区域地质调查》 DD20211195

《三江造山带昌都—澜沧地区区域地质调查》 DD20190053

国家自然科学基金项目《西藏那曲地区中晚侏罗世拉贡塘组沉积作用对班公湖-怒江构造带地质演化的制约》 41972113

《措勤—改则地区木纠错组时代厘定:对拉萨地块晚二叠世—三叠纪沉积演化的制约》 42002032

详细信息
    作者简介:

    张士贞(1984-), 男, 高级工程师, 从事青藏高原基础地质调查和研究工作。E-mail: zszcd2010@126.com

  • 中图分类号: P534.53;P588.12+4

The Early Cretaceous gabbro in Yare area, middle Lhasa Block: Magmatism response to the slab break-off of the southward subduction Bangong-Nujiang Ocean lithosphere

  • 摘要:

    为深入认识拉萨地块中北部地区早白垩世构造-岩浆过程,对中拉萨地块西段亚热地区早白垩世辉长岩进行了研究。辉长岩的锆石U-Pb年龄为115.5±0.5 Ma。岩石属于拉斑玄武岩系列,具有与洋岛玄武岩(OIB)相似的稀土元素特征,Mg#值(46.07~48.05)、Cr(6.97×10-6~18.5×10-6)和Ni(6.87×10-6~11.2×10-6)元素含量较低,Rb、Ba、K、Sr等大离子亲石元素富集,Th、U和Pb元素呈现明显的正异常,Nb、Ta、Zr、Hf、P、Ti等高场强元素表现为负异常,显示具有部分弧火山岩性质;具有正的锆石εHft)值(+4.3~+7.9)和较年轻的Hf亏损地幔模式年龄(TDM1=489~614 Ma)。综合分析认为,亚热地区早白垩世辉长岩形成于南向俯冲的班公湖-怒江特提斯洋岩石圈板片断离的构造背景,可能是受近期俯冲板片熔体或超临界流体交代的软流圈地幔部分熔融的产物,并经历了不同程度的分离结晶作用。

    Abstract:

    In order to understand the Early Cretaceous tectonic-magmatic process in the central and north Lhasa Block, the Early Cretaceous gabbro in the Yare area of western part of middle Lhasa Block were studied.The zircon U-Pb age of gabbro is 115.5±0.5 Ma.The rocks belong to tholeiite series, and their characteristics of rare earth elements are similar to those of oceanic island basalt (OIB).Mg# value (46.07~48.05) and contents of Cr (6.97×10-6~18.5×10-6), Ni (6.87×10-6~11.2×10-6) are relatively low.The large ion lithophile elements such as Rb, Ba, K, Sr of gabbro samples are relatively enriched, Th、U and Pb show positive anomalies, and the high field strength elements such as Nb, Ta, Zr, Hf, P and Ti show negative anomalies, indicating that the gabbro samples have some "arc volcanic rock" properties.The gabbro show positive zircon εHf (t) values (+4.3~+7.9) and younger Hf-depleted mantle model ages (TDM1) of 489~614 Ma.By comprehensive analysis, it is proposed that the Early Cretaceous gabbro in the Yare area is most likely triggered by the slab break-off of the southward subducting Bangong-Nujiang Tethyan Ocean lithosphere, and can be considered as the product of partial melting of the asthenosphere mantle which was metasomatized by recent melts or supercritical fluids from the subduction slab, and subsequently experienced varying degrees of fractional crystallization.

  • 中亚造山带是显生宙以来全球最大的陆壳增生与改造地带,其主体是由古亚洲洋岩石圈板片从中元古代晚期开始,不断向两侧古陆之下俯冲而形成岛弧和增生杂岩,并最终闭合使得两侧陆缘碰撞而形成的[1-7]。位于内蒙古东南部的中亚造山带南缘,通常被认为是中朝古板块与西伯利亚古板块之间的古亚洲洋海洋盆地最后消失的地区[3, 8-10] (图 1-a)。近年,综合古地磁、古生物、岩浆岩等关键性地质记录资料,夹于中朝古板块和西伯利亚古板块之间的古亚洲洋最终沿索伦-西拉木伦河缝合带闭合的观点得到了许多学者的认同[4-5, 9-23]。然而,由于对地质记录不同的解释及残余洋壳有限的保留和出露,使古亚洲洋最终闭合的时间及该缝合带的东延位置仍存在很大不确定性。研究区位于中亚造山带南缘,紧邻松辽盆地西缘,靠近索伦-西拉木伦河缝合带向东延伸的大致部位,是研究该缝合带东延进入盆地的关键部位。项目组在区域地质调查工作期间,为了对古亚洲洋最终闭合的位置和时间给予进一步的约束,对西拉木伦河一线的岩石和构造进行了较系统的观察和研究,获得了一些新的发现。在研究区原定分布较广泛的燕山期花岗岩中识别出早二叠世岩浆作用的记录,通过岩石地球化学和锆石Hf同位素研究,结合区域地质资料及前人研究成果,对该岩体成因进行了探讨,以期对该区晚古生代构造演化及缝合带的位置提供约束。

    图  1  内蒙古东南部区域构造简图(a, 据参考文献[3]修改) 和安乐屯地区地质简图(b, 据参考文献修改)
    ①—二连浩特-贺根山缝合带;②—索伦-西拉木伦河缝合带;③—赤峰-巴彦敖包断裂带
    Figure  1.  Sketch regional tectonic map of SE Inner Mongolia(a)and geological map showing the distribution of the Anletun pluton(b)

    研究区位于内蒙古赤峰市阿鲁科尔沁旗南部地区,隶属大兴安岭南段东坡,毗邻松辽盆地西缘,大地构造位置上处于传统划定的二连浩特-贺根山缝合带以南、索伦-西拉木伦河缝合带偏北,一定程度上保存了中国东北地区古生代洋盆最终消失的地质记录(图 1-a)。研究区以南为中朝古板块及其北缘中段的古生代活动陆缘增生区,两者以赤峰-巴彦敖包断裂为界,以发育近东西向分布的早古生代俯冲增生杂岩和弧岩浆岩,以及具规律性成因的晚古生代活动陆缘型侵入岩和火山-沉积岩系为特征[3, 5, 10-11, 24-27];而中朝古板块北缘中段通过索伦-西拉木伦河缝合带与西伯利亚古板块南缘相接,该区在显生宙期间经历了地壳显著地同造山水平生长和后造山垂向增生,以发育岛弧增生杂岩、多类型蛇绿岩及巨量新生地壳熔融而成的岩浆岩为特征,可能是西伯利亚南缘面向类似现今西太平洋多岛洋盆的格局而长期演化至洋盆消亡的结果[28-31]

    研究区出露的最老地层单元为零星分布于宝日乌苏镇—天山口镇一带的石炭系,主要由片岩、石英岩和结晶灰岩构成,发育中、小型石灰岩工业矿床;而在大兴安岭南缘广泛发育的二叠系在研究区也有出露,为大石寨组(原定青凤山组)海相中基性—酸性火山岩,其与下伏石炭系为断层接触;侏罗系在区内出露最广泛,呈面状分布,主要由陆相中酸性火山岩和砂页岩等碎屑岩构成,其中中侏罗世碎屑岩中产小型煤矿;白垩系在研究区分布有限,出露于阿鲁科尔沁旗北部福兴屯地区,以灰黑色辉石安山岩为主;而新生界在区内以第四纪冲积砂砾层、风成沙等松散堆积物为主,含少量河谷橄榄玄武岩[32]。区域地质调查报告显示,研究区没有出露早于中生代的岩浆作用产物,而是主要记录了燕山中期以来的岩浆活动,以小规模的侏罗纪—白垩纪中酸性侵入体和火山作用为主,但从本文的年代学研究看,研究区至少经历过海西期岩浆活动。此外,研究区遭受了多期构造活动,断裂构造较发育。

    安乐屯岩体呈小岩株出露,面积约5 km2(图 1-b)。野外露头观察表明,岩体经历了不同程度的风化作用和地质构造活动,节理较发育,可见后期酸性或基性岩脉侵入,同时岩体整体发生了变形,可见片理化现象。岩体与晚侏罗世下兴安岭组中酸性火山岩呈断层接触,并被燕山中期花岗岩侵入,但围岩不明。岩体样品采样位置位于安乐屯以东露头良好的小山顶部附近,露头尺度可见组成岩体的岩石类型发生变化(图版Ⅰ-ab),经岩石薄片显微镜下观察,该岩体主要由灰白色中细粒石英二长闪长岩(BL03-4和BL03-7)-花岗闪长岩(BL03-2、BL03-3和BL03-5)-黑云母二长花岗岩(BL03-1)组成(图版Ⅰ-c~f)。岩石样品整体上呈中细粒半自形结晶结构,片麻状构造,但主要造岩矿物组成及含量略有不同:黑云母二长花岗岩主要由石英(约28%)、斜长石(约35%)、碱性长石(约30%)和黑云母(约5%)组成(图版Ⅰ-c);花岗闪长岩主要由石英(约25%)、斜长石(约45%)、碱性长石(约20%)和黑云母(约8%)组成(图版Ⅰ-d);石英二长闪长岩主要由碱性长石(约35%)、斜长石(约40%)、石英(约10%)、黑云母(约10%)和角闪石(约2%)组成(图版Ⅰ-ef)。此外,岩石中包含少量锆石、磷灰石及磁铁矿等副矿物(2%~3%),局部发生了绿帘石化和绿泥石化,而且石英二长闪长岩中的角闪石普遍存在暗化现象。

      图版Ⅰ 
    a.安乐屯岩体花岗岩野外露头;b.安乐屯岩体石英二长闪长岩野外露头;c、d.花岗岩样品显微照片(正交偏光);e.石英二长闪长岩样品显微照片(单偏光);f.石英二长闪长岩样品显微照片(正交偏光)。Af—碱性长石;Bi—黑云母;Pl—斜长石;Q—石英;Mt—磁铁矿
      图版Ⅰ. 

    样品先后采用浮选和电磁选完成单矿物筛选,锆石的挑选由河北省区域地质调查大队地质实验室完成。锆石的阴极发光(CL)图像采集和U-Pb同位素分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。实验室应用Agilent 7500a ICP-MS仪器,按照标准测定程序进行锆石U-Pb测定。实验中采用高纯氦为剥蚀物质载气,用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610进行仪器最佳化,样品测定时用哈佛大学标准锆石91500为外部校正标样,以监测标样和样品的仪器条件是否一致。实验中采用8 Hz激光频率、52 mJ激光强度和32 μm激光束斑直径。样品同位素数据处理采用ICPMSDataCal[33-34],运用Andersen方法进行同位素比值校正,以扣除普通铅对定年结果的影响[35]。年龄计算和谐和图的绘制均采用国际标准程序Isoplot(ver3.0)完成[36]。详细的实验步骤和数据处理方法见参考文献[34]。锆石LA-ICP-MS U-Pb分析结果见表 1

    表  1  内蒙古阿鲁科尔沁旗安乐屯岩体锆石U-Th-Pb分析结果
    Table  1.  Zircon U-Th-Pb data of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品号 含量/10-6 Th/U 比值 年龄/Ma
    Th U 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U 206Pb/238U 208Pb/232Th
    BL03-1-01 89 179 0.50 0.32348 0.01240 0.04348 0.00043 0.01316 0.00036 285 10 274 3 264 7
    BL03-1-02 64 137 0.46 0.29881 0.01647 0.04360 0.00054 0.01315 0.00044 265 13 275 3 264 9
    BL03-1-03 48 111 0.43 0.31618 0.01866 0.04401 0.00061 0.01487 0.00054 279 14 278 4 298 11
    BL03-1-04 76 145 0.53 0.30907 0.01331 0.04296 0.00056 0.01097 0.00038 273 10 271 3 220 8
    BL03-1-05 244 352 0.69 0.33950 0.01024 0.04340 0.00037 0.01465 0.00035 297 8 274 2 294 7
    BL03-1-06 72 152 0.47 0.32433 0.01200 0.04344 0.00049 0.01332 0.00043 285 9 274 3 268 9
    BL03-1-07 70 152 0.46 0.34798 0.01548 0.04371 0.00051 0.01530 0.00050 303 12 276 3 307 10
    BL03-1-08 191 292 0.65 0.31868 0.01265 0.04388 0.00041 0.01375 0.00034 281 10 277 3 276 7
    BL03-1-09 65 149 0.44 0.30551 0.01408 0.04278 0.00049 0.01536 0.00055 271 11 270 3 308 11
    BL03-1-10 122 190 0.64 0.30211 0.01094 0.04401 0.00041 0.01398 0.00033 268 9 278 3 281 7
    BL03-1-11 93 164 0.57 0.30695 0.01392 0.04334 0.00043 0.01423 0.00038 272 11 274 3 286 8
    BL03-1-12 90 187 0.48 0.31149 0.01194 0.04361 0.00043 0.01402 0.00035 275 9 275 3 281 7
    BL03-1-13 104 176 0.59 0.31045 0.01361 0.04418 0.00049 0.01312 0.00033 275 11 279 3 263 7
    BL03-1-14 135 288 0.47 0.35014 0.01089 0.04836 0.00050 0.01546 0.00035 305 8 304 3 310 7
    BL03-1-15 139 178 0.78 0.36058 0.01481 0.04334 0.00053 0.01598 0.00052 313 11 274 3 320 10
    BL03-1-16 61 125 0.49 0.31625 0.01697 0.04389 0.00052 0.01437 0.00055 279 13 277 3 288 11
    BL03-1-17 127 268 0.48 0.31873 0.01430 0.04333 0.00042 0.01397 0.00039 281 11 273 3 280 8
    BL03-1-18 52 132 0.39 0.32111 0.01713 0.04356 0.00053 0.01525 0.00052 283 13 275 3 306 10
    BL03-1-19 66 134 0.49 0.32898 0.01442 0.04342 0.00046 0.01419 0.00048 289 11 274 3 285 10
    BL03-1-20 84 159 0.53 0.33255 0.01287 0.04385 0.00045 0.01556 0.00138 292 10 277 3 312 27
    BL03-1-21 102 203 0.50 0.31970 0.01225 0.04420 0.00041 0.01409 0.00034 282 9 279 3 283 7
    BL03-1-22 142 279 0.51 0.30964 0.00977 0.04344 0.00037 0.01335 0.00027 274 8 274 2 268 5
    BL03-1-23 85 186 0.46 0.32663 0.01261 0.04346 0.00042 0.01430 0.00038 287 10 274 3 287 7
    下载: 导出CSV 
    | 显示表格

    分析样品经显微镜下鉴定后,选择新鲜样品在无污染设备中进行加工粉碎,样品的粗碎和研磨工作在吉林大学地球科学院实验室完成。主量元素分析测试在中国科学院地质与地球物理研究所采用玻璃熔片大型X射线荧光光谱法(XRF)完成。微量元素在中国地质大学(武汉)地质过程与矿产资源国家重点实验室采用电感耦合等离子质谱(ICP-MS)法分析测试完成。对照国际标准参考物质BHVO-1(玄武岩)、BCR-2(玄武岩)和AGV-1(安山岩)的分析结果表明,主量元素分析精度和准确度优于5%,微量元素的分析精度和准确度一般优于10%。样品的主量和微量元素分析结果见表 2

    表  2  内蒙古阿鲁科尔沁旗安乐屯岩体主量、微量和稀土元素分析结果
    Table  2.  Major, trace and rare earth elements compositions of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品 BL03-1 BL03-2 BL03-3 BL03-5 BL03-5r BL03-4 BL03-4r BL03-7
    SiO2 71.00 70.61 70.92 70.41 54.70 54.41
    TiO2 0.30 0.31 0.30 0.35 0.99 0.99
    Al2O3 14.35 14.63 14.74 14.74 19.53 19.48
    TFe2O3 3.42 3.49 3.56 3.67 6.70 6.67
    MnO 0.04 0.04 0.06 0.04 0.13 0.13
    MgO 0.86 0.94 1.01 0.92 3.39 3.37
    CaO 2.36 2.95 2.96 2.42 7.10 7.06
    Na2O 3.93 4.26 4.13 4.48 4.43 4.39
    K2O 2.95 1.42 1.14 1.73 1.01 1.01
    P2O5 0.07 0.08 0.08 0.06 0.31 0.31
    烧失量 0.92 1.18 1.18 1.12 1.64 1.60
    总计 100.20 99.91 100.08 99.94 99.93 99.43
    Mg# 0.33 0.35 0.36 0.33 0.50 0.50
    A/CNK 1.03 1.05 1.10 1.08 0.92 0.92
    Na2O/K2O 1.33 3.00 3.62 2.59 4.39 4.35
    Li 6.87 8.39 7.06 8.85 8.66 17.4 30.84
    Be 0.82 0.82 0.83 0.86 0.85 1.13 2.26
    Sc 7.10 5.52 7.89 2.23 2.25 10.7 16.05
    V 40.56 45.31 45.17 43.54 44.15 124 160
    Cr 1.71 1.85 2.13 1.89 1.83 47.06 85.8
    Co 5.51 6.33 5.92 6.01 6.13 16.4 18.2
    Ni 1.60 1.34 1.81 1.51 1.52 32.5 58.1
    Cu 5.27 3.78 5.42 7.38 7.54 17.6 3.65
    Zn 25.3 47.9 270.0 27.4 28.5 399 6486
    Ga 12.92 13.66 12.87 14.78 14.71 22.77 22.60
    Rb 60.56 50.12 44.95 42.34 41.96 45.09 151
    Sr 391 497 421 684 695 1134 692
    Y 7.59 1.78 10.84 1.41 1.54 13.44 14.16
    Zr 90.9 95.1 97.1 106 117 93.1 105
    Nb 2.78 1.56 3.40 1.83 1.86 4.70 4.55
    Cs 1.87 2.12 2.68 1.84 1.85 3.14 3.29
    Ba 1215 786 700 603 615 287 1048
    La 11.14 9.70 13.9 9.63 9.70 15.9 20.03
    Ce 17.99 14.32 23.16 13.28 13.53 37.87 46.07
    Pr 2.13 1.50 2.80 1.38 1.37 4.95 5.92
    Nd 7.52 4.84 10.0 4.26 4.39 21.2 24.14
    Sm 1.40 0.59 1.87 0.52 0.51 4.31 4.66
    Eu 0.72 0.71 0.66 0.80 0.80 1.38 1.25
    Gd 1.42 0.46 1.85 0.38 0.40 3.73 3.84
    Tb 0.22 0.05 0.30 0.05 0.04 0.53 0.53
    Dy 1.36 0.27 1.87 0.22 0.23 2.84 2.82
    Ho 0.29 0.06 0.40 0.04 0.04 0.53 0.54
    Er 0.80 0.18 1.14 0.14 0.16 1.43 1.46
    Tm 0.13 0.03 0.18 0.02 0.02 0.19 0.20
    Yb 0.85 0.24 1.32 0.18 0.20 1.17 1.25
    Lu 0.14 0.05 0.23 0.04 0.04 0.18 0.18
    Hf 2.35 2.27 2.58 2.49 2.80 2.27 2.73
    Ta 0.21 0.10 0.30 0.12 0.11 0.27 0.32
    Pb 7.90 13.75 26.75 5.92 6.07 78.0 340
    Th 2.45 0.81 4.32 1.30 1.32 2.19 3.82
    U 0.49 0.30 0.83 0.36 0.37 0.57 1.04
    Eu/Eu* 1.56 4.04 1.07 5.25 5.22 1.03 0.88
    LREE 40.90 31.66 52.44 29.86 30.30 85.69 102
    HREE 5.21 1.35 7.30 1.08 1.15 10.60 10.82
    LREE/HREE 7.85 23.45 7.18 27.65 26.35 8.08 9.43
    ∑REE 46.11 33.01 59.74 30.94 31.45 96.29 113
    (La/Yb)N 9.40 28.45 7.54 38.08 34.90 9.78 11.47
    注: Mg#= Mg2+/(Mg2++TFe2+); A/CNK = mole[Al2O3/(CaO+Na2O+K2O)]; Eu/Eu* =(Eu/0.0735)/[(Gd/0.259)+ (Sm/0.195)]/2;LREE = La+Ce+Pr+Nd+Sm+Eu; HREE = Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu; ∑REE = LREE+HREE; (La/Yb)N =(La/0.687)/(Yb/0.493);主量元素含量单位为%, 微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    锆石原位微区Hf同位素分析在中国地质科学院矿产资源研究所自然资源部成矿作用与资源评价重点实验室利用激光剥蚀多接收杯等离子体质谱(LA-MC-ICP-MS)完成。采用Neptune型多接受器等离子体质谱仪(MC-ICP-MS),以氦气为载气,激光束斑直径为44 μm,激光脉冲速率和能量分别为6 Hz和100 mJ。详细仪器操作条件和分析方法可参照文献[37-38]。εHf(0)和εHf(t)值及模式年龄计算中,现今球粒陨石的176Lu/177Hf和176Hf/177Hf值分别采用0.0332和0.282772[39],而亏损地幔的176Lu/177Hf和176Hf/177Hf值分别采用0.0384和0.28325[40],二阶段模式年龄(TDM2)采用大陆地壳的fBCC(-0.65)进行计算[41]。分析数据的离线处理(样品信号区间的选择和同位素质量分馏校正)采用软件ICPMSDataCal完成[33]。样品中锆石的Hf同位素分析结果见表 3

    表  3  内蒙古阿鲁科尔沁旗安乐屯岩体锆石Hf同位素分析结果
    Table  3.  Zircon Hf isotopic compositions of the Anletun pluton in Ar Horqin Banner, Inner Mongolia
    样品号 t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma TDM2/Ma fLu/Hf
    BL03-1-01 275 0.062493 0.001648 0.282485 0.000021 -10.2 -4.4 0.8 1104 1577 -0.95
    BL03-1-02 275 0.061973 0.001681 0.282474 0.000019 -10.5 -4.8 0.7 1120 1601 -0.95
    BL03-1-03 275 0.050284 0.001513 0.282497 0.000019 -9.7 -4.0 0.7 1082 1548 -0.95
    BL03-1-04 275 0.049935 0.001621 0.282525 0.000020 -8.7 -3.0 0.7 1045 1485 -0.95
    BL03-1-05 275 0.050878 0.001443 0.282556 0.000020 -7.7 -1.9 0.7 997 1415 -0.96
    BL03-1-06 275 0.055263 0.001663 0.282471 0.000019 -10.6 -4.9 0.7 1123 1607 -0.95
    BL03-1-07 275 0.055092 0.001847 0.282506 0.000018 -9.4 -3.7 0.6 1079 1530 -0.94
    BL03-1-08 275 0.062363 0.001615 0.28245 0.000023 -11.4 -5.7 0.8 1153 1655 -0.95
    BL03-1-09 275 0.064859 0.002239 0.282434 0.000022 -12.0 -6.3 0.8 1195 1697 -0.93
    BL03-1-10 275 0.059236 0.001538 0.282517 0.000019 -9.0 -3.2 0.7 1054 1502 -0.95
    BL03-1-11 275 0.05794 0.001578 0.282479 0.000021 -10.4 -4.6 0.8 1110 1589 -0.95
    BL03-1-12 275 0.064227 0.001708 0.282469 0.000019 -10.7 -5.0 0.7 1129 1613 -0.95
    BL03-1-13 275 0.048154 0.001763 0.282467 0.000019 -10.8 -5.1 0.7 1132 1617 -0.95
    BL03-1-14 304 0.046523 0.001176 0.282487 0.000017 -10.1 -3.6 0.6 1087 1550 -0.96
    BL03-1-15 275 0.077408 0.001962 0.282463 0.000021 -10.9 -5.2 0.8 1144 1629 -0.94
    BL03-1-16 275 0.051141 0.001378 0.282452 0.000020 -11.3 -5.5 0.7 1143 1648 -0.96
    BL03-1-17 275 0.044533 0.001812 0.282422 0.000024 -12.4 -6.7 0.9 1199 1720 -0.95
    BL03-1-18 275 0.052647 0.001446 0.28241 0.000021 -12.8 -7.0 0.7 1203 1741 -0.96
    BL03-1-19 275 0.053443 0.001465 0.282503 0.000020 -9.5 -3.7 0.7 1072 1533 -0.96
    BL03-1-20 275 0.054552 0.001556 0.282461 0.000018 -11.0 -5.2 0.6 1135 1628 -0.95
    BL03-1-21 275 0.043382 0.00141 0.282467 0.000018 -10.8 -5.0 0.6 1122 1614 -0.96
    BL03-1-22 275 0.040575 0.001235 0.282481 0.000017 -10.3 -4.5 0.6 1097 1581 -0.96
    BL03-1-23 275 0.042734 0.001302 0.282466 0.000017 -10.8 -5.0 0.6 1120 1614 -0.96
    下载: 导出CSV 
    | 显示表格

    二长花岗岩样品BL03-1采自阿鲁科尔沁旗南部安乐屯东近山顶处(GPS坐标为北纬43°48′46.10″、东经120°08′30.10″)(图 1-b)。样品锆石晶体颗粒呈无色或浅褐色,柱状或六方双锥状,长宽比多介于2∶1~3∶1之间。阴极发光图像显示,大部分锆石呈自形晶或半自形晶,内部结构清晰,发育典型的岩浆生长环带,显示岩浆成因锆石的特征(图 2)。其较高的Th/U值(0.39~0.78;表 1),也暗示岩浆成因[42-43]。锆石U-Pb年龄谐和图显示,所有分析数据均分布在谐和线上及其附近(图 3-a)。23个测点的206Pb/238U年龄值介于270~304 Ma之间(表 1),除1个测点给出了304 ± 3 Ma的206Pb/238U年龄外,其余22个测点的年龄值相对集中(270 ± 3~279 ± 3 Ma),其206Pb/238U年龄加权平均值为275 ± 1 Ma(MSWD = 0.57)(图 3-b),代表了安乐屯岩体的形成时代。

    图  2  安乐屯二长花岗岩部分锆石阴极发光(CL)图像
    (图中实线圆圈为锆石U-Pb测年位置,虚线圆圈为Hf同位素测定位置,括号内数字为εHf(t)值)
    Figure  2.  CL images of some analyzed zircons from Anletun monzogranite
    图  3  安乐屯二长花岗岩锆石U-Pb年龄谐和图
    Figure  3.  Concordia U-Pb diagram of zircons from Anletun monzogranite

    岩石地球化学分析测试结果表明,安乐屯岩体SiO2含量介于54.41%~71.00%之间,整体上属于中酸性侵入岩体,K2O含量为1.01%~2.95%,Na2O/K2O值为1.33~4.39,显示相对富钠、低钾的特征(表 2)。此外,安乐屯岩体TFe2O3为3.42%~6.70%、MgO为0.86%~3.39%、CaO为2.36%~7.10%,总体上Mg#值介于0.33~0.50之间。主量元素投图显示,安乐屯岩体总体上落入亚碱性系列和中钾钙碱性系列(图 4)。而铝饱和指数A/CNK≤1.1(0.92~1.10),A/NK = 1.49~2.34,显示准铝质岩浆的特征(图 5)。哈克图解显示,安乐屯岩体主量元素与SiO2含量之间显示明显的规律性变化:除K2O与SiO2为正相关性外,其余主量元素TiO2、Al2O3、TFe2O3、MgO、CaO、Na2O和P2O5均随SiO2含量升高而降低(图 6)。安乐屯岩体主量元素与SiO2含量较好的相关关系暗示2个端元可能存在一定的成因联系。

    图  4  安乐屯岩体TAS(a)和SiO2-K2O图解
    Figure  4.  Plots of total alkalis versus SiO2(TAS)(a)and SiO2 versus K2O(b) for the Anletun pluton
    图  5  安乐屯岩体A/CNK-A/NK图解
    Figure  5.  Plot of A/CNK versus A/NK for the Anletun pluton
    图  6  安乐屯岩体主量元素哈克图解
    Figure  6.  Harker variation diagrams for major elements of the Anletun pluton

    安乐屯岩体整体上稀土元素总量偏低(∑REE= 30.94×10-6~113×10-6),轻、重稀土元素分馏较明显,LREE/HREE值为7.18~27.65,(La/Yb)N值介于7.54~38.08之间;石英二长闪长岩端元几乎不存在Eu异常(Eu/Eu* = 0.88~1.03),而花岗岩端元以正Eu异常为特征,尤其样品BL03-2和BL03-5显示明显的正Eu异常(Eu/Eu* = 4.04~5.25),存在重稀土元素分馏且显著亏损的特征(图 7-a)。在微量元素蛛网图(图 7-b)中,2种端元大体上显示类似的配分形式,均表现为富集Rb、Ba、Sr等大离子亲石元素(LILEs),而相对亏损Nb、Ta、Ti等高场强元素(HFSEs),类似于俯冲带岩浆岩的特征[46];所不同的是,石英二长闪长岩端元的配分曲线整体较高,且具有较明显的负Ba异常,而花岗岩端元具有显著的Sm、Nd负异常,尤其样品BL03-2和BL03-5亏损的更明显。

    图  7  安乐屯岩体稀土元素配分图(a)和微量元素蛛网图(b) (球粒陨石、原始地幔标准化数值据参考文献[44-45])
    Figure  7.  REE patterns(a) and trace element spider diagrams(b) of the Anletun pluton

    安乐屯岩体二长花岗岩测年样品原位锆石Hf同位素分析测试结果显示,其锆石Hf同位素组成较均一,除1颗捕获锆石的176Hf/177Hf值为0.282487外,其余代表岩体形成年龄的22颗锆石的176Hf/177Hf值为0.282410~0.282556,以岩体形成年龄(275 Ma)计算得出,εHf(t)值均为负值,介于-7.0 ~ -1.9之间,投影到兴蒙造山带和燕山褶皱带交汇范围内及其附近区域,并与古—中元古代平均地壳演化范围一致(图 8)。岩体两阶段模式年龄TDM2为1415~1741 Ma,与中朝古板块北缘增生区内早二叠世岩浆岩给出的同位素模式年龄范围较一致[26-27]

    图  8  安乐屯岩体锆石Hf同位素特征(燕山褶皱带数据据参考文献[47];西伯利亚古板块南缘数据据参考文献[20, 29, 48-50];中朝古板块北缘数据据参考文献[24, 51-54])
    Figure  8.  Hf isotopic compositions of zircons from the Aletun pluton

    安乐屯岩体最早被确定为燕山早期第一侵入期岩浆活动的产物,时代相当于早侏罗世。前人根据研究区广泛发育燕山期岩浆活动,笼统地将安乐屯岩体划分为同一时期岩浆作用的产物,但该岩体无论从岩貌还是岩石类型都明显区别于研究区其他侏罗纪侵入岩。那么,安乐屯岩体的形成时代到底如何?由于一直缺乏精确的年代学资料的约束,本文对安乐屯岩体进行了锆石U-Pb年代学研究。定年结果表明,二长花岗岩样品(BL03-1)中22个测点给出了较一致且谐和的206Pb/238U年龄,其年龄加权平均值275 ± 1 Ma(MSWD = 0.57)应代表了该岩体的形成时代(图 3),即早二叠世,而非前人认为的早侏罗世。近年来,在中朝古板块北缘达茂旗、镶黄旗、克什克腾旗、翁牛特旗等地区,以及西伯利亚古板块南缘苏左旗—锡林浩特—林西一带均有早二叠世岩浆事件的报道[20, 25-26, 31, 55],与本文确定的安乐屯岩体形成年龄一致或相近,表明区域上存在早二叠世岩浆活动,进一步佐证了本文定年结果的可靠性。

    从岩石学和地球化学特征看,安乐屯岩体由石英二长闪长岩-花岗闪长岩-二长花岗岩组成,出现暗色矿物黑云母和角闪石,SiO2含量为54.41% ~ 71.00%,Na2O含量为3.93% ~ 4.48%,Na2O/K2O为1.33 ~ 4.39,Mg#为0.33 ~ 0.50,A/CNK≤1.1,整体上具Eu的正异常特征,属于钙碱性岩系、准铝质岩石(图 4图 5),这些特征与I-型花岗岩相似。随着SiO2含量的增加,安乐屯岩体的其他主要氧化物呈现有规律的变化,其中,除K2O呈线性增加趋势外,其他氧化物TiO2,Al2O3,TFe2O3,MgO,CaO,Na2O和P2O5均随SiO2含量的增加而减少(图 6),这表明岩浆上升侵位过程中发生了一定程度的分离结晶作用。由于在研究区及邻区没有发现同时代偏基性的岩石类型(SiO2<54.41%),笔者推测中性端元分析样品BL03-4和BL03-7的地球化学属性一定程度上应该代表了母岩浆成分特征,其较高的Nb/Ta(14~17)、Zr/Hf(39~41)值也表明并非岩浆高度分异的产物。基于此推断,酸性端元TFe2O3,MgO和CaO的减少可能与较早结晶的角闪石矿物的分离有关,而Ti和P的亏损一般是榍石和磷灰石等副矿物的分离结晶导致的,而就其稀土元素特征差异而言,可能是相关矿物分离结晶不均一性导致的。在长英质岩浆中Eu异常一般主要受控于斜长石,岩体整体上Eu的正异常特征可能与斜长石的堆晶作用有关,岩体较低的Rb/Sr值(0.04~0.22)也表明熔体可能包含较高程度的斜长石堆晶[56]。那么,显然石英二长闪长岩中Ba元素的相对亏损不大可能由斜长石的分离结晶导致,考虑到Ba替代K亦可赋存于黑云母中,所以其Ba元素的相对亏损可能与黑云母的分离结晶有关。花岗闪长岩样品BL03-2和BL03-5表现为除Eu元素外,中-重稀土(Sm~Lu)的极度亏损,研究表明中稀土元素含量主要受控于普通角闪石[57],尤其在Dy和Er之间其具有最高的分配系数,所以普通角闪石的行为可以对REE(稀土元素)型式的形状起决定性的作用,而Eu元素随角闪石分离结晶应表现的亏损可能已经被斜长石的堆晶效应掩盖,所以普通角闪石的不均一性分离结晶作用一定程度上可以解释酸性端元的稀土元素特征。

    安乐屯岩体具有低的Rb/Sr值、较低的初始176Hf/177Hf值(0.282410~0.282556)、负的εHf(t)值(-7.0 ~ -1.9)及老的模式年龄(1415~1741 Ma),结合其I-型花岗岩成因特征及Nb、Ta亏损而Th相对富集的壳源属性,推断安乐屯岩体主要起源于古老下地壳物质的部分熔融。安乐屯岩体岩石类型包括石英二长闪长岩、花岗闪长岩和二长花岗岩,整体上相对富钠、贫钾,具有中钾钙碱性系列特征,属于准铝质系列岩石,加之富水矿物角闪石的出现,暗示其俯冲带成因特征(图 4图 5)。岩体相对富集Rb、Ba、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素的微量元素特征也反映了岩浆形成于与俯冲带有关的陆缘环境或岛弧构造环境(图 7-b)。此外,在Y-Nb和(Y+Nb)-Rb判别图解(图 9-ab)中,岩体样品均投影到火山弧花岗岩区,同样暗示了类似的构造环境;而在Ta/Yb-Th/Yb构造环境判别图解(图 9-c)中,岩石样品均投影到了活动大陆边缘范围内[58]。综上推断,安乐屯岩体应是古亚洲洋俯冲消减背景下引起古老下地壳物质部分熔融的产物,并在岩浆上升侵位过程中发生了一定程度的角闪石、黑云母等矿物的分离结晶作用。

    图  9  安乐屯岩体Y-Nb(a)、(Y+Nb)-Rb(b)和Ta/Yb-Th/Yb(c)相关图解
    MORB—大洋中脊玄武岩; WPB—板内玄武岩; WPVZ—板内火山岩带; ACM—活动大陆边缘; 0A—大洋岛弧
    Figure  9.  Y-Nb(a),(Y+Nb)-Rb(b) and Ta/Yb-Th/Yb(c) diagrams of the Aletun pluton

    研究区位于的内蒙古中部地区以发育多条蛇绿岩带和弧岩浆岩带为特点[59-62],基于对这些关键性地质记录的认识不同,产生了针对该地区地质历史不同的构造演化模型。就研究区早二叠世的构造背景而言,有学者依据面状分布的早二叠世岩浆活动同时波及中朝古板块北缘和内蒙古中部造山带地区,并结合岩石组合特征推断该时期研究区处于块体碰撞之后的伸展环境[27],也有学者认为古亚洲洋至少在晚泥盆世之前已经闭合,随后区域上发育广泛的裂谷活动,早二叠世岩浆岩应是大陆裂谷环境下的地质记录[63-68]。但本文的研究结果表明,研究区早二叠世安乐屯岩体构造判别图解显示其明显不同于后碰撞或裂谷环境花岗岩,而与活动大陆边缘弧花岗岩类似,暗示该时期古亚洲洋应该还未关闭。前人通过对晚古生代岩浆活动的研究也证实,研究区以南的中朝古板块北部存在晚石炭世—早二叠世连续的岩浆活动,形成了近东西向带状分布的岩浆弧,可以与现今典型的安第斯型活动大陆边缘弧相对比,其形成应与古亚洲洋板块向中朝古板块的俯冲有关[25-26, 51],同样,前人通过对研究区以北苏左旗—西乌旗一线晚石炭世大陆边缘弧岩浆带的识别,结合该带以北地区贺根山蛇绿岩及早二叠世碱性花岗岩的存在,以及区内广泛分布的与俯冲体系相关的早二叠世晚期形成的大石寨组火山岩,认为它们共同构成了区域上晚古生代存在的沟-弧-盆体系,并推断其应与古亚洲洋板块的北向俯冲有关[28, 69-74]。综上可知,古亚洲洋最终关闭位置索伦-西拉木伦河缝合带的南北两侧在早二叠世仍均处于古洋壳俯冲的构造背景,两者都与安乐屯岩体成因背景相吻合。那么,安乐屯岩体的形成到底与哪个俯冲体系有关?这在一定程度上也制约着古亚洲洋最终闭合的位置。

    前人大量的研究显示,中朝古板块北缘晚古生代岩浆岩的同位素组成与西伯利亚古板块南缘明显不同,中朝古板块北缘的岩浆岩一般具有负的εNd(t)值和εHf(t)值,暗示它们来自富集岩石圈地幔或古老地壳物质的熔融[24, 26, 47, 52-54, 75-79],而西伯利亚古板块南缘的岩浆岩以正的εNd(t)值和εHf(t)值为特征,表明其起源于亏损地幔或新生地壳物质[14, 50, 70, 73]。基于此,通过对比缝合带两侧与俯冲相关的晚石炭世—早二叠世岩浆岩的锆石Hf同位素数据发现,安乐屯岩体锆石Hf同位素特征与中朝古板块北缘岩浆岩给出的εHf(t)值范围较一致,而明显不同于西伯利亚古板块南缘(图 8-b)。以此推断,安乐屯岩体的源区物质组成更亲缘于中朝古板块北缘的物质特性,其应与中朝古板块北缘同时代岩浆岩一样,形成于古亚洲洋板块向南俯冲于中朝古板块之下的构造环境。基于此,笔者推断安乐屯岩体很可能隶属于中朝古板块北缘古生代增生带,而古亚洲洋最终沿索伦-西拉木伦河关闭,向东延伸至研究区附近时,大洋的关闭位置很可能位于安乐屯岩体的北侧(图 1-a)。本文对索伦-西拉木伦河缝合带向东延伸位置提供了一定的约束,但确定板块缝合最终位置的关键地质记录的挖掘还需要进一步的工作。

    (1) 内蒙古阿鲁科尔沁旗南部安乐屯岩体形成于275 ± 1 Ma,即早二叠世,而非前人认为的早侏罗世。

    (2) 该岩体由石英二长闪长岩-花岗闪长岩-二长花岗岩组成,主要起源于古老下地壳物质的部分熔融,通过区域资料对比分析推断,岩体的形成与古亚洲洋板块向南俯冲于中朝古板块之下有关,指示其应隶属于中朝古板块北缘古生代增生带的一部分。

    致谢: 样品测试过程中得到实验室相关工作人员的热心帮助,审稿专家对论文提出许多建设性的意见和建议,在此一并表示感谢。平时工作和论文撰写过程中受到了潘桂棠老师许多的指导和帮助,谨以此文向潘老师表示诚挚的谢意和祝福,祝愿潘老师身体康健、万事顺遂!
  • 图  1   拉萨地块构造简图(a) (据参考文献[19]修改)和研究区地质简图(b)

    Figure  1.   Simplified tectonic map of the Lhasa Block (a) and simplified geological map of the study area (b)

    图  2   亚热地区早白垩世辉长岩野外(a、b)和显微(c、d)照片

    Pl—斜长石; Px—辉石; Bt—黑云母

    Figure  2.   Field photos (a, b) and photomicrographs (c, d) of the Early Cretaceous gabbro in the Yare area

    图  3   亚热地区早白垩世辉长岩锆石阴极发光(CL)图像

    (实线圆圈和数字表示锆石U-Pb测点位置和点号,虚线圆圈和数字表示锆石Hf同位素测点位置和点号)

    Figure  3.   CL images of the zircons from the Early Cretaceous gabbro in the Yare area

    图  4   亚热地区早白垩世辉长岩锆石U-Pb谐和图(a)和年龄加权平均值图(b)

    Figure  4.   U-Pb concordia diagram (a) and weighted average age (b) of the zircons from the Early Cretaceous gabbro in the Yare area

    图  5   辉长岩TAS图解(a)和SiO2-TFeO/MgO图解(b)

    Figure  5.   TAS (a) and SiO2-TFeO/MgO (b) diagrams of the gabbro samples

    图  6   辉长岩样品球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)

    (球粒陨石和原始地幔标准化数据、OIB、N-MORB和E-MORB数据据参考文献[30], IAB数据据参考文献[31])
    OIB—洋岛玄武岩;N-MORB—正常洋中脊玄武岩; E-MORB—富集洋中脊玄武岩; IAB—岛弧玄武岩

    Figure  6.   The chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) of the gabbro samples

    图  7   辉长岩Ba/La-Th/Yb(a)[51]和Th/Nb-U/Th(b)[52]图解

    Figure  7.   Ba/La-Th/Yb (a) and Th/Nb-U/Th (b) diagrams of the gabbro samples

    图  8   辉长岩样品Zr-Zr/Y(a)[61]F1-F2(b)[62]、Zr/4-Nb×2-Y(c)[63]和Ta/Hf-Th/Hf(d)[64]图解

    Figure  8.   Zr-Zr/Y (a), F1-F2 (b), Zr/4-Nb×2-Y (c) and Ta/Hf-Th/Hf (d) diagrams of the gabbro samples

    表  1   亚热地区早白垩世辉长岩LA-ICP-MS锆石U-Th-Pb定年结果

    Table  1   Zircon LA-ICP-MS U-Th-Pb dating results of the Early Cretaceous gabbro in the Yare area

    测点 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    YR03-N1:细粒辉长岩, 115.5±0.5 Ma(MSWD=0.24, n=24)
    1 63.8 3149 2424 1.30 0.0497 0.0023 0.1239 0.0059 0.0180 0.0003 119 5.3 115 1.9
    2 58.1 2004 2455 0.82 0.0463 0.0019 0.1160 0.0046 0.0181 0.0002 111 4.2 116 1.2
    3 101.8 6586 3422 1.92 0.0483 0.0024 0.1198 0.0056 0.0180 0.0002 115 5.1 115 1.3
    4 171 12027 5389 2.23 0.0507 0.0014 0.1264 0.0039 0.0180 0.0002 121 3.5 115 1.4
    5 67.5 2940 2638 1.11 0.0475 0.0018 0.1187 0.0045 0.0180 0.0002 114 4.1 115 1.1
    6 113.5 7009 3855 1.82 0.0474 0.0018 0.1192 0.0048 0.0182 0.0002 114 4.4 116 1.3
    7 46.7 1560 1988 0.78 0.0469 0.0020 0.1167 0.0049 0.0180 0.0002 112 4.5 115 1.3
    8 128.9 7023 4503 1.56 0.0467 0.0015 0.1183 0.0039 0.0183 0.0002 114 3.5 117 1.1
    9 119.3 6708 4287 1.56 0.0480 0.0016 0.1213 0.0040 0.0182 0.0002 116 3.6 116 1.0
    10 72.9 3814 2756 1.38 0.0479 0.0015 0.1185 0.0035 0.0180 0.0002 114 3.2 115 1.1
    11 150.9 8583 5442 1.58 0.0463 0.0013 0.1158 0.0033 0.0181 0.0002 111 3.0 115 1.1
    12 73.1 4645 2553 1.82 0.0459 0.0038 0.1146 0.0096 0.0180 0.0003 110 8.7 115 2.1
    13 82.5 4571 3123 1.46 0.0488 0.0019 0.1212 0.0045 0.0181 0.0002 116 4.0 115 1.5
    14 100.7 4763 3927 1.21 0.0485 0.0016 0.1216 0.0039 0.0181 0.0002 117 3.6 116 1.1
    15 98.5 4945 3703 1.34 0.0505 0.0018 0.1265 0.0044 0.0181 0.0002 121 4.0 116 1.0
    16 109.7 6310 3925 1.61 0.0494 0.0018 0.1231 0.0045 0.0180 0.0002 118 4.1 115 1.3
    17 72.0 2447 3092 0.79 0.0481 0.0017 0.1193 0.0042 0.0180 0.0002 114 3.8 115 1.1
    18 52.2 2851 1877 1.52 0.0496 0.0023 0.1228 0.0056 0.0180 0.0002 118 5.1 115 1.4
    19 61.9 3042 2365 1.29 0.0519 0.0023 0.1281 0.0055 0.0180 0.0002 122 5.0 115 1.3
    20 149 10657 4758 2.24 0.0496 0.0016 0.1242 0.0040 0.0181 0.0002 119 3.6 116 1.1
    21 48.5 1558 2072 0.75 0.0483 0.0019 0.1215 0.0049 0.0181 0.0002 116 4.4 116 1.1
    22 73.4 3844 2798 1.37 0.0507 0.0020 0.1277 0.0050 0.0182 0.0002 122 4.5 116 1.3
    23 137.8 8344 4834 1.73 0.0471 0.0016 0.1182 0.0041 0.0180 0.0002 113 3.7 115 1.1
    24 29.7 1446 1117 1.29 0.0523 0.0038 0.1317 0.0093 0.0182 0.0003 126 8.4 116 2.2
    下载: 导出CSV

    表  2   亚热地区早白垩世辉长岩锆石Hf同位素组成

    Table  2   Zircon Hf isotopic compositions of the Early Cretaceous gabbro in the Yare area

    测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf (176Hf/177Hf)i εHf(0) εHf(t) TDM1 /Ma TDM2 /Ma fLu/Hf
    1 115 0.034591 0.001233 0.282841 0.000011 0.282839 2.5 4.9 586 859 -0.96
    2 116 0.031632 0.001115 0.282837 0.000009 0.282835 2.3 4.8 590 868 -0.97
    3 115 0.036831 0.001321 0.282869 0.000009 0.282866 3.4 5.9 547 797 -0.96
    4 115 0.106599 0.003638 0.282931 0.000009 0.282924 5.6 7.9 489 668 -0.89
    5 115 0.035429 0.001266 0.282831 0.000009 0.282828 2.1 4.5 601 883 -0.96
    6 116 0.054628 0.001919 0.282835 0.000012 0.282831 2.2 4.6 606 877 -0.94
    7 115 0.023673 0.000850 0.282848 0.000008 0.282846 2.7 5.1 571 843 -0.97
    8 117 0.045489 0.001628 0.282852 0.000009 0.282848 2.8 5.3 577 837 -0.95
    12 115 0.072057 0.002395 0.282882 0.000011 0.282877 3.9 6.2 545 773 -0.93
    13 115 0.028848 0.001027 0.282824 0.000009 0.282821 1.8 4.3 608 898 -0.97
    16 115 0.047060 0.001653 0.282874 0.000008 0.282870 3.6 6.0 545 788 -0.95
    17 115 0.032015 0.001215 0.282855 0.000011 0.282852 2.9 5.4 566 829 -0.96
    19 115 0.034776 0.001250 0.282842 0.000007 0.282839 2.5 4.9 585 858 -0.96
    20 116 0.054467 0.001885 0.282829 0.000009 0.282825 2.0 4.4 614 890 -0.94
    21 116 0.014140 0.000527 0.282833 0.000007 0.282832 2.2 4.7 586 873 -0.98
    22 116 0.045963 0.001585 0.282854 0.000011 0.282850 2.9 5.3 574 833 -0.95
    24 116 0.060981 0.002101 0.282888 0.000009 0.282883 4.1 6.5 532 759 -0.94
    下载: 导出CSV

    表  3   亚热地区早白垩世辉长岩主量、微量和稀土元素数据

    Table  3   Major, trace and rare earth element concentrations of the Early Cretaceous gabbro in the Yare area

    编号 YR03-H1 YR03-H2 YR03-H3 YR03-H4 YR03-H5 编号 YR03-H1 YR03-H2 YR03-H3 YR03-H4 YR03-H5
    SiO2 51.38 50.14 51.25 50.68 50.5 Zr 173 208 153 221 217
    TiO2 0.9 0.96 0.87 0.9 0.92 Nb 13.3 12.9 11.3 13.7 12.9
    Al2O3 18.7 16.76 19.16 17.2 17.27 Cs 3.98 2.07 3.6 1.34 1.58
    Fe2O3 9.38 11.01 9.46 10.36 10.47 Ba 375 449 407 632 588
    MnO 0.16 0.19 0.15 0.19 0.19 La 54.3 71.3 42.9 80.2 79.3
    MgO 4.38 4.86 4.08 4.52 4.63 Ce 101 134 87 149 147
    CaO 8.74 9.5 8.95 9.04 9.24 Pr 10.6 14 9.03 15.6 15.5
    Na2O 3.29 2.63 3.25 2.92 2.78 Nd 37.8 51 32.8 55.7 56.8
    K2O 1.28 1.89 1.34 1.79 1.77 Sm 7.12 9.77 6.24 10.8 10.9
    P2O5 0.41 0.69 0.34 0.59 0.59 Eu 1.99 2.5 1.81 2.88 2.86
    烧失量(LOI) 1.24 1.18 1.01 1.62 1.42 Gd 5.84 8.02 5.19 8.78 8.89
    总和 99.86 99.81 99.86 99.81 99.78 Tb 0.74 0.99 0.68 1.09 1.1
    TFeO 8.44 9.91 8.51 9.32 9.42 Dy 3.96 5.21 3.77 5.69 5.73
    K2O+Na2O 4.57 4.52 4.59 4.71 4.55 Ho 0.72 0.94 0.7 1.02 1.02
    K2O/Na2O 0.39 0.72 0.41 0.61 0.64 Er 2.03 2.5 1.99 2.71 2.75
    Mg# 48.05 46.65 46.07 46.36 46.69 Tm 0.27 0.34 0.27 0.37 0.38
    δ 2.49 2.86 2.55 2.89 2.76 Yb 1.78 2.17 1.75 2.4 2.4
    F1 0.06 0.08 0.06 0.08 0.07 Lu 0.27 0.32 0.26 0.36 0.35
    F2 -1.42 -1.35 -1.41 -1.35 -1.36 Hf 4.05 4.86 3.79 5.36 5.33
    Sc 23.5 24.3 22.1 25.3 25.6 Ta 0.55 0.63 0.46 0.66 0.61
    V 247 271 268 277 276 Pb 12.6 12.9 12.5 15.1 14.3
    Cr 18.5 9.96 6.97 11.4 10.7 Th 12.1 18 11.2 22 19.4
    Co 27.6 28.7 27 28.8 29.3 U 2.38 4.33 2.28 4.81 4.2
    Ni 11.2 8.64 6.87 8.63 8.36 ΣREE 228.42 303.06 194.39 336.60 334.98
    Cu 58.6 192 14.1 160 105 LREE/HREE 18.42 19.24 16.31 19.38 19.19
    Zn 122 103 103 104 109 (La/Yb)N 21.46 23.11 17.24 23.50 23.24
    Ga 24 20.2 23.5 21.7 21.6 δEu 0.96 0.87 0.98 0.92 0.90
    Ge 1.52 1.49 1.43 1.59 1.59 Zr/Ba 0.46 0.46 0.38 0.35 0.37
    Rb 39.8 54.6 35.2 56.1 55.5 (Th/Ta)N 10.61 13.78 11.74 16.08 15.34
    Sr 828 882 790 1166 1116 (La/Nb)N 4.24 5.74 3.94 6.08 6.38
    Y 20.7 26.4 19.4 28.6 28.7
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6;Mg#=100×(MgO/40.304)/(MgO/40.304+2×Fe2O3/159.691+FeO/71.846); 里特曼指数δ=(K2O+Na2O)2/(SiO2-43); F1=0.0088(SiO2)-0.0774(TiO2)-0.0102(Al2O3)+0.0066(TFeO)-0.0017(MgO)-0.0143(CaO)-0.0155(Na2O)-0.0007(K2O); F2=-0.0130(SiO2)-0.0185(TiO2)-0.0129(Al2O3)-0.0134(TFeO)-0.0300(MgO)-0.0204(CaO)-0.0481(Na2O)+0.0715(K2O); δEu= EuN / SmNGdN
    下载: 导出CSV
  • Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3/4): 281-302. http://www.sciencedirect.com/science/article/pii/0012821X8690186X

    Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanismin Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44(10): 1833-1865. doi: 10.1093/petrology/egg061

    Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-932. http://www.onacademic.com/detail/journal_1000037062951610_8f69.html

    马国林, 岳雅慧. 西藏拉萨地块北部白垩纪火山岩及其对冈底斯岛弧构造演化的制约[J]. 岩石矿物学杂志, 2010, 29(5): 525-538. doi: 10.3969/j.issn.1000-6524.2010.05.008
    崔浩杰, 苟正彬, 刘函, 等. 拉萨地块西段尼雄地区早白垩世晚期花岗闪长岩的成因及构造意义[J]. 沉积与特提斯地质, 2019, 39(1): 1-13. doi: 10.3969/j.issn.1009-3850.2019.01.001
    康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物[J]. 岩石学报, 2008, 24(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm
    张彤, 黄波, 罗改, 等. 西藏中冈底斯带北部早白垩世构造属性: 来自则弄群火山岩锆石U-Pb年龄及地球化学的制约[J]. 沉积与特提斯地质, 2020, 40(2): 75-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202002008.htm
    朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm
    康志强, 许继峰, 王保弟, 等. 拉萨地块北部白垩纪多尼组火山岩的地球化学: 形成的构造环境[J]. 地球科学, 2009, 34(1): 89-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200901010.htm
    高顺宝, 郑有业, 王进寿, 等. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约[J]. 岩石学报, 2011, 27(7): 1973-1982. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107007.htm
    黄瀚霄, 李光明, 董随亮, 等. 西藏班戈地区青龙花岗闪长岩SHRIMP锆石U-Pb年龄及其地球化学特征[J]. 地质通报, 2012, 31(6): 852-859. doi: 10.3969/j.issn.1671-2552.2012.06.004

    Qu X M, Wang R J, Xin H B, et al. Age and petrogenesis of A-type granites in the middle segment ofthe Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos, 2012, 146/147: 264-275. doi: 10.1016/j.lithos.2012.05.006

    张予杰, 刘伟, 朱同兴, 等. 西藏申扎县买巴地区早白垩世侵入岩锆石U-Pb年龄及地球化学[J]. 中国地质, 2014, 41(1): 50-60. doi: 10.3969/j.issn.1000-3657.2014.01.004
    隋清霖. 西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D]. 中国地质大学(北京) 硕士学位论文, 2014.

    Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab breakoff of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97: 51-66. doi: 10.1016/j.jseaes.2014.10.014

    齐宁远, 赵志丹, 唐演, 等. 西藏中拉萨地块西段左左乡晚侏罗世-早白垩世花岗岩年代学、地球化学与岩石成因[J]. 岩石学报, 2019, 35(2): 405-422. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902009.htm
    尹滔, 李威, 尹显科, 等. 西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据[J]. 中国地质, 2019, 46(5): 1105-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905012.htm

    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312.

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255. http://community.dur.ac.uk/yaoling.niu/MyReprints-pdf/2010ZhuEtAl-EPSL.pdf

    张亮亮, 朱弟成, 赵志丹, 等. 西藏北冈底斯巴尔达地区岩浆作用的成因: 地球化学、年代学及Sr-Nd-Hf同位素约束[J]. 岩石学报, 2010, 26(6): 1871-1886. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201006020.htm
    张亮亮, 朱弟成, 赵志丹, 等. 西藏申扎早白垩世花岗岩类: 板片断离的证据[J]. 岩石学报, 2011, 27(7): 1938-1946. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107004.htm
    张晓倩, 朱弟成, 赵志丹, 等. 西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素: 对中部拉萨地块早白垩世花岗岩类岩石成因的约束[J]. 岩石学报, 2012, 28(5): 1615-1634. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205025.htm

    Chen Y, Zhu D C, Zhao Z D, et al. Slab breakoff triggered Ca. 113Ma mamgatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2): 449-463. doi: 10.1016/j.gr.2013.06.005

    Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet: Implications for the magmatic origin and crustal growth in a continent-continent collision zone[J]. Lithos, 2013, 168/169: 145-159. http://www.sciencedirect.com/science/article/pii/S0024493713000273

    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    Hu Z C, Zhang W, Liu Y S, et al. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2): 1152-1157. doi: 10.1021/ac503749k

    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm

    Wu Y B, Zheng Y F. Genesis of Zircon and Itsconstraints On Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of Oceanic Basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    杨婧, 王金荣, 张族, 等. 全球多弧玄武岩数据挖据——在玄武岩判别图解上的表现及初步解释[J]. 地质通报, 2016, 35(12) 1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001

    Ormerod D S, Hawkesworth C J, Rogers N W, et al. Tectonic and magmatic transitions in the western Great Basin, USA[J]. Nature, 1988, 333(6171): 349-353. doi: 10.1038/333349a0

    Zhou Z H, Mao J W, Peter L. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting[J]. Journal of Asian Earth Sciences, 2012, 49: 272-286. doi: 10.1016/j.jseaes.2012.01.015

    彭树华, 孙立新, 时学忠, 等. 冀北三面井岩体时代、地球化学特征及其地质意义[J]. 世界地质, 2013, 32(4): 694-706 doi: 10.3969/j.issn.1004-5589.2013.04.006
    杨岳衡, 张宏福, 谢烈文, 等. 华北克拉通中、新生代典型火山岩的岩石成因: Hf同位素新证据[J]. 岩石学报, 2006, 22(6): 1665-1671. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606023.htm

    Shi Y R, Liu D Y, Miao L C, et al. Devonian A-type granitic magmatism on the northern margin of the North China Craton: SHRIMP U-Pb zircon dating and Hf-isotopes of the Hongshan granite at Chifeng, Inner Mongolia, China[J]. Gondwana Research, 2010, 17(4): 632-641. doi: 10.1016/j.gr.2009.11.011

    第五春荣, 孙勇, 王倩. 华北克拉通地壳生长和演化: 来自现代河流碎屑锆石Hf同位素组成的启示[J]. 岩石学报, 2012, 28(11): 3520-3530. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211009.htm
    杨浩田, 杨德彬, 师江朋, 等. 鲁西早白垩世岩石圈地幔的属性: 大昆仑辉长岩和辉绿岩年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素制约[J]. 岩石学报, 2018, 34(11): 3327-3340 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201811016.htm
    岳维好, 周家喜. 青海都兰县阿斯哈石英闪长岩岩石地球化学、锆石U-Pb年龄与Hf同位素特征[J]. 地质通报, 2019, 38(2/3): 328-338. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2019020314&flag=1
    许强伟, 王玭, 王志强, 等. 内蒙古克什克腾旗长岭子斜长花岗斑岩锆石U-Pb年龄、成因与碰撞造山作用[J]. 中国地质, 2021, 48(1): 229-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101017.htm
    梁国科, 吴祥珂, 蔡逸涛, 等. 桂北罗城地区云煌岩成因——地球化学及U-Pb年龄约束[J]. 地质通报, 2020, 39(2/3): 267-278. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2020020310&flag=1

    Neal C R, Mahoney J J, Chazey W J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenisis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP leg 183[J]. Journal of Petrology, 2002, 43(7): 1177-1205 doi: 10.1093/petrology/43.7.1177

    朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别: 年代学、地球化学及其构造环境[J]. 地质学报, 2006, 80(9): 1312-1328. doi: 10.3321/j.issn:0001-5717.2006.09.008

    Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry(Second Edition). Oxford: Elsevier, 2014, 4: 1-51.

    Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1): 27-47. http://www.sciencedirect.com/science/article/pii/S030192680600218X

    杨崇辉, 杜利林, 任留东, 等. 中条山铜矿峪变质火山岩的时代、构造背景及对成矿的制约[J]. 地球学报, 2015, 36(5): 613-633. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201505012.htm

    Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth[J]. Nature, 2005, 437(29): 724-727. http://www.researchgate.net/profile/Peter_Ulmer/publication/7571924_Kessel_R._Schmidt_M._Ulmer_P.__Pettke_T._Trace_element_signature_of_subduction-zone_fluids_melts_and_supercritical_liquids_at_120-180_km_depth._Nature_437_724-727/links/0deec5278d40d6bdc5000000.pdf

    Pearce J A. Trace element characteristics of lave from destructive plate boundaries[C]//Thorpe R S. Orogenic andesites and related rocks. Chichester: John Wiley and Sons, 1982: 528-548.

    杨逸云, 赵志丹, 雷杭山, 等. 云南腾冲全新世火山岩岩浆演化和岩石成因[J]. 岩石学报, 2019, 35(2): 472-484. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902013.htm

    Yu Y, Huang X L, Sun M, et al. Missing Sr-Nd isotopic decoupling in subduction zone: Decoding the multi-stage dehydration and melting of subducted slab in the Chinese Altai[J]. Lithos, 2020, 362/363, 105465: 1-14.

    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for conservative element mobility during subduction zone process[J]. Earth and Planetary Science Letters, 2001, 192(3): 331-346. doi: 10.1016/S0012-821X(01)00453-8

    Kohut E J, Stern R J, Kent A R L, et al. Evidence for adiabatic decompression melting in the Southern Mariana Arc from high-Mg lavas and melt inclusions[J]. Contributions to Mineralogy and Petrology, 2006, 152(2): 201-221. doi: 10.1007/s00410-006-0102-7

    Li W C, Ni H W. Dehydration at subduction zones and the geochemistry of slab fluids[J]. Science China Earth Sciences, 2020, 63(12): 1925-1937. doi: 10.1007/s11430-019-9655-1

    Xiong X L, Liu X C, Li L, et al. The partitioning behavior of trace elements in subduction zones: Advances and prospects[J]. Science China Earth Sciences, 2020, 63(12): 1938-1951. doi: 10.1007/s11430-019-9631-6

    邱检生, 胡建, 蒋少涌, 等. 鲁西中、新生代镁铁质岩浆作用与地幔化学演化[J]. 地球科学——中国地质大学学报, 2005, 30(6): 646-658. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506001.htm
    徐向珍, 熊发挥, 杨经绥, 等. 冈底斯中段卡热辉长岩锆石U-Pb年代学、地球化学及构造意义[J]. 地质学报, 2019, 93(10): 2542-2555. doi: 10.3969/j.issn.0001-5717.2019.10.011

    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463

    Hess P C. Phase equilibria constraints on the origin of ocean floor basalts[C]//Morgan J P, Blackman D K, Sinton J M. Mantle Flow and Melt Generation at Mid-Ocean Ridges. 1992, 71: 67-102.

    李永军, 沈锐, 王冉, 等. 新疆西准噶尔巴尔努克早石炭世富Nb岛弧玄武岩的发现及其地质意义[J]. 岩石学报, 2014, 30(12): 3501-3511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412002.htm
    夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-89. doi: 10.3969/j.issn.1000-6524.2007.01.011

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]//Hawkesworth C J, Norry M J. Continental basalts and mantle xenoliths. Nantwich, Cheshire: Shiva Publications, 1983: 230-249.

    Pearce J A. Statistical analysis of major element patterns in basalts[J]. Journal of Petrology, 1976, 17(1): 15-43. doi: 10.1093/petrology/17.1.15

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218. http://www.onacademic.com/detail/journal_1000035296655110_4aed.html

    汪云亮, 张成江, 修淑芝. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm

    Zhu D C, Zhao Z D, Niu Y L, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2012, 23(4): 1429-1454. http://www.researchgate.net/profile/Yildirim_Dilek/publication/257518261_The_origin_and_pre-Cenozoic_evolution_of_the_Tibetan_Plateau._Gondwana_Res/links/02e7e5283ff902333b000000.pdf

    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023

    Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in Central Mexico[J]. Geology, 2004, 32(1): 77-80. doi: 10.1130/G19887.1

    Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics, 2011, 502(1/2): 244-256. http://www.researchgate.net/profile/Thibault_Duretz/publication/229366368_Numerical_modeling_of_spontaneous_slab_breakoff_and_subsequent_topographic_response/links/5671a3af08ae3aa2fcedaa8b/Numerical-modeling-of-spontaneous-slab-breakoff-and-subsequent-topographic-response.pdf

    于枫. 西藏冈底斯盐湖南部花岗岩的岩石学、地球化学与成因[D]. 中国地质大学(北京) 硕士学位论文, 2010: 1-68.
    于玉帅, 高原, 杨竹森, 等. 西藏措勤尼雄矿田滚纠铁矿侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩石学报, 2011, 27(7): 1949-1960. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107005.htm
    曲晓明, 辛洪波, 杜德道, 等. 西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆时间的约束[J]. 地球化学, 2012, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
    苟正彬, 刘函, 李俊, 等. 拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义[J]. 地球科学, 2018, 43(8): 2780-2794. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201808019.htm
  • 期刊类型引用(11)

    1. 刘娟娟,林一杰,张新英. 农田土水稻系统中硒与镉的相互关系研究. 农业与技术. 2025(01): 1-5 . 百度学术
    2. 谭卓贤,杜建军,孙星,易琼,徐培智,张木. 石灰、磷酸盐及硅酸盐对土壤硒有效性及水稻累积硒的影响. 江苏农业学报. 2024(03): 450-456 . 百度学术
    3. 刘瑞,周卫军,彭素华,商贵铎,周雨舟,李敏. 湖南省石门县耕地土壤硒含量特征及影响因素解析. 土壤通报. 2023(04): 840-847 . 百度学术
    4. Xiu-jin Liu,Ke Yang,Fei Guo,Shi-qi Tang,Ying-han Liu,Li Zhang,Hang-xin Cheng,Fei Liu. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China. China Geology. 2022(01): 1-11 . 必应学术
    5. 王蕊,陈楠,张二喜. 基于总量与形态的矿区周边土壤重金属生态风险与健康风险评估. 环境科学. 2022(03): 1546-1557 . 百度学术
    6. 吴超,孙彬彬,成晓梦,周国华,贺灵,曾道明,梁倍源. 丘陵山区多目标区域地球化学调查不同成因表层土壤代表性研究——以浙江绍兴地区为例. 地质通报. 2022(09): 1539-1549 . 本站查看
    7. 袁宏伟,陈江均,郭腾达,吴艳君,杨敏. 巴彦淖尔市临河区狼山镇和新华镇一带富硒土壤地球化学特征及影响因素. 地质与勘探. 2022(05): 1027-1041 . 百度学术
    8. 刘冰权,沙珉,谢长瑜,周强强,魏星星,周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试. 2021(05): 740-750 . 百度学术
    9. 杨泽,刘国栋,戴慧敏,张一鹤,肖红叶,阴雨超. 黑龙江兴凯湖平原土壤硒地球化学特征及富硒土地开发潜力. 地质通报. 2021(10): 1773-1782 . 本站查看
    10. 郭军,刘明,汤恒佳,廖琦,邢新丽. 湖南汨罗市范家园地区富硒土壤特征及其影响因素研究. 华南地质. 2021(04): 387-397 . 百度学术
    11. 于炎炎. 安徽砀山县土壤锌地球化学特征及影响因素. 矿产与地质. 2021(06): 1147-1155+1170 . 百度学术

    其他类型引用(2)

图(8)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-06-07
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-11-14

目录

/

返回文章
返回