• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
GUO Fusheng, WU Zhichun, LI Xiang, ZHANG Wanliang, ZENG Wenle, LIN Ziyu, XIE Caifu. 2018: The 3D geological modeling of Xiangshan volcanic basin in Jiangxi Province. Geological Bulletin of China, 37(2-3): 421-434.
Citation: GUO Fusheng, WU Zhichun, LI Xiang, ZHANG Wanliang, ZENG Wenle, LIN Ziyu, XIE Caifu. 2018: The 3D geological modeling of Xiangshan volcanic basin in Jiangxi Province. Geological Bulletin of China, 37(2-3): 421-434.

The 3D geological modeling of Xiangshan volcanic basin in Jiangxi Province

More Information
  • Received Date: May 04, 2017
  • Revised Date: June 15, 2017
  • Available Online: August 15, 2023
  • The 3D geological modeling is a data model based on the analysis of geological spatial structure for displaying, editing, counting and outputting by the computer technology. In the 1980s, China began to carry out 3D modeling work on important geological sections such as sedimentary basins and deposits. In 2012, the CGS officially launched the pilot work of the 3D geological survey, and combined 3D geological modeling with regional geological mapping. 3D geological model from Xiangshan volcanic basin was built in 5 different scales and different data sources in the GOCAD (Geological Object Computer Aid Design) software platform, and three modeling methods were explored, i.e., digital geological mapping modeling, geological profile modeling and multi-source data fusion modeling. It integrated the surface of digital geological mapping in Xiangshan area with deep geophysical exploration and the analysis of drilling data. The digital geological mapping modeling has the great popularization value since it not only can be used as a new way of expression of surface regional geological mapping but also can be used as a transitional model for deeper level's 3D geological survey deployment foundation and the modeling constraints. 3D dimensional geological modeling emphasizes the organic integration of multi-source data and confirmation with each other, and the need of merging geological and geophysical exploration results, information technology, and multi-disciplinary integration. 3D modeling is an effective method for understanding geological features of the geological bodies, geometry of geological phenomena and paragenesis of formation in the 3D space.

  • Carr G R, Andrew A S, Denton G J, et al. The "Glass Earth": Geochrmical frontiers in exploration through cover[J]. Australian Institute of Geoscientist Bulletin, 1999, (28): 33-40.
    Glynn P, Jacobsen L, Phelps G, et al. 3D/4D Modeling, Visualization and Information Frameworks: Current U. S. Geological Survey Practice and Needs[C]//Three-dimensional Workshops For 2011. Minneapolis, Minnesota: Geological Survey of Canada, 2011. http://www.researchgate.net/publication/266068036_3D4D_MODELLING_VISUALIZATION_AND_INFORMATION_FRAMEWORKS_CURRENT_US_GEOLOGICAL_SURVEY_PRACTICE_AND_NEEDS
    Russell H A J, Rivera A, Wang S, et al. From atmosphere to basement: development of a framework for groundwater assessment in Canada[C]//Three-Dimensional Workshops for 2011. Minneapolis, Minnesota: Geological Survey of Canada, 2011. http://www.researchgate.net/publication/268031043_FROM_ATMOSPHERE_TO_BASEMENT_DEVELOPMENT_OF_A_FRAMEWORK_FOR_GROUNDWATER_ASSESSMENT_IN_CANADA
    吴冲龙, 翁正平, 刘刚, 等.论中国"玻璃国土"建设[J].地质科技情报, 2012, 31(6):1-8. http://bianke.cnki.net/OnlineView/Index/9366
    Dekemp E A. 3-D visualization of structural field data: examples from the Archean Caopatina Formation, Abitibi greenstone belt, Quebec, Canada[J]. Computer & Geosciences, 2000, 26(5): 509-530. https://www.sciencedirect.com/science/article/pii/S0098300499001429
    Graymer W, Ponce D A, Jachens R C, et al. Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock units with variations in seismicity, creep rate, and fault dip[J]. Geology, 2005, 33(6): 521-524. doi: 10.1130/G21435.1
    柯丹, 韩绍阳, 侯惠群, 等.三维可视化技术在矿产资源勘探领域中的应用探讨[J].世界核地质科学, 2005, 22(2):108-113. http://www.cnki.com.cn/Article/CJFDTOTAL-WDZC201417046.htm
    吕鹏, 张炜, 刘国, 等.国外重要地质调查机构三维地质填图工作进展[J].国土资源情报, 2013, 3:13-18. https://www.wenkuxiazai.com/doc/7e9f2c8733d4b14e85246868.html
    Larry D B. A new map of crustal'terranes'in the united states from COCORP deep seismic reflection profiling[J]. Geophys. J. Int., 1991, 105: 3-13. doi: 10.1111/gji.1991.105.issue-1
    DEKORP Research Group. Results of deep reflection seismic profiling in the Oberpfalz (Bavaria)[J]. Geophysical Journal of the Royal Astronomical society, 1987, 89(1): 353-360. doi: 10.1111/gji.1987.89.issue-1
    DEKORP Research group. Results of the DEKORP 1 (BELCORP-DEKORP) deep seismic reflection studies in the western part of the Rhenish Massif[J]. Geophysical Journal International, 1991, 106(1): 203-227. doi: 10.1111/gji.1991.106.issue-1
    DEKORP Basin Research Group. The north German basin and its development[J]. Pure ppl. Geohys., 1999, 27: 55-58. doi: 10.1002/(SICI)1099-1034(199606)31:2%3C159::AID-GJ705%3E3.0.CO;2-8/abstract
    Meissner R, Rabbel W. Nature of crustal reflectivity along the DEKORP profiles in Germany in comparison with reflection patterns from different tectonic units worldwide: a review[J]. Pure Appl. Geohys., 1999, 156: 7-28. doi: 10.1007/s000240050287
    Ron M C, Philip T C, Hammer, G F V, et al. Lithospheric strcture in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis[J]. Can. J. Earth Sci., 2005, 42: 1277-1293. doi: 10.1139/e04-069
    董树文, 李廷栋, SinoProbe团队.深部探测技术与实验研究(SinoProbe)[J].地球学报, 2011, 32(增刊):3-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb2011z1001
    Turner A K. Three-Dimensional modeling with Geoscientific information systems[M]. Kluwer Academic Publishers, 1992:1-433.
    Mallet J L. Discrete smooth interpolation[J]. ACM Transaction on Graphics, 1989, 8(2):121-144. doi: 10.1145/62054.62057
    Mallet J L. Space-time mathematical framework for sedimentary geology[J]. Mathematical Geology, 2004, 36(1):1-32. doi: 10.1023/B:MATG.0000016228.75495.7c
    Deekmp E A. Three-dimensional projection of curvilinear geological features through direction cosine interpolation of structural field observations[J]. Computers & Geosciences, 1998, 24(3): 269-284. https://www.sciencedirect.com/science/article/pii/S0098300497000666
    Dekemp E A. Interpretive tools for 3-D structural geological modeling part Ⅰ:Bézier-based curves, ribbons and grip frames[J]. GeoInformatica, 2003, 7(1): 55-71. doi: 10.1023/A:1022822227691
    Hillier M J, Schetselaar E M, Dekemp E A, et al. Three-dimensional modeling of geological surfaces using generalized interpolation with radial basis functions[J]. Math. Geosci., 2014, 46:931-953. doi: 10.1007/s11004-014-9540-3
    Keppel E. Approximating complex surfaces by triangulation of contour lines[J]. IBM Journal of Research and Development, 1975, 19(1): 2-11. doi: 10.1147/rd.191.0002
    Tipper J C. The study of geological objects in three dimensions by the computerized reconstruction of serial sections[J]. The Journal of Geology, 1976, 84(4): 476-484. doi: 10.1086/628213
    Tipper J C. A method and fortran program for the computerized reconstruction of three-dimensional objects from serial sections[J]. Computers & Geosciences, 1977, 3(4): 579-599. https://www.sciencedirect.com/science/article/pii/0098300477900413
    Herbert M H, Jones C B, Tudhope D S. Three-dimensional reconstruction of geoscientific objects from serial sections[J]. Visual Computer, 1995, 11(7): 343-359. doi: 10.1007/BF01909875
    Lemon A M, Jones N L. Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences, 2003, 29 (5): 547-555. https://www.sciencedirect.com/science/article/pii/S0098300403000517
    Djebbi M, Gabtni H. 3D gravity modeling of a salt structure associated to the Trozza-Labaied lineament (central tunisia) constrained by seismic and borehole data[J]. Journal of African Earth Sciences, 2015, 103:71-80. doi: 10.1016/j.jafrearsci.2014.11.012
    Minimo L G, Lagmay A M F A. 3D modeling of the Buhi debris avalanche deposit of Iriga volcano, Philippines by integrating shallow-seismic reflection and geological data[J]. Journal of Volcanology and Geothermal Research, 2016, 319:106-123. doi: 10.1016/j.jvolgeores.2016.03.002
    Naseem A, Ghulam M S. 3D geological modeling of Punjab platform, middle indus basin Pakistan through integration of wireline logs and seismic data[J]. Journal Geological Society India, 2014, 83: 211-217. doi: 10.1007/s12594-014-0033-2
    Kaufmann O, Martin T. 3D geological modeling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines[J]. Computers & Geosciences, 2008, 34 (3): 278-290. https://www.sciencedirect.com/science/article/pii/S0098300407001574
    Lemon A M, Jones N L. Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences, 2003, 29 (5): 547-555. https://www.sciencedirect.com/science/article/pii/S0098300403000517
    魏世臧, 郭春茂, 周仰贞.葛洲坝工程二江泄水闸抗滑稳定的三维地质力学模型实验研究[J].水利学报, 1983, 6:36-44. doi: 10.3321/j.issn:0559-9350.1983.06.004
    董树文, 高锐, 李秋生, 等.大别山造山带前陆深地震反射剖面[J].地质学报, 2005, 79(5):595-601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200505003
    Lü Q T, Qi G, Yan J Y. 3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling: A case history[J]. Geophysics, 2013, 78(1): 25–35. https://www.researchgate.net/publication/258647617_3D_geologic_model_of_Shizishan_ore_field_constrained_by_gravity_and_magnetic_interactive_modeling_A_case_history
    陈昌彦, 张菊明, 杜永廉, 等.边坡工程地质信息的三维可视化及其在三峡船闸边坡工程中的应用[J].岩土工程学报, 1998, 20 (4):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201206011.htm
    黄地龙, 柴贺军, 黄润秋.岩体结构可视化软件系统研究[J].成都理工学院学报, 2001, 28(4):416-420. http://www.cqvip.com/QK/91405A/200104/5724222.html
    朱大培, 牛文杰, 杨钦, 等.地质构造的三维可视化[J].北京航空航天大学学报, 2001, 27(4):448-451. http://d.wanfangdata.com.cn/Periodical_hgbzjlzl201103066.aspx
    钟登华, 李明超, 王刚.大型水电工程地质信息三维可视化分析理论与应用[J].天津大学学报, 2004, 37(12):1046-1052. doi: 10.3969/j.issn.0493-2137.2004.12.003
    魏子新.上海城市地质及其社会服务机制探讨[J].上海地质, 2010, 31(增刊):1-2. http://www.cqvip.com/Main/Detail.aspx?id=36014084
    李德仁, 龚健雅, 朱欣焰, 等.我国地球空间数据框架的设计思想与技术路线[J].武汉测绘科技大学学报, 1998, 23(4):297-303. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=55378
    李清泉, 李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报, 1998, 27(4):325-330. http://www.cqvip.com/QK/90069X/1998004/3257622.html
    龚健雅, 夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报, 1997, 22(1):7-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chgc200501019
    朱良峰, 吴信才, 刘修国.城市三维地质信息系统初探[J].地理与地理信息科学, 2004, 20(5):36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxygtyj200405009
    张宝一, 尚建嘎, 吴鸿敏, 等.三维地质建模及可视化技术在固体矿产储量估算中的应用[J].地质与勘探, 2007, 43(2):76-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200702015
    高阳, 陈三明, 韦龙明, 等.广东石人嶂矿床三维建模及利用块体模型进行储量估算的研究[J].矿产勘查, 2013, 4(5):558-564. http://www.cqvip.com/QK/89594X/201305/47371109.html
    陈东越, 陈建平, 陈三明, 等.辽东白云金矿地质体三维模型的构建与储量估算[J].桂林理工大学学报, 2013, 33(1):14-20. http://d.wanfangdata.com.cn/Periodical_glgxy201301003.aspx
    陈建平, 于淼, 于萍萍, 等.重点成矿带大中比例尺三维地质建模方法与实践[J].地质学报, 2014, 88(6):1187-1195. http://d.wanfangdata.com.cn/Periodical_dizhixb201406018.aspx
    李超岭, 刘修国, 李丰丹, 等. 数字地质调查系统从野外数据采集到矿体三维可视化的无缝一体化技术研究与实现[C]//中国地质学会地质制图专业委员会、中国地质学会区域地质及成矿专业委员会、第五届全国地质制图与GIS学术讨论会论文集. 2007: 29.
    潘懋, 方裕, 屈红刚.三维地质建模若干基本问题探讨[J].地理与地理信息科学, 2007, 23(3):1-5. http://www.cqvip.com/qk/92655A/200703/24579631.html
    王功文, 张寿庭, 燕长海, 等.基于地质与重磁数据集成的栾川钼多金属矿区三维地质建模[J].地球科学, 2011, 36(2):360-366. http://d.wanfangdata.com.cn/Periodical_dqkx201102021.aspx
    孙波, 刘大安.复杂地质界面三维重构与评价方法[J].岩石力学与工程学报, 2015, 34(3):556-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201503013
    武强, 徐华.三维地质建模与可视化方法研究[J].中国科学(D辑), 2004, 34(1):54-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200401006
    侯卫生, 吴信才, 刘修国, 等.基于线框模型的复杂断层三维建模方法[J].地质科技情报, 2006, 25(5):109-112. doi: 10.3969/j.issn.1000-7849.2006.05.021
    侯卫生, 吴信才, 刘修国, 等.一种基于平面地质图的复杂断层三维构建方法[J].岩土力学, 2007, 28(1):169-172. http://www.oalib.com/paper/5018530
    李廷栋, 丁伟翠, 郑宁, 等.博览群图提升地质制图的科学技术水平[J].地球信息科学学报, 2011, 13(6):711-719. http://www.dqxxkx.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=24630
    Ichoku C, Chorowicz J, Parrot J F. Computerized construction of geological cross sections from digital maps[J]. Computers & Geosciences, 1994, 20(9):1321-1327. https://www.sciencedirect.com/science/article/pii/0098300494900574
    胡进娟. 基于平面地质图的沉积地层三维模型构建方法研究[D]. 南京师范大学硕士学位论文, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1329808
    周良辰, 林冰仙, 王丹, 等.平面地质图的三维地质体建模方法研究[J].地球信息科学学报, 2013, 15(1):46-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxxkx201301006
    徐峰. 基于平面地质图的地质知识规则构建与三维建模[D]. 南京师范大学硕士学位论文, 2014 http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2625440
    郭福生, 吴志春, 谢财富, 等.数字地质填图系统的几点改进意见及实用技巧[J].中国地质, 2012, 39(1):252-259. https://www.wenkuxiazai.com/doc/9a3c75cd7c1cfad6185fa715.html
    郭福生, 杨庆坤, 谢财富, 等.江西相山酸性火山——侵入杂岩精确年代学与演化序列研究[J].地质科学, 2015, 50(3):684-707. http://www.cqvip.com/QK/94066X/201503/665463070.html
    张洋洋, 周万蓬, 吴志春, 等.三维地质建模技术发展现状及建模实例[J].东华理工大学学报(社会科学), 2013, 32(3):403-409. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shihjs201601089
    林子瑜, 李子颖, 龙期华, 等.相山矿田三维地质新认识[J].铀矿地质, 2013, 29(4):199-207. http://d.wanfangdata.com.cn/Periodical_ykdz201304002.aspx
    吴志春, 郭福生, 郑翔, 等.基于PRB数据构建三维地质模型的技术方法研究[J].地质学报, 2015, 89(7):1318-1330. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201507014.htm
    吴志春, 郑翔, 张洋洋, 等.数字地质填图数据构建断层面的方法[J].辽宁工程技术大学学报(自然科学版), 2015, 34(11):1264-1270. doi: 10.11956/j.issn.1008-0562.2015.11.010
    吴志春, 郭福生, 林子瑜, 等.三维地质建模中的多源数据融合技术与方法[J].吉林大学学报(地球科学版), 2016, 46(6):1895-1913. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ccdz201606031&dbname=CJFD&dbcode=CJFQ
    吴志春, 郭福生, 姜勇彪, 等.基于地质剖面构建三维地质模型的方法研究[J].地质与勘探, 2016, 52(2):363-375. http://www.cnki.com.cn/Article/CJFDTotal-DZKT201602020.htm
    屈红刚, 潘懋, 刘学清, 等.城市三维地质建模及其在城镇化建设中的应用[J].地质通报, 2015, 34(7):1350-1358. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20150713&flag=1
    屈红刚, 潘懋, 明镜, 等.基于交叉折剖面的高精度三维地质模型快速构建方法研究[J].北京大学学报(自然科学版), 2008, 4(6): 915-920. http://www.cnki.com.cn/Article/CJFDTotal-FXKY201511010.htm
    陈建平, 吕鹏, 吴文, 等.基于三维可视化技术的隐伏矿体预测[J].地学前缘, 2007, 14(5):54-62. doi: 10.3321/j.issn:1005-2321.2007.05.006
    陈建平, 尚北川, 吕鹏, 等.云南个旧某隐伏矿床大比例尺三维预测[J].地质科学, 2009, 44(1):324-337. http://d.wanfangdata.com.cn/Periodical_dzkx200901025.aspx
    薛林福, 李文庆, 张伟, 等.分块区域三维地质建模方法[J].吉林大学学报(地球科学版), 2014, 44(6):2051-2058. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_cckjdxxb201406033
    邱爱金, 郭令智, 郑大瑜, 等.大陆构造作用对相山富大铀矿形成的制约[M].北京:地质出版社, 2002:5-12.
    范洪海, 凌洪飞, 王德滋, 等.相山铀矿田成矿机理研究[J].铀矿地质, 2003, 19(4):208-213. http://www.cqvip.com/QK/91728X/200304/8044718.html
    林锦荣, 胡志华, 谢国发, 等.相山火山盆地组间界面、基底界面特征及其对铀矿的控制作用[J].铀矿地质, 2014, 30(3):135-140. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_ykdz201403002
  • Related Articles

Catalog

    Article views (3806) PDF downloads (3460) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return