Citation: | LU Shansong, TONG Xirun, TAN Juanjuan, QIU Xiaofei, YANG Hongmei. 2023: High-precision analysis of Pb isotope ratios using MC-ICP-MS and the Pb isotope compositions of rock standard samples. Geological Bulletin of China, 42(9): 1516-1530. DOI: 10.12097/j.issn.1671-2552.2023.09.008 |
A method for high-precision analysis of Pb isotope using MC-ICP-MS(Neptune plus) was established in Wuhan Centre, China Geological Survey.This study has focused on the influence of Tl standard solution of various concentration on the test results of Pb isotope ratio, and the optimal concentration of Tl standard solution has been determined to be 25 ng/mL, and the Pb concentration in the sample solution should be higher than 25 ng/mL(i.e.the Pb/Tl concentration ratio should be higher than 1).The Pb isotope reference material SRM 981 has been tested with this method for 11 months(July 2020~June 2021).The isotope ratios for SRM 981 are 206Pb/204Pb=16.9415±0.0010, 207Pb/204Pb=15.4985±0.0009 and 208Pb/204Pb=36.7204±0.0023, which are identical to the published data.The blank of long-term monitoring is less than 0.25 ng, which can meet the needs of high-precision lead isotope ratio test of geological samples.Meanwhile, we determined the Pb isotope composition of four trace element standard samples(BCR-2、AGV-2、BHVO-2 and BIR-1a) by using the same procedure.The results are consistent with the published data, hence this method is accurate and reliable.
Amelin Y, Davis W J. Isotopic analysis of lead in sub-nanogram quantities by TIMS using a 202Pb-205Pb spike[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(10): 1053-1061. doi: 10.1039/B606842A
|
Baker J, Peata D, Waight T, et al. Pb isotopic analysis of standards and samples using a207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS[J]. Chemical Geology, 2004, 211: 275-303. doi: 10.1016/j.chemgeo.2004.06.030
|
Cartró-Sabaté M, Mayor P, Orta-Martínez M, et al. Anthropogenic lead in Amazonian wildlife[J]. Nature Sustainability, 2019, 2: 702-709. doi: 10.1038/s41893-019-0338-7
|
Collerson K D, Kamber B S, Schoenberg R. Applications of accurate, high-precision Pb isotope ratio measurement by multi-collector ICP-MS[J]. Chemical Geology, 2002, 188(1/2): 65-83.
|
Connelly J N, Bizzarro M. Pb-Pb dating of chondrules from CV chondrites by progressive dissolution[J]. Chemical Geology, 2009, 259(3/4): 143-151.
|
Fetter N, Blichert-Toft J, Ludden J, et al. Lead isotopes as tracers of crude oil migration within deep crustal fluid systems[J]. Earth and Planetary Science Letters, 2019, 525: 115747. doi: 10.1016/j.epsl.2019.115747
|
Galer S J G, Abouuchami W. Practical Application of Lead Triple Spiking for Correction of Instrumental Mass Discrimination[J]. Mineralogical Magazine, 1998, 62A: 491-492. doi: 10.1180/minmag.1998.62A.1.260
|
Hoernle K, Hauff F, Kokfelt T F, et al. On- and off-axis chemical heterogeneities along the South Atlantic Mid-Ocean-Ridge(5-11°S): Shallow or deep recycling of ocean crust and/or intraplate volcanism?[J]. Earth and Planetary Science Letters, 2011, 36(1/2): 86-97.
|
Kuritani T, Nakamura E. Highly precise and accurate isotopic analysis of small amounts of Pb using 205Pb-204Pb and 207Pb-204Pb, two double spikes[J]. Journal of Analytical Atomic Spectrometry, 2003, 18: 1464-1470. doi: 10.1039/B310294G
|
Li H K, Niu Y L. Multi-collector ICP-MS Analysis of Pb Isotope Ratios in Rocks: Data, Procedure and Caution[J]. Acta Geologica Sinica, 2003, 77(1): 44-58.
|
Lee P K, Yu S, Chang H J, et al. Lead chromate detected as a source of atmospheric Pb and Cr(Ⅵ)pollution[J]. Scientific Reports, 2016, 6: 1-10.
|
Liu R L, Rawson J, Pollard A M. Beyond ritual bronzes: identifying multiple sources of highly radiogenic lead across Chinese history[J]. Scientific Reports, 2018, 8: 1-7.
|
Li Q L, Zhou Q, Liu Y, et al. Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts[J]. Nature, 2021, 600: 54-58.
|
Makishima A, Nagender N B, Nakamura E. Precise determination of Pb isotope ratios by simple double spike MC-ICP-MS technique without Tl addition[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(4): 407-410.
|
Makishima A, Nakamura E. Precise isotopic determination of Hf and Pb at sub-nano gram levels by MC-ICP-MS employing a newly designed sample cone and a pre-amplifier with a 1012ohm register[J]. Journal of Analytical Atomic Spectrometry, 2010, 25: 1712-1716.
|
Mougel B, Agranier A, Hemond C, et al. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise[J]. Nature Communications, 2014, 5: 1-7.
|
Rehkämper M, Mezger K. Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP-MS: verification and application of optimized analytical protocols[J]. Journal of Analytical Atomic Spectrometry, 2000, 15: 1451-1460.
|
Rose-Koga E F, Koga K T, Schiano P, et al. Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions[J]. Chemical Geology, 2012, 334: 266-279.
|
Standish C D, Dhuime B, Chapman R J, et al. The genesis of gold mineralisation hosted by orogenic belts: A lead isotope investigation of Irish gold deposits[J]. Chemical Geology, 2014, 378(1): 40-51.
|
Sun W D, Zhang L P, Guo J, et al. Origin of the mysterious Yin-Shang bronzes in China indicated by lead isotopes[J]. Scientific Reports, 2016, 6: 1-8.
|
Thirlwall M F. Multicollector ICP-MS analysis of Pb isotopes using a 207Pb-204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization[J]. Chemical Geology, 2002, 184: 255-279.
|
Taylor N R, Ishizuka O, Michalik A, et al. Evaluating the precision of Pb isotope measurement by mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 198-213
|
White W M, Francis Albarède, Philippe Télouk. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS[J]. Chemical Geology, 2000, 167: 257-270.
|
Woodhead J D, Hergt J M. Pb-Isotope Analyses of USGS Reference Materials[J]. Geostandards Newsletter, 2000, 24(1): 33-38.
|
Weis D, Kieffer B, Maerschalk C, et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS[J]. Geochemistry Geophysics Geosystems, 2006, 7(8): 139-149.
|
Yuan H L, Yuan W T, Cheng C, et al. Evaluation of lead isotope compositions of NIST NBS 981 measured by thermal ionization mass spectrometer and multiple-collector inductively coupled plasma mass spectrometer[J]. Solid Earth Sciences, 2016, 1(2): 74-78.
|
何学贤, 朱祥坤, 杨淳, 等. 多接收器等离子体质谱(MC-ICP-MS)Pb同位素高精度研究[J]. 地球学报, 2005, 26(增刊): 19-22. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510002008.htm
|
刘希军, 王桂琴, Castillo P R, 等. 高精度铅同位素207Pb-204Pb双稀释剂TIMS测试方法[J]. 地球化学, 2013, 42(2): 103-115. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201302002.htm
|
李世珍, 马健雄, 朱祥坤, 等. 离子交换分离过程中铅同位素分馏评估及针对MC-ICP-MS铅同位素测定的分离纯化方法的修正[J]. 岩石矿物学杂志, 2015, 34(5): 785-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201505015.htm
|
牛得草, 张志平, 董瀚, 等. 西藏乃东县扎嘎当O型埃达克岩成因——来自地球化学和Sr-Nd-Pb同位素的制约[J]. 地质通报, 2021, 40(8): 1369-1379. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210813&flag=1
|
辛末, 孟元库, 许志河, 等. 哀牢山成矿带长安金矿床成因——地质特征、流体包裹体测温和H-O-S-Pb同位素制约[J]. 吉林大学学报(地球科学版), 2022, 52(5): 1610-1625. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202205012.htm
|