• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
ZHANG Hongrui, YANG Liqiang. 2022: Genetic types and identification characteristics of colloform pyrite. Geological Bulletin of China, 41(6): 1039-1052. DOI: 10.12097/j.issn.1671-2552.2022.06.011
Citation: ZHANG Hongrui, YANG Liqiang. 2022: Genetic types and identification characteristics of colloform pyrite. Geological Bulletin of China, 41(6): 1039-1052. DOI: 10.12097/j.issn.1671-2552.2022.06.011

Genetic types and identification characteristics of colloform pyrite

More Information
  • Received Date: June 26, 2021
  • Revised Date: August 03, 2021
  • Available Online: August 15, 2023
  • Colloform pyrite is widely distributed in various geological bodies and the genetic information can be obtained by in-depth study of its classification type.By comparing and analyzing the morphology, the internal structure and geochemical features, the hydrothermal and sedimentary colloform pyrite can be effectively distinguished.In combination with the mapping method of Fe-S, Co-Ni, S-Se, Se-Te and sulfur isotope mapping proposed in this paper, the trace characteristics of colloform pyrite of various genetic types were compared.The colloform pyrite of sedimentary origin is mostly spherical, ellipsoidal and agglomerated, with Co/Ni < l, S/Se > 2.5×104, Se/Te < 0.45, and a wide-ranging δ34S ratio(-13‰~+13‰).Under the microscope, mineral isomorphism of clay are often observed.The colloform pyrite of hydrothermal origin mostly occurs as irregular veins and has a certain orientation, with 1 < Co/Ni < 5, lower S/Se ratio(< 2.5×104), and the Se/Te ratio more than 0.45, as well as a narrow range of 34S ratio(0~ 5‰).Among them, the colloform pyrite Co/Ni, S/Se and Se/Te of magmatic hydrothermal origin are all higher than the metamorphic hydrothermal origin.The nucleated and growing process of sedimentary colloform pyrite origin is under the anaerobic condition.In the bacterial sulfate reduction zone with the H2S, metal elements such as Cu, Zn and Mo are enriched in the crystalline nano-sized pyrite particles in the form of sulfide melt.The colloform pyrite of hydrothermal origin can be used as a mineral carrier.Au, As and other elements occur in the zone of colloform pyrite as a consequence of heteroepitaxial Stranski-Krastanov growth.The mineralogical phase can be changed into pyrrhotite under the lower temperature, which promotes the precipitation of copper.

  • Deng J, Yang L Q, Sun Z S, et al. A metallogenic model of gold deposits of the Jiaodong granite-greenstone Belt[J]. Acta Geologica Sinica, 2003, 77(4): 537-546.
    Barrie C D, Boyce A J, Boyle A P. Growth controls in colloform pyrite[J]. American Mineralogist, 2009, 94(4): 415-429. doi: 10.2138/am.2009.3053
    Zhang Y J, Du Y P, Xu H R, et al. Diverse-shaped iron sulfide nanostructures synthesized from a single source precursor approach[J]. Cryst Eng Comm, 2011, 12(11): 3658-3663.
    Gao S, Huang F, Gu X P, et al. Growth pattern and its indication of spheroidal nano-micro crystal aggregates of pyrite in the Baiyunpu Pb-Zn polymetallic deposit, Central Hunan[J]. Acta Geologica Sinica, 2014, 88(6): 1770-1783. doi: 10.1111/1755-6724.12343
    Yang L Q, Deng J, Guo L N, et al. Origin and evolution of ore fluid, and gold- deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 585-602. doi: 10.1016/j.oregeorev.2015.08.021
    Gao S, Huang F, Wang Y H, et al. A review of research progress in the genesis of colloform pyrite and its environmental indications[J]. Acta Geologica Sinica, 2016, 90(4): 1353-1369. doi: 10.1111/1755-6724.12774
    Yang L Q, Deng J, Wang Z L, et al. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment[J]. Economic Geology, 2016, 111(1): 105-126. doi: 10.2113/econgeo.111.1.105
    Deng J, Wang C M, Bagas L, et al. Crustal architecture and metallogenesis in the south-eastern North China Craton[J]. Earth-Science Reviews, 2018, 182: 251-272. doi: 10.1016/j.earscirev.2018.05.001
    Zhang Y, Shao Y J, Chen H Y, et al. A hydrothermal origin for the large Xinqiao Cu-S-Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes[J]. Ore Geology Reviews, 2017, 88: 534-549. doi: 10.1016/j.oregeorev.2016.08.002
    Ohfuji H, Boyle A P, Prior D J, et al. Structure of framboidal pyrite: An electron backscatter diffraction study[J]. American Mineralogist, 2005, 90(11/12): 1693-1704.
    McKibben M A, Eldridge C S. Microscopic sulfur isotope variations in ore minerals from the viburnum trend, southeast Missouri; A SHRIMP study[J]. Economic Geology, 1995, 90(2): 228-245. doi: 10.2113/gsecongeo.90.2.228
    Koglin N, Frimmel H E, Lawrie Minter W E, et al. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits[J]. Mineralium Deposita, 2010, 45(3): 259-280. doi: 10.1007/s00126-009-0272-0
    Yang L Q, Deng J, Li N, et al. Isotopic characteristics of gold deposits in the Yangshan Gold Belt, West Qinling, central China: Implications for fluid and metal sources and ore genesis[J]. Journal of Geochemical Exploration, 2016, 168: 103-118. doi: 10.1016/j.gexplo.2016.06.006
    Lebedev L M. Metacolloids in Endogenic Deposits[M]. New York: Plenum Press, 1967: 162-196.
    Freitag K, Boyle A P, Nelson E, et al. The use of electron backscatter diffraction and orientation contrast imaging as tools for sulphide textural studies: Example from the Greens Creek deposit(Alaska)[J]. Mineralium Deposita, 2004, 39(1): 103-113. doi: 10.1007/s00126-003-0386-8
    McClenaghan S H, Lentz D R, Beaumont-Smith C J. The gold-rich Louvicourt volcanogenic massive sulfide deposit, New Brunswick: A Kuroko analogue in the Bathurst Mining Camp[J]. Exploration and Mining Geology, 2006, 15(3/4): 127-154.
    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study[J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020
    Yang L Q, Deng J, Guo R P, et al. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province[J]. Geoscience Frontiers, 2016, 7(3): 419-430. doi: 10.1016/j.gsf.2015.08.006
    Schieber J, Riciputi L. Pyrite ooids in Devonian black Shales record intermittent sea-level drop and shallow-water conditions[J]. Geology, 2004, 32(4): 305-308. doi: 10.1130/G20202.1
    Schieber J, Riciputi L. Pyrite and marcasite coated grains in the Ordovician Winnipeg Formation, Canada: An intertwined record of surface conditions, stratigraphic condensation, geochemical "Reworking, " and microbial activity[J]. Journal of Sedimentary Research, 2005, 75(5): 907-920. doi: 10.2110/jsr.2005.070
    Barrie C D, Boyce A J, Boyle A P, et al. On the growth of colloform textures: A case study of sphalerite from the Galmoy ore body, Ireland[J]. Journal of the Geological Society, 2009, 166(3): 563-582. doi: 10.1144/0016-76492008-080
    Deng J, Qiu K F, Wang Q F, et al. In-situ dating of hydrothermal monazite and implications on the geodynamic controls of ore formation in the Jiaodong gold province, eastern China[J]. Economic Geology, 2020, 115(3): 671-685. doi: 10.5382/econgeo.4711
    Maslennikov V V, Maslennikova S P, Large R R, et al. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit(Southern Urals, Russia)using laser ablation-inductively coupled plasma mass spectrometry(LA-ICPMS)[J]. Economic Geology, 2009, 104(8): 1111-1141. doi: 10.2113/gsecongeo.104.8.1111
    Revan M K, Genç Y, Maslennikov V V, et al. Mineralogy and trace-element geochemistry of sulfide minerals in hydrothermal chimneys from the Upper-Cretaceous VMS deposits of the eastern Pontide orogenic belt(NE Turkey)[J]. Ore Geology Reviews, 2014, 63: 129-149. doi: 10.1016/j.oregeorev.2014.05.006
    Deng J, Wang Q F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework[J]. Gondwana Research, 2016, 36: 219-274. doi: 10.1016/j.gr.2015.10.003
    Yuan B X, Luan W L, Tu S T, et al. One-step synthesis of pure pyrite FeS2 with different morphologies in water[J]. New Journal of Chemistry, 2015, 39(5): 3571-3577. doi: 10.1039/C4NJ02243B
    Zhang J, Deng J, Chen H Y, et al. LA-ICP-MS trace element analysis of pyrite from the Chang'an gold deposit, Sanjiang region, China: Implication for ore-forming process[J]. Gondwana Research, 2014, 26(2): 557-575. doi: 10.1016/j.gr.2013.11.003
    Yang L Q, Deng J, Wang Z L, et al. Thermochronologic constraints on evolution of the Linglong Metamorphic Core Complex and implications for gold mineralization: A case study from the Xiadian gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2016, 72: 165-178. doi: 10.1016/j.oregeorev.2015.07.006
    Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4
    Agangi A, Hofmann A, Rollion-Bard C, et al. Gold accumulation in the Archaean Witwatersrand Basin, South Africa- Evidence from concentrically laminated pyrite[J]. Earth-Science Reviews, 2015, 140: 27-53. doi: 10.1016/j.earscirev.2014.10.009
    Falconer D M, Craw D, Youngson J H, et al. Gold and sulphide minerals in Tertiary quartz pebble conglomerate gold placers, Southland, New Zealand[J]. Ore Geology Reviews, 2006, 28(4): 525-545. doi: 10.1016/j.oregeorev.2005.03.009
    任云生, 刘连登. 铜陵地区热液成因胶状黄铁矿及其成矿意义[J]. 矿床地质, 2006, 25(S1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2006S1029.htm
    Pacevski A, Moritz R, Kouzmanov K, et al. Texture and composition of Pb-bearing pyrite from the Coka Marin polymetallic deposit, Serbia, controlled by nanoscale inclusions[J]. Canadian Mineralogist, 2012, 50(1): 1-20. doi: 10.3749/canmin.50.1.1
    Franchini M, McFarlane C, Maydagán L, et al. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition[J]. Ore Geology Reviews, 2015, 66: 366-387. doi: 10.1016/j.oregeorev.2014.10.022
    Dekov V M, Kamenov G D, Abrasheva M D, et al. Mineralogical and geochemical investigation of seafloor massive sulfides from Panarea Platform(Aeolian Arc, Tyrrhenian Sea)[J]. Chemical Geology, 2013, 335: 136-148. doi: 10.1016/j.chemgeo.2012.10.048
    徐亮, 谢巧勤, 周跃, 等. 安徽铜陵矿集区铜官山矿田胶状黄铁矿矿物学特征及其对成矿作用的制约[J]. 岩石学报, 2019, 35(12): 3721-3733. doi: 10.18654/1000-0569/2019.12.09
    徐亮. 铜陵新桥矿床胶状黄铁矿成因及其纳米矿物学特性[D]. 肥工业大学硕士学位论文, 2017.
    谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学: 地球科学, 2014, 44(12): 2665-2674. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412006.htm
    Deng J, Wang C M, Bagas L, et al. Cretaceous-Cenozoic tectonic history of the Jiaojia Fault and gold mineralization in the Jiaodong Peninsula, China: Constraints from zircon U-Pb, illite K-Ar, and apatite fission track thermochronometry[J]. Mineralium Deposita, 2015, 50(8): 987-1006. doi: 10.1007/s00126-015-0584-1
    Li Y, Selby D, Li X H, et al. Multisourced metals enriched by magmatic-hydrothermal fluids in stratabound deposits of the Middle-Lower Yangtze River Metallogenic Belt, China[J]. Geology, 2018, 46(5): 391-394. doi: 10.1130/G39995.1
    Deditius A P, Reich M, Kesler S E, et al. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits[J]. Geochimica et Cosmochimica Acta, 2014, 140: 644-670. doi: 10.1016/j.gca.2014.05.045
    Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 615-630. doi: 10.1016/j.gca.2006.10.010
    张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿成因分析[J]. 矿床地质, 2012, 31(S1): 167-168. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2012S1086.htm
    Genna D, Gaboury D. Deciphering the hydrothermal evolution of a VMS System by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod Deposits, Abitibi, Canada, and implications for exploration[J]. Economic Geology, 2015, 110(8): 2087-2108. doi: 10.2113/econgeo.110.8.2087
    严育通, 李胜荣, 贾宝剑, 等. 中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J]. 地学前缘, 2012, 19(4): 214-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201204024.htm
    肖鑫, 周涛发, 范裕, 等. 安徽铜陵新桥铜硫金矿床的成因: 来自两类黄铁矿微形貌学、地球化学特征的证据[J]. 岩石学报, 2016, 32(2): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201602007.htm
    Yang L Q, Deng J, Dilek Y, et al. Structure, Geochronology, and Petrogenesis of the Late Triassic Puziba Granitoid Dikes in the Mianlue Suture Zone, Qinling Orogen, China[J]. Geological Society of America Bulletin, 2015, 127(11/12): 1831-1854.
    Zhang L, Weinberg R F, Yang L Q, et al. Mesozoic orogenic gold mineralization in the Jiaodong Peninsula, China: A focused event at 120±2 Ma during cooling of pregold granite intrusions[J]. Economic Geology, 2020, 115(2): 415-441. doi: 10.5382/econgeo.4716
    张宇, 邵拥军, 周鑫, 等. 安徽铜陵新桥铜硫铁矿床胶状黄铁矿主、微量元素特征[J]. 中国有色金属学报, 2013, 23(12): 3492-3502. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201312031.htm
    Yang L Q. Editorial for special issue "Polymetallic Metallogenic system"[J]. Minerals, 2019, 9(7): 435. doi: 10.3390/min9070435
    汪在聪, 刘建明, 刘红涛, 等. 稳定同位素热液来源示踪的复杂性和多解性评述——以造山型金矿为例[J]. 岩石矿物学杂志, 2010, 29(5): 577-590. doi: 10.3969/j.issn.1000-6524.2010.05.013
    Deng J, Wang Q F, Santosh M, et al. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55(2): 257-274. doi: 10.1007/s00126-019-00925-0
    Marinova I, Ganev V, Titorenkova R. Colloidal origin of colloform-banded textures in the Paleogene low-sulfidation Khan Krum gold deposit, SE Bulgaria[J]. Mineralium Deposita, 2014, 49(1): 49-74. doi: 10.1007/s00126-013-0473-4
    范宏瑞, 李兴辉, 左亚彬, 等. LA-(MC)-ICPMS和(Nano)SIMS硫化物微量元素和硫同位素原位分析与矿床形成的精细过程[J]. 岩石学报, 2018, 34(12): 3479-3496. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201812002.htm
    Yang L Q, Guo L N, Wang Z L, et al. Timing and mechanism of gold mineralization at the Wang'ershan gold deposit, Jiaodong Peninsula, eastern China[J]. Ore Geology Reviews, 2017, 88: 491-510. doi: 10.1016/j.oregeorev.2016.06.027
    Tatsuo Nozaki, Toshiro Nagase, Takayuki Ushikubo, et al. Microbial sulfate reduction plays an important role at the initial stage of subseafloor sulfide mineralization[J]. Geology, 2021, 49(2): 222-227. doi: 10.1130/G47943.1
    Large R R, Danyushevsky L, Hollit C, et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin style sediment-hosted deposits[J]. Economic Geology, 2009, 104(5): 635-668. doi: 10.2113/gsecongeo.104.5.635
    杨立强, 邓军, 王中亮, 等. 胶东中生代金成矿系统[J]. 岩石学报, 2014, 30(9): 2447-2467. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409001.htm
    Wu Y F, Fougerouse D, Evans K, et al. Gold, arsenic, and copper zoning in pyrite: A record of fluid chemistry and growth kinetics[J]. Geology, 2019, 47(7): 641-644. doi: 10.1130/G46114.1
    Groves D I, Santosh M, Deng J, et al. A holistic model for the origin of orogenic gold deposits and its implications for exploration[J]. Mineralium Deposita, 2020, 55(2): 275-292. doi: 10.1007/s00126-019-00877-5
    徐亮, 谢巧勤, 陈天虎, 等. 铜陵矿集区层状硫化物矿床成因——来自胶状黄铁矿-菱铁矿型矿石矿物学制约[J]. 地质论评, 2017, 63(6): 97-108. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706009.htm
    Liu X T, Fike D, Li A C, et al. Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene[J]. Chemical Geology, 2019, 505: 66-75. doi: 10.1016/j.chemgeo.2018.12.014
    刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124-137. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202001011.htm
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. 田明明,李子颖,张云龙,贾立城,邱林飞,邢作昌,宁君,李继木,唐国龙,林效宾. 松辽盆地海力锦铀矿床黄铁矿微量元素、硫同位素特征及其对成矿流体性质的指示. 铀矿地质. 2024(01): 119-128 .
    2. 刘旭,戢兴忠,陈强,李源洪. 贵州普克金矿区黄铁矿和方解石地球化学特征及地质意义. 现代地质. 2024(04): 977-990 .
    3. 刘钰晨,赵卫卫,高剑波,霍志鹏,张佳琦,李慧,王嘉楠. 鄂尔多斯盆地东南部长7段泥页岩黄铁矿成因及地质意义. 断块油气田. 2024(06): 978-984 .

    Other cited types(2)

Catalog

    Article views (2424) PDF downloads (1741) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return