• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
Zhang S Y, Zhang W, Dong Y H, Zhu Y C, Liu Y C, Wang Y Y, Wang P, Li J L, Kong X K. Pollution characteristics and risk assessment of sulfonamide antibiotics during shallow groundwater recharge in the Shijiazhuang section of the Hutuo River. Geological Bulletin of China, 2024, 43(4): 620−629. DOI: 10.12097/gbc.2023.09.016
Citation: Zhang S Y, Zhang W, Dong Y H, Zhu Y C, Liu Y C, Wang Y Y, Wang P, Li J L, Kong X K. Pollution characteristics and risk assessment of sulfonamide antibiotics during shallow groundwater recharge in the Shijiazhuang section of the Hutuo River. Geological Bulletin of China, 2024, 43(4): 620−629. DOI: 10.12097/gbc.2023.09.016

Pollution characteristics and risk assessment of sulfonamide antibiotics during shallow groundwater recharge in the Shijiazhuang section of the Hutuo River

More Information
  • Received Date: September 11, 2023
  • Revised Date: December 13, 2023
  • Available Online: May 06, 2024
  • In order to identify the pollution characteristics, ecological risk and health risk of sulfa antibiotics (SAs) in groundwater during the Hutuo River recharge process, sixteen shallow groundwater samples were collected twice along the Hutuo River bank from October 2020 to October 2021. The concentrations and distribution characteristics of 20 SAs were determined using solid-phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry. The results showed that the overall pollution level of SAs in groundwater was relatively low, and only 7 of the 20 SAs were detected in groundwater during the initial recharge period. The concentration of different SAs followed the order of characteristics: sulfametoxydiazine (93.75%), sulfadiazine (37.50%), sulfachlorpyridazine (18.75%), sulfapyridine (18.75%), sulfamonomethoxine (6.25%), sulfaguanidine (6.25%), sulfacetamide (6.25%). The highest average detection concentration SAs were sulfadiazine (29 ng/L) and sulfametoxydiazine (9.2 ng/L). Due to the mixed dilution effect of high-quality South-to-North Water Diversion water, the SAs detection frequency and average detection concentration declined gradually during the groundwater recharge. The historical pollution of sewage treatment plants and agricultural livestock and poultry in this area were the leading causes of SAs pollution in groundwater. The ecological and health risk assessment results indicated that the sulfametoxydiazine and sulfadiazine were medium ecological risks, and the sulfadiazine posed a moderate risk to human health. All SAs showed no obvious ecological risk and health risk in groundwater in the later period of the recharge process.

  • Bialk−Bielinska A, Stolte S, Jürgen A, et al. 2011. Ecotoxicity evaluation of selected sulfonamides[J]. Chemosphere, 85(6): 928−933. doi: 10.1016/j.chemosphere.2011.06.058
    Benoǐt F, Raphael, M, Bernard V, et al. 2004. Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment[J]. Environmental Toxicology and Chemistry, 23(5): 1344−1354. doi: 10.1897/03-246
    Barnes K K, Kolpin D W, Furlong E T, et al. 2008. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States − (I) Groundwater[J]. Science of the Total Environment, 402(2/3): 192−200. doi: 10.1016/j.scitotenv.2008.04.028
    Chen J, Xie S. 2018. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms[J]. Science of the Total Environment, 640(1): 1465−1477.
    Dong P, Qiu W, He X, et al. 2021. Analysis of physicochemical factors regulating transport behaviors of sulfonamide antibiotics in saturated porous media[J]. Journal of Hydrology, 599: 126381. doi: 10.1016/j.jhydrol.2021.126381
    Ding Y, Cui K P, Lv K, et al. 2021. Revealing the hydrological transport and attenuation of 14 antibiotics in a low−flow stream[J]. Science of the Total Environment, 761: 143288. doi: 10.1016/j.scitotenv.2020.143288
    Eguchi K, Nagase H, Ozawa M, et al. 2004. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae[J]. Chemosphere, 57(11): 1733−1738. doi: 10.1016/j.chemosphere.2004.07.017
    Gustafson D I. 1989. Groundwater ubiquity score: a simple method toxicology and chemistry[J]. Environmental Toxicology and Chemistry, 8(4): 339−357. doi: 10.1002/etc.5620080411
    Hanna N, Sun P, Sun Q, et al. 2018. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk[J]. Environment International, 114: 131−142. doi: 10.1016/j.envint.2018.02.003
    Hernando M D, Mezcua M, Fernndez−Alba A, et al. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[ J]. Talanta, 69(2): 334−342.
    Huang, F Y, Zou S Z, Deng, D D, et al. 2019. Antibiotics in a typical karst river system in China: Spatiotemporal variation and environmental risks[J]. Science of the Total Environment, 650: 1348−1355. doi: 10.1016/j.scitotenv.2018.09.131
    Kosma C I, Lambropoulou D A, Albanis T A. 2014. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment[J]. Science of the Total Environment, 466/467: 421−438. doi: 10.1016/j.scitotenv.2013.07.044
    López−Serna R, Jurado A, Vázquez−Sué E, et al. 2013. Occurrence of 95 Pharmaceuticals and Transformation Products in Urban Groundwaters Underlying the Metropolis of Barcelona, Spain[J]. Environmental Pollution, 174: 305−315. doi: 10.1016/j.envpol.2012.11.022
    Ma Y J, Modrzymski J J, Yang Y X, et al. 2021. Redox−dependent biotransformation of sulfonamide antibiotics exceeds sorption and mineralization: Evidence from incubation of sediments from a reclaimed water−affected river[J]. Water Research, 205(15): 117616.
    Ma Y, Li M, Wu M, et al. 2015. Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge[J]. Science of the Total Environment, 518/519: 498−506. doi: 10.1016/j.scitotenv.2015.02.100
    Martinez J L, Raiber M, Cox M E. 2015. Assessment of groundwater–surface water interaction using long−term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia[J]. Science of the Total Environment, 536: 499−516. doi: 10.1016/j.scitotenv.2015.07.031
    Prasannamedha G, Kumar P S. 2020. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective[J]. Journal of Cleaner Production, 250: 119553. doi: 10.1016/j.jclepro.2019.119553
    Turkdogan F I, Yetilmezsoy K. 2009. Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey[J]. Journal of Hazardous Materials, 166(1): 297−308. doi: 10.1016/j.jhazmat.2008.11.012
    Wang J, Zhang C, Xiong L, et al. 2022. Changes of antibiotic occurrence and hydrochemistry in groundwater under the influence of the South−to−North Water Diversion (the Hutuo River, China) [J]. Science of The Total Environment, 832: 154779.
    Zhang R L, Zhang B Y, Guo Y T, et al. 2023. Replenishment Impacts on Hydrogeochemistry and Water Quality in the Hutuo River Plain[J]. Water, 15: 3326. doi: 10.3390/w15193326
    昌盛, 赵兴茹, 刘琰, 等. 2016. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, (6): 854−862.
    陈李宁. 2021. 滹沱河生态补水不同区段地下水环境变化及影响机制[D]. 中国地质大学(北京)硕士学位论文.
    陈卫平, 彭程伟, 杨阳, 等. 2017. 北京市地下水中典型抗生素分布特征与潜在风险[J]. 环境科学, 38(12): 5074−5080.
    陈姗, 许凡, 张玮, 等. 2019. 磺胺类抗生素污染现状及其环境行为的研究进展[J]. 环境化学, 38(7): 1557−1569. doi: 10.7524/j.issn.0254-6108.2018091901
    陈飞, 丁跃元, 唐世南, 等. 2021. 华北地区河湖生态补水与地下水回补的实践及效果分析[J]. 中国水利, (7): 36−39. doi: 10.3969/j.issn.1000-1123.2021.07.016
    陈慧, 剧泽佳, 赵鑫宇, 等. 2022. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 43(9): 4556−4565.
    戴佳佳, 宋金明, 李学刚, 等. 2023. 中国典型水域磺胺类合成药物的环境生物地球化学特征[J]. 海洋与湖沼, 54(4): 935−950.
    龚润强, 赵华珒, 高占啟, 等. 2022. 骆马湖及主要入湖河流表层水体中抗生素的赋存特征及风险评价[J]. 环境科学, 43(3): 1384−1393.
    纪浩, 杨依琳, 邢戎光, 等. 2023. 渭河西安段水体中磺胺类抗生素的污染特征及生态风险评价[J]. 环境污染与防治, 45(4): 521−527.
    李亚松, 张兆吉, 费宇红, 等. 2014. 河北省滹沱河冲积平原地下水质量及污染特征研究[J]. 地球学报, 35(2): 169−176. doi: 10.3975/cagsb.2014.02.07
    李辉, 陈瑀, 封梦娟, 等. 2020. 南京市饮用水源地抗生素污染特征及风险评估[J]. 环境科学学报, (4): 1269−1277.
    李佳乐, 王瑶, 董一慧, 等. 2022. 鄱阳湖流域袁河水体典型抗生素分布特征及生态风险评价[J]. 生态毒理学报, 17(4): 563−574. doi: 10.7524/AJE.1673-5897.20211130001
    冉泽宇, 贾永锋, 姜永海,等. 2024. 地下水污染源解析方法研究进展[J]. 地质通报, 43(1): 153−162.
    生态环境部. 2020. 地下水环境监测技术规范(HJ 164-2020)[EB/OL]. (2020-12-02) [2024-04-23]. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/202012/t20201203_811333.shtml.
    孙晓林. 2012. 滹沱河冲洪积扇地下水数值模拟及其适宜水位控制研究 [D]. 中国地质大学(北京)硕士学位论文.
    田夏, 孟素花, 崔向向, 等. 2021. 滹沱河超采区地下水回补的水化学效应研究[J]. 环境科学研究, 34(3): 629−636.
    王新爽. 2017. 不同类型土壤对磺胺甲恶唑的吸附/解吸特性研究[D]. 吉林农业大学硕士学位论文.
    王盛, 李文静, 王金凤. 2020. 滹沱河上游径流演变及其影响因素分析[J]. 甘肃农业大学学报, 55(3): 162−169.
    王浩楠, 李烨, 傅志强, 等. 2022. 抗生素解离形态对其植物富集及人体暴露的影响[J]. 生态毒理学报, 17(5): 43−53.
    席北斗, 李娟, 汪洋, 等. 2019. 京津冀地区地下水污染防治现状、问题及科技发展对策[J]. 环境科学研究, 32(1): 1−9.
    余和春. 2018. 地表水回灌过程中典型磺胺类抗生素迁移特性及去除研究[D]. 中国地质大学(北京)硕士学位论文.
    赵兴茹, 耿梦娇, 暴志蕾, 等. 2016. 石家庄市滹沱河冲洪积扇地下水中BHT和TEP的污染水平及风险评价[J]. 环境科学研究, 29(9): 1297−1302.
    赵涛, 丘锦荣, 蒋成爱, 等. 2017. 水环境中磺胺类抗生素的污染现状与处理技术研究进展[J]. 环境污染与防治, 39(10): 1147−1152.
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 李昕悦,邵智,杨艳,支国强,杨健,焦立新,熊健. 昆明市重点饮用水源地水体抗生素的赋存及其风险评估. 环境科学研究. 2024(11): 2503-2513 .
    2. 周甲男,郑颖娟,马苏,刘洋,刘军会. 神东矿区不同恢复模式下植物多样性特征. 环境科学研究. 2024(12): 2771-2781 .

    Other cited types(0)

Catalog

    Article views (1194) PDF downloads (310) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return