• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

大兴安岭十八站—韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义

柴明春, 王泉, 赵国英, 高溯, 曹昆

柴明春, 王泉, 赵国英, 高溯, 曹昆. 2018: 大兴安岭十八站—韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义. 地质通报, 37(10): 1866-1881.
引用本文: 柴明春, 王泉, 赵国英, 高溯, 曹昆. 2018: 大兴安岭十八站—韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义. 地质通报, 37(10): 1866-1881.
CHAI Mingchun, WANG Quan, ZHAO Guoying, GAO Su, CAO Kun. 2018: Zircon U-Pb ages and geochemical characteristics of Late Mesozoic volcanic rocks from Shibazhan-Hanjiayanzi area of Da Hinggan Mountains and their tectonic significance. Geological Bulletin of China, 37(10): 1866-1881.
Citation: CHAI Mingchun, WANG Quan, ZHAO Guoying, GAO Su, CAO Kun. 2018: Zircon U-Pb ages and geochemical characteristics of Late Mesozoic volcanic rocks from Shibazhan-Hanjiayanzi area of Da Hinggan Mountains and their tectonic significance. Geological Bulletin of China, 37(10): 1866-1881.

大兴安岭十八站—韩家园地区晚中生代火山岩年龄、地球化学特征及其构造意义

基金项目: 

黑龙江省矿产地质调查专项《黑龙江省三合屯幅、抚民屯幅1:5万区域地质矿产调查》 HLJKD2016-06

《黑龙江省十七站幅、新村幅1:5万区域地质矿产调查》 HLJKD2014-14

详细信息
    作者简介:

    柴明春(1987-), 男, 硕士, 工程师, 从事区域地质与矿产调查工作。E-mail:chaimingchun1122@126.com

    通讯作者:

    王泉(1970-), 男, 本科, 教授级高工, 从事矿产勘查工作。E-mail:cwyss001@163.com

  • 中图分类号: P534.5;P597+.3

Zircon U-Pb ages and geochemical characteristics of Late Mesozoic volcanic rocks from Shibazhan-Hanjiayanzi area of Da Hinggan Mountains and their tectonic significance

  • 摘要:

    大兴安岭十八站-韩家园地区发育晚中生代基性-中酸性火山岩。选取粗面安山岩、粗面岩、流纹岩进行年代学和岩石地球化学研究。粗面安山岩LA-ICP-MS锆石U-Pb年龄为125.2±0.9 Ma,为早白垩世火山作用的产物。岩石地球化学特征表明,中酸性火山岩属于高钾钙碱性-钾玄岩系列。岩石稀土元素总量∑REE=121.42×10-6~154.43×10-6,轻、重稀土元素分异明显(La/Yb)N=19.25~31.98,在稀土元素配分图上显示右倾型,除一个流纹岩样品具显著负Eu异常外,多数样品无明显Eu负异常(δEu=0.45~0.90)。岩石具弱富集大离子亲石元素Ba、Sr,明显亏损高场强元素Nb、Ta、Ti的特征。结合区域资料,认为十八站-韩家园地区早白垩世中酸性火山岩形成于蒙古-鄂霍茨克洋闭合机制下后碰撞伸展背景。粗面安山岩、粗面岩和流纹岩系同源岩浆部分熔融与结晶分异作用的结果,岩浆来源于受俯冲流体交代的富集岩石圈地幔。

    Abstract:

    There exist a set of basic to intermediate-acid volcanic rocks in Shibazhan-Hanjiayuan area of Da Hinggan Mountains. In this paper, chronology and petrogeochemistry of trachyandensite, trachyte and rhyolite were discussed. LA-ICP-MS zircon U-Pb dating of trachyandensite yielded an age of 125.2±0.9Ma, revealing that it was a product of the Early Cretaceous volcanism. Geochemical characteristics suggest this set of volcanic rocks should belong to high-K calc-alkaline to shoshonite series. Volcanic rocks possess characteristics of REE composition as follows:∑REE are 121.42×10-6~154.43×10-6, the fractionation between LREE and HREE is obvious with (La/Yb)N ranging from 19.25 to 31.98, the REE patterns show rightward inclining, and most samples present a weak Eu anomaly(δEu=0.45~0.90) except one rhyolite. The trace elements geochemistry is characterized by weak enrichment of LILE (Ba, Sr), accompanied by prominent negative HFSE(Nb, Ta, Ti). Combining previous regional achievements with this study, the authors have reached the conclusion that the Early Cretaceous intermediate-acid volcanic rocks were formed in a post-collision extension environment, which was related to closure of Mongolia-Okhotsk Ocean. Trachyandensite, trachyte and rhyolite were formed by partial melting and fractional crystallization of comagma, which was derived from an enrichment of lithospheric mantle and probably experienced metasomatism of subduction fluid.

  • 海南岛是中国东南陆缘海域中的最大岛屿,位于太平洋板块、印度-澳大利亚板块和欧亚板块三叉结合部位。受露头条件限制,加上遭受多次变质变形,海南岛前寒武系的研究相当薄弱,以致于它们的物质组成、形成时代和沉积大地构造环境未能得到充分制约,争议极大,造成海南岛前寒武纪构造地层划分、大地构造属性,以及在超大陆演化中的位置等方面认识存在显著分歧[1-11]。最近,笔者在海南三亚市吉阳区三郎岭一带的地质调查过程中,对原划归奥陶系干沟村组的一套变质砾岩,采用LA-ICP-MS方法对其碎屑锆石U-Pb同位素进行了测定,旨在确定该套变砾岩的沉积时限,并通过变质砾岩沉积学和U-Pb年龄谱对比研究,探讨其沉积大地构造环境。

    海南岛前寒武系包括中元古界长城系戈枕村组、长城系—蓟县系峨文岭组,新元古界青白口系石碌群、南华系—震旦系石灰顶组[5, 12-13],主要分布于琼西东方抱板—戈枕村和昌江叉河—红林农场、琼南红五、琼中长征农场—乘坡、屯昌中建农场、琼东烟塘等地区,少量见于西沙群岛永兴岛和琼北雷琼裂陷钻孔中(图 1-a)。

    图  1  研究区地质简图(据参考文献[13]修改)
    Figure  1.  Geological map of the study area

    戈枕村组和峨文岭组属于海南岛的基底地层,由于后期受到多期次的变质变形和构造改造作用,总体呈“残留体状”产出。戈枕村组为一套经过混合岩化作用改造的深变质岩,以混合岩和片麻岩组合为特征,年龄限于1430~1800 Ma之间[7, 10, 14-16];峨文岭组整合于戈枕村组之上,以云母石英片岩、石英云母片岩、石英岩为主,夹石墨矿层,年龄限于1300~1450 Ma之间[10-11, 13, 16]

    海南岛新元古界为一套浅变质岩系,自下而上分为石碌群和石灰顶组2套含铁岩系。石碌群主要由绢云石英片岩、石英绢云片岩、结晶灰岩、白云岩夹石英岩、凝灰岩、富铁矿层组成,为一套高-低绿片岩相浅变质岩,产孢粉、宏观藻类化石Chuaria circlaris Walcott,Shouhsienia shouhsienensis Xing,Tawuia dalensis Hofmann,T.sinansis Duan等[17]。许德如等[18-19]利用锆石SHRIMP U-Pb定年,推断石碌群沉积上限年龄约为960 Ma、下限年龄约为1300 Ma。Wang等[9]获得石碌群最上部层位中碎屑锆石2000~900 Ma的年龄谱,存在2700 Ma、2500 Ma、1466~1359 Ma、1073 Ma年龄峰值,最小年龄值1073 Ma可以解释为石碌群上部层位沉积的初始时间。石灰顶组以石英砂岩、石英岩为主,夹泥岩、硅质岩、赤铁矿粉砂岩,为一套未变质的陆源碎屑沉积。Li等[20]采用SHRIMP锆石U-Pb法在石灰顶组中获得了大量1200~2660 Ma的碎屑锆石年龄,与下伏石碌群碎屑锆石年龄一致。Wang等[9]通过碎屑锆石限定石灰顶组沉积不早于1070~970 Ma。石碌群未见底,与下伏地层断层接触,与上覆石灰顶组为角度不整合接触,石灰顶组未见顶,与上履下古生界接触关系不清。

    本次调查的变质砾岩出露于三亚市吉阳区三郎岭村一带,出露面积约4 km2,前人将其归属奥陶系干沟村组,与奥陶系尖岭组接触关系不清,推测为断层接触,遭三叠纪二长花岗岩侵入(图 1-b)。变质砾岩野外露头上呈灰白色厚层-块状,产状变化较大(图版Ⅰ-a);砾径0.5~25 cm,以2~10 cm为主;砾石分选性较好,以硅质砾石占优势(图版Ⅰ-c),另有少量片麻岩、片岩砾石(图版Ⅰ-b);砾石磨圆度中等,呈次棱角状-次圆状,长短轴比例1:1~2.5:1;颗粒支撑,硅质胶结(图版Ⅰ-bc)。岩石薄片中,部分石英呈次圆-次棱角状,重结晶明显,但碎屑外形仍保留,另一部分呈显微变晶粒状;粘土矿物重结晶形成绢云母,显微鳞片状,镶嵌于石英颗粒间,部分绢云母呈弱定向排列(图版Ⅰ-de)。

      图版Ⅰ 
    a.块状产出的变质砾岩;b.以硅质砾石为主,含少量片麻岩、片岩砾石的砾岩;c.几乎全部为硅质砾石的砾岩;d、e.重结晶石英颗粒镜下特征(地质锤柄长28 cm,锤头宽17 cm)
      图版Ⅰ. 

    采样点坐标为北纬18°22′28″、东经109°37′09″,岩性为变质中粗砾岩(图 1-b),编号SL-1Y。锆石单矿物分选工作由河北省廊坊市宇能岩石矿物分选技术服务有限公司完成,样品初碎后尽量选择砾径小、杂基多的碎块进行细碎分选。锆石阴极发光(CL)图像在北京锆石科技领航有限公司拍摄完成。锆石U-Pb定年分析在湖北地质实验研究所进行,测试仪器为准分子激光剥蚀系统193 nm GeoLas 2005和电感耦合等离子体质谱仪Agilent 7500a,激光剥蚀束斑直径为32 μm,采用标准锆石91500为外标进行同位素分馏校正。元素含量采用美国国家标准物质局研制的人工合成硅酸盐玻璃NIST 610为外标,29Si为内标元素进行校正。数据处理采用软件ICP MS DataCal(ver 8.3)完成,年龄计算及谐和图的绘制采用Isoplot 2.7软件完成。在讨论中,因206Pb/238U年龄均大于1 Ga,采用 207Pb/206Pb年龄,谐和度大于95%的数据参与讨论。

    样品中所分选出的锆石主要呈无色或浅黄色自形、半自形晶体,部分受到破碎作用晶型不完整。形态上多呈短柱状-柱状、少数呈椭圆状,粒径一般为50~100 μm,长宽比为1:1~2:1。多数锆石存在一定程度的磨圆,呈现出碎屑锆石的形貌特征。锆石CL图像呈灰色、灰白色和白色,亮度强弱不等,可能反映不同锆石颗粒间Th、U等元素含量差异。锆石内部结构较简单,多具有明显的振荡环带,显示岩浆锆石特征,少部分锆石具有残留核,个别锆石具薄的变质亮边或溶蚀边(图 2)。

    图  2  变质砾岩代表性锆石阴极发光(CL)图像及其U-Pb年龄
    Figure  2.  Typical CL images and U-Pb ages of zircons from metaconglomerate

    对样品SL-1Y的70粒锆石进行年龄测试,其中谐和度大于95%的有65粒,其Th/U值介于0.12~0.75之间,结合CL图像,表明这些锆石多为岩浆成因(表 1)。其谐和锆石的年龄组成大致分为3组,由老至新依次为2691~2444 Ma(4粒)、1838~1632 Ma(48粒)、1540~1350 Ma(13粒),存在约1699 Ma和约1440 Ma两个主要峰值,以及约2461 Ma的次要峰值(表 1图 3)。结合前人的研究,笔者认为,约1699 Ma的峰值可能记录了Columbia超大陆裂解早期的构造热事件,而约1440 Ma的峰值可能记录了哥伦比亚超大陆裂解后期的构造热事件[7-9, 11, 16]。2691~2461 Ma年龄表明海南岛也许存在新太古代古老结晶基底[3, 16, 21-23]。本次获得的最年轻锆石年龄值为1350 Ma,且未出现海南岛碎屑锆石研究中常见的1250~1100 Ma和1000~900 Ma年龄值[9-11, 18, 21, 24-25],认为该套变质砾岩的沉积时限应为1350~1250 Ma(图 4)。

    表  1  海南三亚三郎岭地区变质砾岩LA-ICP-MS锆石U-Th-Pb分析结果
    Table  1.  LA-ICP-MS zircon U-Th-Pb isotope data of metaconglomerate in Sanlangling area, Sanya city, Hainan
    测点 含量/10-6 Th/U 同位素比值 同位素年龄/Ma 谐和度
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    01 272.8 150.7 665.7 0.226 0.095 0.002 3.159 0.096 0.249 0.009 1521 45 1447 23 1435 47 99%
    02 82.1 60.6 107.7 0.563 0.089 0.002 3.032 0.083 0.247 0.004 1398 32 1416 21 1426 21 99%
    03 96.7 48.3 150.7 0.321 0.105 0.002 4.583 0.141 0.314 0.006 1721 25 1746 26 1762 27 99%
    04 176.5 104.6 262.8 0.398 0.108 0.002 4.161 0.164 0.279 0.008 1766 40 1666 32 1588 38 95%
    05 91.2 66.5 130.9 0.508 0.087 0.002 2.976 0.113 0.248 0.004 1367 44 1401 29 1430 23 98%
    06 92.0 58.9 110.6 0.533 0.101 0.002 3.903 0.163 0.281 0.006 1635 45 1614 34 1598 30 98%
    07 374.1 271.0 897.7 0.302 0.087 0.002 2.592 0.104 0.216 0.004 1350 41 1299 29 1262 22 97%
    08 80.1 46.2 119.3 0.388 0.100 0.002 4.072 0.138 0.293 0.005 1632 38 1649 28 1658 25 99%
    09 209.7 76.9 105.4 0.730 0.184 0.003 12.308 0.356 0.484 0.008 2691 31 2628 27 2544 34 96%
    10 168.2 82.8 321.7 0.257 0.109 0.002 4.516 0.107 0.300 0.005 1787 24 1734 20 1691 24 97%
    11 62.9 32.6 99.7 0.327 0.104 0.002 4.388 0.098 0.305 0.005 1698 23 1710 19 1717 25 99%
    12 146.5 53.6 436.5 0.123 0.109 0.001 4.730 0.096 0.312 0.005 1791 26 1773 17 1752 25 98%
    13 171.1 90.1 309.7 0.291 0.106 0.001 4.331 0.063 0.296 0.004 1800 25 1699 12 1671 22 98%
    14 207.9 96.2 446.5 0.215 0.107 0.001 4.474 0.074 0.303 0.005 1750 20 1726 14 1708 26 98%
    15 87.1 52.3 104.6 0.500 0.112 0.001 4.727 0.093 0.305 0.007 1839 22 1772 16 1718 33 96%
    16 81.0 46.2 117.5 0.393 0.106 0.001 4.576 0.077 0.313 0.005 1728 22 1745 14 1758 23 99%
    17 271.7 177.3 430.0 0.412 0.108 0.001 4.640 0.096 0.313 0.007 1765 23 1757 17 1755 36 99%
    18 158.5 109.0 290.5 0.375 0.095 0.001 3.426 0.064 0.262 0.005 1520 22 1510 15 1502 24 99%
    19 84.2 59.8 149.9 0.399 0.091 0.001 3.225 0.063 0.256 0.004 1452 25 1463 15 1468 21 99%
    20 108.1 81.1 151.0 0.537 0.092 0.001 3.121 0.053 0.245 0.004 1473 29 1438 13 1414 19 98%
    21 177.9 103.1 216.6 0.476 0.109 0.001 4.868 0.071 0.324 0.005 1780 26 1797 12 1811 23 99%
    22 80.1 39.4 173.2 0.228 0.104 0.001 4.386 0.065 0.306 0.005 1700 20 1710 12 1719 24 99%
    23 139.2 48.6 142.5 0.341 0.159 0.002 10.281 0.163 0.468 0.007 2444 18 2460 15 2477 30 99%
    24 101.5 35.7 276.0 0.129 0.102 0.001 4.523 0.069 0.321 0.005 1665 22 1735 13 1793 22 96%
    25 236.1 172.9 428.6 0.403 0.089 0.001 3.103 0.049 0.252 0.005 1414 24 1433 12 1451 24 98%
    26 88.4 44.0 153.5 0.287 0.103 0.001 4.628 0.068 0.327 0.006 1676 22 1754 12 1824 27 96%
    27 124.4 65.6 218.6 0.300 0.104 0.001 4.351 0.075 0.303 0.006 1703 24 1703 14 1707 28 99%
    28 146.6 102.4 330.6 0.310 0.087 0.001 2.876 0.052 0.240 0.005 1361 8 1376 14 1388 24 99%
    29 184.2 115.1 253.0 0.455 0.102 0.001 4.164 0.069 0.296 0.004 1661 24 1667 14 1670 22 99%
    30 180.8 98.0 322.5 0.304 0.103 0.001 4.236 0.068 0.297 0.005 1683 22 1681 13 1675 24 99%
    31 141.7 49.3 410.4 0.120 0.103 0.001 4.300 0.067 0.301 0.004 1687 22 1693 13 1697 22 99%
    32 143.0 108.5 215.2 0.504 0.089 0.001 3.049 0.053 0.248 0.004 1406 25 1420 13 1429 21 99%
    33 185.3 107.5 256.6 0.419 0.102 0.001 4.273 0.062 0.305 0.004 1655 24 1688 12 1716 22 98%
    34 74.5 32.4 183.2 0.177 0.101 0.001 4.186 0.063 0.302 0.004 1635 19 1671 12 1699 21 98%
    35 470.3 214.8 856.6 0.251 0.108 0.001 4.920 0.071 0.332 0.005 1761 19 1806 12 1848 26 97%
    36 97.0 46.8 199.8 0.234 0.106 0.001 4.432 0.068 0.305 0.005 1727 24 1718 13 1716 22 99%
    37 322.7 178.4 453.0 0.394 0.111 0.001 5.147 0.084 0.335 0.005 1833 20 1844 14 1863 24 98%
    38 114.4 49.1 280.5 0.175 0.104 0.001 4.285 0.062 0.300 0.004 1700 16 1690 12 1693 20 99%
    39 94.9 43.0 249.6 0.172 0.105 0.001 3.986 0.060 0.276 0.004 1706 19 1631 12 1572 18 96%
    40 232.2 125.3 516.4 0.243 0.107 0.001 3.980 0.072 0.269 0.004 1754 22 1630 15 1535 20 93%
    41 86.3 50.8 93.5 0.544 0.108 0.001 4.798 0.076 0.321 0.004 1770 24 1785 13 1796 19 99%
    42 96.9 48.1 199.1 0.241 0.108 0.003 4.479 0.104 0.302 0.005 1766 46 1727 19 1703 25 98%
    43 393.1 345.2 517.8 0.667 0.091 0.001 2.871 0.042 0.228 0.003 1457 20 1374 11 1323 17 96%
    44 222.9 136.8 373.2 0.367 0.111 0.002 4.123 0.075 0.270 0.004 1814 29 1659 15 1539 19 92%
    45 368.6 119.9 412.7 0.290 0.160 0.002 10.179 0.126 0.463 0.006 2454 17 2451 11 2453 27 99%
    46 84.1 39.0 170.5 0.229 0.106 0.001 4.707 0.070 0.322 0.004 1729 20 1768 12 1801 21 98%
    47 292.8 263.6 297.2 0.887 0.089 0.001 2.852 0.042 0.233 0.004 1411 30 1369 11 1353 19 98%
    48 102.4 48.2 200.0 0.241 0.107 0.001 4.783 0.068 0.324 0.004 1747 19 1782 12 1809 21 98%
    49 109.5 51.1 224.9 0.227 0.106 0.002 4.669 0.069 0.328 0.012 1800 34 1762 12 1831 56 96%
    50 136.6 72.3 264.8 0.273 0.103 0.001 4.397 0.059 0.308 0.004 1684 19 1712 11 1733 20 98%
    51 169.9 88.3 312.5 0.283 0.104 0.001 4.622 0.065 0.321 0.005 1703 17 1753 12 1795 23 97%
    52 103.9 71.4 188.5 0.379 0.090 0.001 3.184 0.050 0.257 0.004 1433 18 1453 12 1474 21 98%
    53 95.3 42.4 221.8 0.191 0.105 0.001 4.479 0.059 0.311 0.004 1706 20 1727 11 1746 21 98%
    54 181.8 86.9 391.3 0.222 0.107 0.001 4.630 0.064 0.316 0.005 1746 23 1755 12 1768 25 99%
    55 276.9 96.6 269.3 0.359 0.161 0.002 10.667 0.172 0.480 0.008 2468 18 2495 15 2528 35 98%
    56 95.8 56.1 161.3 0.348 0.105 0.002 4.338 0.103 0.300 0.004 1706 37 1701 20 1693 20 99%
    57 273.1 159.1 341.9 0.465 0.108 0.001 4.807 0.058 0.322 0.004 1769 18 1786 10 1799 19 99%
    58 152.8 75.2 251.3 0.299 0.107 0.001 4.844 0.074 0.327 0.005 1767 20 1793 13 1824 25 98%
    59 126.1 74.4 164.6 0.452 0.105 0.001 4.565 0.066 0.316 0.005 1710 21 1743 12 1771 23 98%
    60 165.3 85.9 272.2 0.315 0.104 0.001 4.609 0.061 0.321 0.005 1698 20 1751 11 1795 22 97%
    61 179.8 83.9 405.5 0.207 0.102 0.001 4.309 0.066 0.306 0.004 1661 19 1695 13 1719 22 98%
    62 215.2 100.7 444.1 0.227 0.107 0.001 4.648 0.064 0.316 0.004 1743 19 1758 12 1769 20 99%
    63 285.6 161.0 474.9 0.339 0.104 0.001 4.274 0.055 0.299 0.004 1689 17 1688 11 1686 19 99%
    64 149.9 86.4 226.8 0.381 0.103 0.001 4.376 0.054 0.310 0.004 1673 19 1708 10 1739 21 98%
    65 106.9 76.8 102.0 0.753 0.096 0.001 3.754 0.055 0.285 0.003 1540 22 1583 12 1614 17 98%
    下载: 导出CSV 
    | 显示表格
    图  3  三亚三郎岭地区变质砾岩碎屑锆石U-Pb年龄谐和图和直方图
    Figure  3.  Detrial zircons U-Pb concordia diagrams and histogram of metaconglomerate in Shanlangling area, Sanya
    图  4  海南岛前寒武纪碎屑锆石U-Pb年龄谱
    a—石灰顶组[9];b—石碌群[9];c—变质砾岩;d—峨文岭组[11];e—戈枕村组[11]
    Figure  4.  U-Pb age spectra for Precambrian detrital zircons in Hainan Island

    海南岛已发现的中元古界分为下部戈枕村组和上部峨文岭组。戈枕村组岩性以混合岩和片麻岩为主,原岩以中酸性火山岩为主,夹杂砂岩类、泥岩等;峨文岭组以云母石英片岩、石英云母片岩、石英岩为主,夹石墨矿层,原岩为泥岩、砂质泥岩、砂岩,夹火山岩或炭质泥岩等[13, 26]。有关海南岛中元古代构造背景存在2种观点:Zhang等[27]基于变基性岩和同时代A型花岗岩的出露,认为抱板杂岩可能形成于裂谷环境;与之相反,许德如等[26]依据区域上中元古代长英质岩石的S型花岗岩属性,认为海南岛中元古代为活动大陆边缘环境。本次新发现的变质砾岩单层厚、砾石大小混杂、少量硅质泥砂杂基填隙、成分成熟度高、结构成熟度中等,指示物源区岩性相对单一、高差大、剥蚀快,表现为裂谷盆地高密度的碎屑流沉积物特征,此类沉积常发育在裂谷带陡倾一侧砾质洪积扇或浊积扇内[28-30],是海南岛中元古代一种新的沉积建造类型。该套裂谷相关沉积建造的发现,为探讨海南岛中元古代构造背景提供了新的约束。结合海南岛缺乏中元古代同期俯冲-碰撞相关的岩浆-变质记录(如高镁安山岩、埃达克岩、钙碱性玄武岩等),笔者认为,海南岛中元古代可能为裂谷相关的伸展构造背景,而不支持与俯冲相关的挤压环境。

    从变质砾岩碎屑锆石年龄谱与戈枕村组、峨文岭组、石碌群、石灰项组碎屑锆石年龄谱对比结果(图 4)看,戈枕村组、峨文岭组与变质砾岩具有相似的年龄区间(1400~1580 Ma、1700~1800 Ma、2400~2700 Ma)和主要峰值;石灰顶组和石碌群除与戈枕村组、峨文岭组及本次新解体出来的变质砾岩具有3个相似的年龄区间和主要峰值外,还具有900~1150 Ma年龄区间和970 Ma、1070 Ma峰值。这些年龄谱特征,结合变质砾岩中的砾石组成以硅质砾石占绝对优势,仅见少量片麻岩和片岩砾石,表明该套变质砾岩物源可能为峨文岭组和同时期的岩浆岩,以及更古老的基底物质,这个古老基底也是戈枕村组、峨文岭组的物源区。而石灰顶组和石碌群中的碎屑锆石可能来自古老基底、戈枕村组与峨文岭组再循环、中元古代晚期的新生岩浆岩。值得注意的是,变质砾岩的沉积时限稍晚于峨文岭组,说明峨文岭组成岩后经构造运动变质变形,快速出露至地表并遭风化侵蚀,成为变质砾岩的物源区,这一复杂的过程发生在1440~1350 Ma相对短的时间内,说明1440~1350 Ma期间海南岛发生了强烈的构造活动[7-8, 25],该期地质事件可能与Columbia超大陆的裂解相关。需要指出的是,变质砾岩中1699 Ma、1440 Ma和2461 Ma的年龄峰值与劳伦大陆西部的Belt-Purcell超群下部沉积地层中的碎屑锆石年龄组成接近[11, 31],这种相似性可能暗示了在中元古代海南岛南部与劳伦西部靠近。

    (1) 海南三亚三郎岭地区变质砾岩锆石年龄集中分布在2691~2444 Ma,1838~1632 Ma,1540~1350 Ma三个区间,最年轻锆石年龄值为1350 Ma,限定该变质砾岩沉积时限为1350~1250 Ma,属中元古代,应该从原归属的奥陶系中解体出来。该套变质砾岩不同于海南岛已报道的中元古界戈枕村组片麻岩、混合岩和峨文岭组石英片岩、石英岩等岩石类型,是一种新的中元古代沉积建造类型。

    (2) 该套变质砾岩具有与戈枕村组、峨文岭组相似的年龄区间和主要峰值,而缺乏石灰顶组和石碌群具有的900~1150 Ma年龄区间和970 Ma、1070 Ma峰值,结合其砾石成分单一、大小混杂、颗粒支撑,成分成熟度高、结构成熟度一般等岩石学、沉积学特征,推断该套变质砾岩为1350~1250 Ma Columbia超大陆裂解晚期的裂谷建造。

    (3) 变质砾岩与劳伦大陆西部的Belt-Purcell超群下部沉积地层具有相似的碎屑锆石年龄组成和年龄谱特征,暗示中元古代Columbia超大陆中,海南岛与劳伦西部靠近。

    致谢: 在成文过程中桂林理工大学覃小锋教授给与了帮助,审稿专家为本文提出了详细的修改意见,帮助作者提高了本文的论证,在此一并表示衷心的感谢。
  • 图  1   东北地区构造分区及大兴安岭北部地质图(a,据参考文献[2, 6]修改;b,据参考文献[10, 17]修改)

    1—新生代沉积盆地;2—中生代地层;3—晚古生代地层;4—前寒武纪地层;5—燕山期花岗岩;6—印支期花岗岩;7—华力西期花岗岩;8—中生代陆相火山岩;9—地质界线;10—区域断裂;11—国界线;F1—塔源-漠河断裂;F2—得尔布干断裂;F3—头道桥-鄂伦春断裂;F4—二连-贺根山-黑河断裂;F5—嫩江断裂;F6—塔溪-林口断裂

    Figure  1.   Tectonic subdivision of Northeast China and geological map of North Da Hinggan Mountains

    图  2   十八站—韩家园地区火山岩显微照片

    Pl—斜长石;Bt—黑云母;Hb—角闪石;Qtz—石英

    Figure  2.   Microphotographs of the volcanic rocks from Shibazhan-Hanjiayan area

    图  3   十八站—韩家园地区粗面安山岩锆石阴极发光(CL)照片及U-Pb年龄谐和图

    Figure  3.   CL images of zircons and zircon U-Pb concordia diagram of trachyandensite from Shibazhan-Hanjiayan area

    图  4   十八站—韩家园地区火山岩Harker图解

    Figure  4.   Harker diagrams of volcanic rocks from Shibazhan-Hanjiayan area

    图  5   十八站—韩家园地区火山岩TAS (a)[23]和SiO2-K2O (b)[24]判别图解

    Figure  5.   TAS (a) and SiO2-K2O (b) diagrams of volcanic rocks from Shibazhan-Hanjiayan area

    图  6   十八站—韩家园地区火山岩球粒陨石标准化稀土元素配分图

    (球粒陨石标准化数据据参考文献[25])

    Figure  6.   Chondrite-normalized REE patterns of volcanic rocks from Shibazhan-Hanjiayan area

    图  7   十八站—韩家园地区火山岩原始地幔标准化微量元素蛛网图

    (原始地幔值据参考文献[25])

    Figure  7.   Primitive mantle-normalized trace elements patterns of volcanic rocks from Shibazhan-Hanjiayan area

    图  8   十八站—韩家园地区火山岩岩浆演化判别图解

    (a~d分别据参考文献[29][53][54][55])

    Figure  8.   Magmatic evolution diagrams of volcanic rocks from Shibazhan-Hanjiayan area

    图  9   十八站—韩家园地区火山岩构造环境判别图解

    (a~c分别据参考文献[80][81][82])

    Figure  9.   Tectonic setting diagrams of volcanic rocks from Shibazhan-Hanjiayan area

    表  1   十八站—韩家园地区粗面安山岩锆石U-Th-Pb同位素数据及测年结果

    Table  1   U-Th-Pb isotopic compositions and dating results of zircons from Shibazhan-Hanjiayan area

    测点号 232Th 238U Th/U 同位素原子比率 同位素年龄/Ma
    10-6 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    TW1-01 114 139 0.82 0.0491 0.0039 0.1298 0.0101 0.0192 0.0005 152 132 124 9 122 3
    TW1-02 114 121 0.94 0.0508 0.0028 0.1397 0.0075 0.0199 0.0004 231 90 133 7 127 2
    TW1-03 285 243 1.17 0.0517 0.0022 0.1384 0.0057 0.0194 0.0003 273 64 132 5 124 2
    TW1-04 161 147 1.10 0.0497 0.0024 0.1365 0.0064 0.0199 0.0004 181 75 130 6 127 2
    TW1-05 208 189 1.10 0.0509 0.0026 0.1395 0.0069 0.0199 0.0004 235 80 133 6 127 2
    TW1-06 223 180 1.24 0.0502 0.0031 0.1366 0.0084 0.0197 0.0004 204 107 130 7 126 2
    TW1-07 850 416 2.04 0.0505 0.0052 0.1350 0.0137 0.0194 0.0004 219 236 129 12 124 2
    TW1-08 184 176 1.05 0.0493 0.0024 0.1353 0.0064 0.0199 0.0003 164 78 129 6 127 2
    TW1-09 126 123 1.02 0.0493 0.0032 0.1357 0.0086 0.0200 0.0004 162 106 129 8 127 3
    TW1-10 224 191 1.17 0.0486 0.0022 0.1298 0.0057 0.0194 0.0003 126 70 124 5 124 2
    TW1-11 232 202 1.15 0.0503 0.0030 0.1394 0.0081 0.0201 0.0004 207 96 132 7 128 3
    TW1-12 354 222 1.60 0.0529 0.0035 0.1410 0.0091 0.0193 0.0004 324 113 134 8 123 2
    TW1-13 151 151 1.00 0.0488 0.0031 0.1324 0.0081 0.0197 0.0004 137 102 126 7 126 2
    TW1-14 125 125 1.00 0.0499 0.0036 0.1347 0.0096 0.0196 0.0004 190 121 128 9 125 3
    TW1-15 274 281 0.97 0.0488 0.0038 0.1316 0.0102 0.0196 0.0004 136 141 126 9 125 2
    TW1-16 267 193 1.38 0.0495 0.0027 0.1367 0.0073 0.0200 0.0004 173 88 130 7 128 2
    TW1-17 287 205 1.40 0.0488 0.0027 0.1301 0.0070 0.0193 0.0004 140 87 124 6 123 2
    TW1-18 103 107 0.96 0.0488 0.0097 0.1243 0.0243 0.0185 0.0006 140 355 119 22 118 4
    TW1-19 119 81 1.46 0.0470 0.0068 0.1203 0.0172 0.0186 0.0005 50 270 115 16 118 3
    TW1-20 336 218 1.54 0.0486 0.0026 0.1295 0.0069 0.0194 0.0004 126 86 124 6 124 2
    TW1-21 171 157 1.09 0.0502 0.0058 0.1364 0.0157 0.0197 0.0005 204 216 130 14 126 3
    TW1-22 170 158 1.08 0.0486 0.0038 0.1307 0.0100 0.0195 0.0004 129 130 125 9 124 3
    TW1-23 133 147 0.90 0.0486 0.0060 0.1357 0.0167 0.0203 0.0005 126 229 129 15 129 3
    TW1-24 194 207 0.94 0.0486 0.0033 0.1309 0.0087 0.0195 0.0004 129 113 125 8 125 2
    TW1-25 42 60 0.70 0.0487 0.0092 0.1328 0.0248 0.0198 0.0007 133 297 127 22 126 4
    下载: 导出CSV

    表  2   十八站—韩家园地区火山岩主量、微量和稀土元素组成

    Table  2   Major, trace and rare earth elements compositions of volcanic rocks from Shibazhan-Hanjiayan area

    样品编号岩性名称 SXT1粗面安山岩 SXT24
    粗面岩
    SXT26
    流纹岩
    SXT11
    流纹岩
    SXT17
    流纹岩
    SiO2 60.53 63.66 72.22 69.4 71.69
    TiO2 0.61 0.53 0.16 0.34 0.04
    Al2O3 17.03 15.36 12.66 15.5 13.6
    TFe2O3 4.66 4.19 0.73 2.59 0.3
    FeO 1.36 1.22 0.58 1.3 0.26
    CaO 4.01 1.86 2 1.75 1.08
    MgO 2.06 2.39 0.52 0.81 0.24
    MnO 0.07 0.07 0.01 0.05 0.01
    K2O 3.64 3.7 5.03 3.64 6.15
    Na2O 4.03 4.94 0.87 4.28 2.93
    P2O5 0.22 0.17 0.03 0.15 0.02
    烧失量 3.12 2.61 5.75 1.48 3.91
    总计 101.34 100.69 100.55 101.3 100.23
    Mg# 72.97 77.74 61.33 52.53 62.2
    σ 3.21 3.5 1.17 2.35 2.83
    DI 69.44 79.29 83.94 84.62 92.94
    SI 14.57 15.92 7.26 7.21 2.5
    Li 17.6 19.4 16.1 17.9 11.1
    Be 1.64 1.95 1.33 2.24 1.76
    Nb 8.15 7.7 8.16 26.8 32.3
    Sc 8.78 7.78 1.44 3.63 13.7
    Zr 158 126 107 99 199
    Th 5.93 7.56 11.3 9.21 2.32
    Sr 601 704 3271 657 1054
    Ba 1440 1163 1517 1298 827
    V 81.7 66.4 13.1 34.6 128
    Co 12.7 11.6 0.26 5.17 26.8
    Cr 41.5 45 7.99 38.8 151
    Ni 16.1 20.3 2.48 16.4 63.8
    Pb 19.6 18.6 27.3 18.8 27.5
    Zn 75.2 59.3 18.7 56.2 105
    W 0.432 0.423 1.01 0.564 0.242
    Mo 0.952 0.409 0.29 0.857 0.924
    Rb 61.8 88.7 119 99.8 36
    Hf 4.35 3.77 3.28 3.45 4.76
    Cs 0.538 2.05 7.66 1.94 0.455
    Ga 18.7 18.8 13.6 19.7 22
    U 1.46 1.45 2.86 2.17 0.59
    Ta 0.59 0.546 0.636 0.824 0.371
    La 35.7 30.4 34.8 36.6 33.8
    Ce 62.8 54.9 53.7 65.7 63.7
    Pr 7.61 5.93 5.56 7.46 8.04
    Nd 27.9 21.3 18.2 26.8 32.3
    Sm 4.52 3.71 2.86 3.81 5.58
    Eu 1.05 0.852 0.363 0.986 1.39
    Gd 3.5 2.74 1.86 2.66 3.88
    Tb 0.506 0.395 0.297 0.391 0.551
    Dy 2.45 1.87 1.52 1.76 2.42
    Ho 0.461 0.342 0.294 0.293 0.429
    Er 1.25 0.917 0.776 0.698 1.09
    Tm 0.205 0.139 0.123 0.111 0.165
    Yb 1.33 0.938 0.926 0.821 0.943
    Lu 0.198 0.137 0.137 0.113 0.142
    Y 13.2 9.08 8.44 8.28 11.5
    ∑REE 149.48 124.57 121.42 148.2 154.43
    δEu 0.78 0.78 0.45 0.9 0.87
    (La/Yb)N 19.25 23.25 26.96 31.98 25.71
    注:主量元素含量单位为%,微量和稀土元素含量为10-6
    下载: 导出CSV
  • 李锦轶, 莫申国, 和政军, 等.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J].地学前缘, 2004, 11(3):157-168. doi: 10.3321/j.issn:1005-2321.2004.03.017

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014

    Tang J, Xu W L, Wang F, et al. Geochronology and geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China:petrogenesis and implications for the breakup of the Rodinia supercontinent[J]. Precambrian Research, 2013, 224:597-611. doi: 10.1016/j.precamres.2012.10.019

    Wu F Y, Jahn B M, Wilde S A, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1/2):89-113. http://www.sciencedirect.com/science/article/pii/S0040195100001797

    佘宏全, 李进文, 向安平, 等.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J].岩石学报, 2012. 28(2):571-594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018
    许文良, 王枫, 裴福萍, 等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报, 2013, 29(2):339-353. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201302001
    孟凡超, 刘嘉麒, 崔岩, 等.中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J].岩石学报, 2014, 30(12):3569-3586. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201412008.htm
    张兴洲, 郭冶, 曾振, 等.东北地区中-新生代盆地群形成演化的动力学背景[J].地学前缘, 2015, 22(3):88-98. http://d.old.wanfangdata.com.cn/Conference/9142062
    赵一鸣, 张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社, 1997:10-318.
    武广, 王国瑞, 刘军, 等.大兴安岭北部主要金属矿床成矿系列和区域矿床成矿谱系[J].矿床地质, 2014, 33(6):1127-1150. doi: 10.3969/j.issn.0258-7106.2014.06.001
    吕斌, 王涛, 童英, 等.中亚造山带东部岩浆热液矿床时空分布特征及其构造背景[J].吉林大学学报(地球科学版), 2017, 47(2):305-343. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201702001
    马玉波, 邢树文, 肖克炎, 等.大兴安岭Cu-Mo-Ag多金属成矿带主要地质成矿特征及潜力分析简[J].地质学报, 2016(7):1316-1333. doi: 10.3969/j.issn.0001-5717.2016.07.005
    张兴洲, 马玉霞, 迟效国, 等.东北及内蒙古东部地区显生宙构造演化的有关问题[J].吉林大学学报(地球科学版), 2012, 42(5):1269-1285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204276069
    周长勇, 葛文春, 吴福元.大兴安岭北段塔河辉长岩的岩石学特征及其构造意义[J].吉林大学学报(地球科学版), 2005, 35(2):143-149. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CCDZ200502001&dbname=CJFD&dbcode=CJFQ
    张玉涛, 张连昌, 英基丰, 等.大兴安岭北段塔河地区早白垩世火山岩地球化学及源区特征[J].岩石学报, 2007, 11:149-160. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200711012
    李向文, 杨言辰, 王献忠, 等.黑龙江省塔河县宝兴沟金矿床地质特征及成矿构造环境[J].吉林大学学报(地球科学版), 2012, 42(6):1700-1710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205340328
    曾国平, 姚书振, 何谋春, 等.黑龙江省呼玛县天望台山金矿床成矿流体特征与成矿机制研究[J].矿床地质, 2016, 35(1):85-102. http://d.old.wanfangdata.com.cn/Periodical/kcdz201601006

    Wu G, Chen Y, Chen Y, et al. Zircon U-Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications[J]. Journal of Asian Earth Sciences, 2012, 49:214-233. doi: 10.1016/j.jseaes.2011.11.023

    朱志敏, 赵振华, 熊小林, 等.西天山特克斯晚古生代辉长岩岩石地球化学[J].岩石矿物学杂志, 2010, 29(6):675-690. doi: 10.3969/j.issn.1000-6524.2010.06.006
    孙金凤, 杨进辉, 吴福元, 等.榍石原位微区LA-ICPMSU-Pb年龄测定[J].科学通报, 2012, 57(18):1603-1615. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201218002.htm

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=babd721ac13e2675d9485b52683be64c

    刘瑞萍, 顾雪祥, 章永梅, 等.黑龙江东安金矿床赋矿岩浆岩锆石U-Pb年代学及岩石地球化学特征[J].岩石学报, 2015, 31(5):1391-1408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201505015

    Le Bas M J, Le Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986, 27(3):745-750. doi: 10.1093/petrology/27.3.745

    Peccerillo R, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1):63-81. doi: 10.1007/BF00384745

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300. doi: 10.1016/0012-821X(73)90129-5

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20:325-343. doi: 10.1016/0009-2541(77)90057-2

    Ionov D A, Hofmann A W. Nb-Ta-rich mantle amphiboles and micas:Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3/4):341-356. http://www.sciencedirect.com/science/article/pii/0012821X9500037D

    Kepppler H. Constraints from partitioning experin ents on the Composition of subductoin-zone fluids[J]. Nature, 1996, 380:237-240. doi: 10.1038/380237a0

    汪岩, 付俊彧, 那福超, 等.内蒙古扎赉特旗辉长岩-闪长岩地球化学特征和LA-ICP-MS锆石U-Pb年龄[J].地质通报, 2013, 32(10):1525-1535. doi: 10.3969/j.issn.1671-2552.2013.10.004
    田亚洲, 杨经绥, 刘飞, 等.新疆布鲁斯台辉长岩岩石学特征及对南天山洋俯冲时限的制约[J].岩石学报, 2014, 8:2363-2380. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408018

    Ringwood A E. Slab-mantle interactions:3. Petrogenesis of intraplate magmas and structure of the upper mantle[J]. Chemical Geology, 1990, 82:187-207. doi: 10.1016/0009-2541(90)90081-H

    张连昌, 陈志广, 周新华, 等.大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J].岩石学报, 2007, 11:2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013
    张贵山, 温汉捷, 李石磊, 等.闽北角闪辉长岩的地球化学特征及其地球动力学意义[J].矿物学报, 2009, 29(2):243-252. doi: 10.3321/j.issn:1000-4734.2009.02.018
    赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学, 2007, 31(1):92-103. doi: 10.3969/j.issn.1001-1552.2007.01.011
    程银行, 李敏, 张天福, 等.西伯利亚板块东南缘晚古生代伸展体制新证据:东乌旗角闪辉长岩年代学及地球化学研究[J].地质学报, 2015, 89(2):262-271. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201502005

    Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46(1):95-101. doi: 10.1016/S0024-4937(98)00056-5

    张利, 周炼, 王林森, 等.桐柏北部黄岗侵入杂岩岛弧构造环境的厘定[J].矿物岩石地球化学通报, 2001, 4:245-247. doi: 10.3969/j.issn.1007-2802.2001.04.011
    周长勇, 吴福元, 葛文春, 等.大兴安岭北部塔河堆晶辉长岩体的形成时代, 地球化学特征及其成因[J].岩石学报, 2005, 21(3):763-775. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200503016

    Jochum K P, McDonough W F, Palme H. Compositional constraints on the continental lithospheric mantle[J]. Nature, 1989, 340:548-550. doi: 10.1038/340548a0

    Stolz A J, Jochum K P, Spettel B, et al. Fluid-and melt-related enrichment in the subarc mantle:evidence from Nb/Ta variations in island-arc basalts[J]. Geology, 1996, 24(7):587-590. doi: 10.1130/0091-7613(1996)024<0587:FAMREI>2.3.CO;2

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 1995, 120(3):347-359. http://www.sciencedirect.com/science/article/pii/000925419400145X

    Taylor S R, McLennan S M. The continental crust:its composition and evolution[M]. Oxford:Blackwell, 1985:1-312.

    Huang Y M, Hawkesworth C, Smith I, et al. Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand:implications for mantle enrichment processes[J]. Chemical Geology, 2000, 164(3/4):219-238. http://www.sciencedirect.com/science/article/pii/S000925419900145X

    Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts[J]. Journal of Petrology, 1996, 37(1):45-71. doi: 10.1093/petrology/37.1.45

    李献华, 周汉文.粤西阳春中生代钾玄质侵入岩及其构造意义:Ⅱ.微量元素和Sr-Nd同位素地球[J].地球化学, 2001, 30(1):57-65. http://d.old.wanfangdata.com.cn/Periodical/dqhx200101007
    吴华英, 张连昌, 周新华, 等.大兴安岭中段晚中生代安山岩年代学和地球化学特征及成因分析[J].岩石学报, 2008, 24(6):1339-1352. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806017

    Canning J C, Morrison M A, Gaskarth J W. Geochemistry of late Caledonian minettes from Northern Britain:implications for the Caledonian sub-continental lithospheric mantle[J]. Mineralogical Magazine, 1996, 60(398):221-236. doi: 10.1180/minmag.1996.060.398.15

    Molzahn M, Reisberg L, Wörner G. Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Antarctica:evidence for an enriched subcontinental lithospheric source[J]. Earth and Planetary Science Letters, 1996, 144(3):529-545. http://www.sciencedirect.com/science/article/pii/S0012821X96001781

    Downes H. Formation and modification of the shallow sub-continental lithospheric mantle:a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe[J]. Journal of Petrology, 2001, 42(1):233-250. doi: 10.1093/petrology/42.1.233

    李曙光.大陆俯冲化学地球动力学[C]//郑永飞.化学地球动力学.北京: 科学出版社, 1999: 334-357.

    Brophy J G. La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas:implications for the origin of oceanic plagiogranite[J]. Contributions to Mineralogy and Petrology, 2009, 158(1):99-111. doi: 10.1007/s00410-008-0372-3

    Treuil M, Joron J L. Utilisation des éléments hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques. Exemples de l'Afar et de la dorsale médioatlantique[J]. Boll. Soc. Ital. Mineral. Petrol., 1975, 31:125-174.

    马昌前, 杨坤光, 唐仲华, 等.花岗岩类岩浆动力学——理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社, 1994:38-48.
    赵振华.微量元素地球化学[M].北京:科学出版社, 1997:1-169.

    Langmuir C H, Bender J F, Bence A E, et al. Petrogenesis of basalts from the famous area:Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1977, 36(1):133-156. doi: 10.1016/0012-821X(77)90194-7

    张作衡, 王志良, 毛景文, 等.西天山菁布拉克基性杂岩体的地球化学特征[J].地质学报, 2006, 80(7):1005-1016. doi: 10.3321/j.issn:0001-5717.2006.07.007

    Lassiter J C, DePaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotopic constraints[C]//Mahoney J. Large igneous provinces: Continental, oceanic, and planetary flood volcanism. Geophysical Monography 100. Washington DC: American Geophysical Union Press, 1997: 335-355.

    Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China:chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3):392-402. doi: 10.1016/j.jseaes.2008.07.001

    Tang J, Xu W L, Wang F, et al. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China:Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt[J]. Tectonophysics, 2015, 658:91-110. doi: 10.1016/j.tecto.2015.07.012

    Wang T, Guo L, Zhang L, et al. Timing and evolution of JurassicCretaceous granitoid magmatisms in the Mongol-Okhotsk belt and adjacent areas, NE Asia:Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 2015, 97(B):365-392. http://www.sciencedirect.com/science/article/pii/S1367912014004593

    Zonenshain L P, Kuzmin M I, Natapov L M, et al. Geology of the USSR: A Plate-tectonics Synthesis[M]. Washington DC: . American Geophysical Union, Geodynamics Series, 1990: 1-242.

    Sengor A M C, Natalin B A. Paleotectonics of Asia: fragments of a synthesis[C]//Yin A, Harrison M. The Tectonic Evolution of Asia. London: Cambridge University Press, 1996: 486-640.

    Sorokin A A, Yarmolyuk V V, Kotov A B, et al. Geochronology of Triassic-Jurassic granitoids in the southern frames of MongolOkhotsk fold belt and the problem of early mesozoic granitic formation in the Central and East Asia[J]. Doklady Earth Science, 2004, 399(8):1091-1094.

    Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics, 1999, 306(1):33-56. doi: 10.1016/S0040-1951(99)00042-6

    Tomurtogoo O, Windley B F, Kröner A, et al. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 2005, 162(1):125-134. doi: 10.1144/0016-764903-146

    Kelty T K, Yin A, Dash B, et al. Detrital-zircon geochronology of Paleozoic sedimentary rocks in the Hangay-Hentey basin, northcentral Mongolia:implications for the tectonic evolution of the Mongol-Okhotsk Ocean in central Asia[J]. Tectonophysics, 2008, 451(1/4):290-311. http://www.sciencedirect.com/science/article/pii/S0040195107004258

    Zhao X X, Coe R S, Zhou Y X, et al. New paleomagnetic results from North China:collision and suturing with Siberia and Kazakastan[J]. Tectonophysics, 1990, 181:43-81. doi: 10.1016/0040-1951(90)90008-V

    Kravchinsky V A, Cogné J P, Harbert W P, et al. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 2002, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x

    Metelkin D V, Vernikovsky V A, Kazansky A Y, et al. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 2010, 18(2):400-419. http://www.sciencedirect.com/science/article/pii/S1342937X0900224X

    Sorokin A A, Sorokin A P, Ponomarchuk V A, et al. The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan-Ogodzha volcanoplutonic belt (Amur region)[J]. Russian Geology and Geophysics, 2010, 51(4):369-379. doi: 10.1016/j.rgg.2010.03.004

    Van der Voo R, Spakman W, Bijwaard H. Mesozoic subducted slabs under Siberia[J]. Nature, 1999, 397(6716):246-249. doi: 10.1038/16686

    Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 2003, 369(3/4):155-174. doi: 10.1016-S0040-1951(03)00195-1/

    Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2

    张玉涛, 张连昌, 周新华, 等.大兴安岭北段牙克石地区玄武质火山岩的元素, 同位素地球化学特征及其地质意义[J].地质通报, 2008, 27(1):112-120. doi: 10.3969/j.issn.1671-2552.2008.01.010
    彭玉鲸, 陈跃军.吉黑造山带与华北地台开原-山城镇段构造边界位置[J].世界地質, 2007, 26(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/sjdz200701001
    裴福萍, 许文良, 杨德彬, 等.华北克拉通东北缘岩石圈深部物质组成的不均一性:来自吉林南部中生代火山岩元素及Sr-Nd同位素地球化学的证据[J].岩石学报, 2009, 25(8):1962-1974. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200908020
    张连昌, 吴华英, 相鹏, 等.中生代复杂构造体系的成矿过程与成矿作用——以华北大陆北缘西拉木伦钼铜多金属成矿带为例[J].岩石学报, 2010, (5):1351-1362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201005003
    赵越, 杨振宇, 马醒华.东亚大地构造发展的重要转折[J].地质科学, 1994, 29(2):105-119. doi: 10.1016-j.archoralbio.2010.05.016/

    Pearce J A. The Role of the sub-continental lithosphere in magma genesis at destructive plate margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths. Nantwich: Shiva, 1983: 230-249.

    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[C]//Coward M P, Reis A C. Geological Society, London, Special Publications, 1986, 19(1): 67-81.

    Pearce J. Sources and settings of granitic rocks[J]. Episodes, 1996, 19:120-125.

    周新华, 英基丰, 张连昌, 等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约[J].地球科学:中国地质大学学报, 2009, 34(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dqkx200901001
    程银行, 杨俊泉, 刘永顺, 等.大兴安岭敖包查干地区安山岩年代学, 地球化学研究[J].地质调查与研究, 2012, 35(2):118-127. doi: 10.3969/j.issn.1672-4135.2012.02.005

    Zhao X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China:Implications for Gondwanaland[J]. Australian Journal of Earth Sciences, 1996, 43(6):643-672. doi: 10.1080/08120099608728285

    Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya:Field relations, geochemistry, age, origin, and emplacement[J]. The Journal of Geology, 1997, 105(3):295-318. doi: 10.1086/515924

    Liegeois J P, Navez J, Hertogen J, et al. Contrasting origin of postcollisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization[J]. Lithos, 1998, 45(1):1-28. http://www.sciencedirect.com/science/article/pii/S0024493798000231

    Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1):179-198. http://www.sciencedirect.com/science/article/pii/S0012821X06006443

    吴福元, 曹林.东北亚地区的若干重要基础地质问题[J].世界地质, 1999, 18(2):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900591277

    Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of volcanology and geothermal research, 2003, 121(1):115-135. http://www.sciencedirect.com/science?_ob=ArticleURL&md5=c1cc23cf874b50b84afa57dba1eb3bd9&_udi=B6VCS-47189FT-2&_user=10&_coverDate=02%2F15%2F2003&_rdoc=6&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235962%232003%2399878

    张昱, 赵焕力, 韩彦东.大兴安岭北段塔木兰沟组玄武岩地球化学及构造背景[J].地质与资源, 2005, 14(2):87-91. doi: 10.3969/j.issn.1671-1947.2005.02.002

    Xu W L, Pei F P, Wang F, et al. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China:constraints on tectonic overprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 2013, 74:167-193. doi: 10.1016/j.jseaes.2013.04.003

    Maruyama S, Send T. Orogeny and relative plate motions:example of the Japanese Islands[J]. Tectonophysics, 1986, 127(3/4):305-329. http://www.sciencedirect.com/science/article/pii/0040195186900673

    张超, 杨伟红, 和钟铧, 等.大兴安岭中南段塔尔气地区满克头鄂博组流纹岩年代学和地球化学研究[J].世界地质, 2014, 33(2):255-265. doi: 10.3969/j.issn.1004-5589.2014.02.002
    李杰, 吕新彪, 陈超, 等.大兴安岭中段塔尔气地区流纹岩年龄, 地球化学特征及其地质意义[J].地质通报, 2016, 35(6):906-918. doi: 10.3969/j.issn.1671-2552.2016.06.008
    尹志刚, 张跃龙, 杜玉春.大兴安岭北部早白垩世上库力组流纹岩的地球化学特征及成因[J].吉林大学学报(地球科学版), 2013, 43(3):788-796. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CCDZ201303015&dbname=CJFD&dbcode=CJFQ
    秦克章.满洲里地区印支期花岗岩Rb-Sr等时线年代学证据[J].岩石矿物学杂志, 1998, 17(3):235-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800685701
    陈志广, 张连昌, 卢百志, 等.内蒙古太平川铜钼矿成矿斑岩时代, 地球化学及地质意义[J].岩石学报, 2010, 26(5):1437-1449. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201005010
  • 期刊类型引用(1)

    1. 古阿雷,任军平,王杰,左立波,孙宏伟,许康康,陈靖,EZEKIAHChikambwe,EVARISTOKasumba. 赞比亚东北部陇都地区首次发现中元古代辉长岩:哥伦比亚超大陆裂解在班韦乌卢地块的响应. 地质通报. 2022(01): 34-47 . 本站查看

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  3040
  • HTML全文浏览量:  448
  • PDF下载量:  2681
  • 被引次数: 2
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2018-01-14
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2018-09-30

目录

/

返回文章
返回