The first discovery of Mesoproterozoic gabbro in Nondo area, Northeastern Zambia: Response of the Bangweulu Block to the Columbia supercontinent breakup
-
摘要:
赞比亚东北部陇都地区位于班韦乌卢地块中东部,区内首次发现中元古代基性岩浆侵入事件,对于了解班韦乌卢地块中元古代构造演化历史及哥伦比亚超大陆的重建具有重要意义。针对研究区的辉长岩进行了系统的岩相学、LA-MC-ICP-MS锆石U-Pb年代学、岩石地球化学和锆石Hf同位素研究。结果表明,辉长岩锆石中17粒具有他形板柱状,内部结构呈条带状、面状等特征,Th/U值较高(0.13~1.58),显示基性岩浆锆石属性,207Pb/206Pb年龄加权平均值为1544±17 Ma,代表了辉长岩的侵位结晶年龄,即中元古代。辉长岩主量元素SiO2含量介于49.99%~50.18%之间,MgO含量(2.69%~2.78%)和Mg#值(24.88~25.70)较低,TFeO(14.47%~14.62%)和TiO2含量(2.68%~2.76%)较高,属于高钛板内拉斑玄武岩系列岩石;微量元素特征显示:轻、重稀土元素分馏明显((La/Yb)N=8.53~9.57),具弱的负Eu异常(0.82~0.86),大离子亲石元素(LILE)Rb、Ba、Pb等相对富集、Sr相对亏损,高场强元素(HFSE)Nb、Ta、Ti等相对亏损,具有大陆溢流玄武岩(CFB)亲缘性;锆石Hf同位素结果显示,辉长岩的原始岩浆起源于中元古代早期亏损地幔源区,形成于板内伸展拉张环境,结合全球构造演化历史,认为班韦乌卢地块应是古—中元古代哥伦比亚超大陆的组成部分,研究区中元古代辉长岩的形成可能与哥伦比亚超大陆的裂解有关。
Abstract:The Nondo area is located in the middle east of Bangweulu Block, northeastern Zambia.A Mesoproterozoic mafic magma intrusion event was first discovered in the Nondo area, which is of great significance for the understanding of the evolution of the Proterozoic structure in Bangweulu Block and the reconstruction of Columbia supercontinent.The systematic studies of petrology, LA-MC-ICP-MS zircon U-Pb geochronology, petrogeochemistry and Lu-Hf isotopes were conducted on the gabbro pluton developed in this area.Seventeen zircons from the gabbro show irregular and plate columnar in shape, with zonal and planar structure, and have high Th/U ratios (0.13~1.58), indicating a mafic magma origin.Zircon U-Pb dating yields an average weighted age of 1544±17 Ma, which represents the forming age of gobbro.The pluton is geochemically characterized by low contents of SiO2 (49.99%~50.18%), MgO (2.69%~2.78%) and Mg# (24.88~25.70) contents and high contents of TFeO (14.47%~14.62%) and TiO2 (2.68%~2.76%), and belongs to high Ti intraplate tholeiitic series.Its trace elements are characterized by enrichment of large ion lithophile elements (LILEs, e.g., Rb, Ba, and Pb), depletion of Sr and high field strength elements (HFSEs, e.g., Nb, Ta, and Ti), obvious fractionation of light and heavy rare earth elements with (La/Yb)N=8.53~9.57 and weak Eu negative anomaly (δEu = 0.82~0.86), showing affinity with continental flood basalts (CFB).The zircon Hf isotope results show that the original magma of gabbro was originated from the early Mesoproterozoic depleted mantle and formed in the intraplate extensional environment.Combined with the global tectonic evolution history, it is suggested that the Bangweulu Block should be a part of Paleo-Mesoproterozoic Columbia supercontinent, and the formation of Mesoproterozoic gabbro pluton in the area is probably related to the break-up of the Columbia supercontinent.
-
致谢: 感谢中国地质调查局天津地质调查中心王惠初和李怀坤研究员对本文提供的宝贵建议,感谢审稿专家提出的建设性意见。
-
图 1 撒哈拉以南非洲地质简图(a)[14]、大地构造位置图(b)和陇都地区区域地质图(c)
Figure 1. Simplified geological map of Sub-Saharan Africa (a), tectonic map (b) and geological map of Nondo region (c)
图 9 约1.5 Ga哥伦比亚超大陆重建图(据参考文献[52]修改)
AM—亚马逊;AU—澳大利亚;BA—波罗地;CA—华夏;CO—刚果;EA—东南极洲;IN—印度;LA—劳伦;NC—华北;OB—欧龙布鲁克;SB—西伯利亚;SF—圣弗朗西斯科;TA—塔里木;WAF—西非;YZ—扬子
Figure 9. Reconstruction of the Columbia supercontinent during ca.1.5 Ga
表 1 陇都地区辉长岩主量、微量和稀土元素组成
Table 1 Whole-rock major and trace element composition of the gabbro fromthe Nondo area
样品号 SiO2 Al2O3 TiO2 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量 总量 Na2O/K2O K2O+Na2O A/NK A/CNK Mg# D2208 50.00 14.38 2.68 3.95 10.94 0.2 2.76 5.91 2.83 2.31 0.86 1.73 98.55 1.23 5.14 2.01 0.80 25.5 D2208-1 50.18 14.19 2.75 4.28 10.62 0.2 2.78 5.99 2.8 2.36 0.91 1.69 98.75 1.19 5.16 1.98 0.78 25.7 D0040 50.04 14.28 2.76 3.77 11.23 0.21 2.69 6.09 2.68 2.35 0.87 1.77 98.74 1.14 5.03 2.05 0.79 24.9 D0040-1 49.99 14.24 2.76 3.93 11.05 0.21 2.71 6.09 2.71 2.35 0.87 1.86 98.77 1.15 5.06 2.03 0.79 25.1 样品号 Cs Ba Hf Ta W Th U Sn Li Be V Cr Co Ni Rb Sr Zr Nb D2208 1.43 890 13.1 2.46 1.19 13.5 1.85 3.1 7.62 3.14 175 18 38.6 26.5 86.3 250 490 37.6 D2208-1 0.92 918 12.9 2.39 0.59 13.5 1.68 3.62 8.46 3.29 179 14.4 42.3 26.5 77.3 247 496 37.6 D0040 1.04 930 13.7 2.81 0.75 14.4 1.95 3.6 8.76 3.27 171 15.4 39.8 27.1 83.4 255 517 35.9 D0040-1 1.02 941 13.8 2.82 0.7 14.8 1.98 3.77 8.68 3.51 172 14.9 39.6 26.8 83.1 254 523 36.2 样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE (La/Yb)N δEu D2208 70.1 141 18.7 77.6 15.8 4.16 14.9 2.23 12.2 2.29 6.3 0.88 5.54 0.85 59.1 372.55 8.53 0.82 D2208-1 68.2 144 17.4 74.5 15 4.14 14.2 1.99 11.8 2.18 5.87 0.84 5.29 0.79 58.2 366.20 8.69 0.86 D0040 72.5 151 19.4 80.3 16.1 4.3 14.5 2.36 12.5 2.28 6.29 0.86 5.45 0.83 58.1 388.67 8.97 0.84 D0040-1 76.5 159 20.3 82.8 16.7 4.49 15.1 2.38 12.8 2.37 6.47 0.9 5.39 0.84 59.1 406.04 9.57 0.85 注:TFeO=0.8998×Fe2O3+FeO;Mg#=100×MgO/(MgO+TFeO);主量元素含量单位为%,微量和稀土元素含量单位为10-6 表 2 陇都地区辉长岩(D2208GS)LA-ICP-MS锆石U-Th-Pb测年数据
Table 2 LA-ICP-MS zircon U-Th-Pb data of the gabbro(sample D2208GS) in the Nondo area
编号 元素含量/10-6 Th/U 同位素比值 年龄/Ma Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 1 715 1407 0.51 0.0923 0.0056 3.6376 0.3816 0.2672 0.0055 1473 116 1558 84 1527 28 2 1540 2934 0.53 0.0920 0.0017 3.4023 0.0724 0.2691 0.0011 1533 36 1505 17 1536 5 3 538 1086 0.50 0.0969 0.0040 3.6889 0.1609 0.2762 0.0028 1565 77 1569 35 1572 14 4 2221 2399 0.93 0.0956 0.0046 3.7530 0.3165 0.2716 0.0084 1540 90 1583 68 1549 42 5 711 1294 0.55 0.0946 0.0039 3.6100 0.1435 0.2778 0.0028 1521 79 1552 32 1580 14 6 647 853 0.76 0.1175 0.0036 5.8321 0.2248 0.3594 0.0074 1920 56 1951 33 1979 35 9 1525 1410 1.08 0.0964 0.0035 3.5184 0.2242 0.2577 0.0073 1555 69 1531 50 1478 37 10 1829 1827 1.00 0.0952 0.0031 3.4574 0.1075 0.2638 0.0021 1531 29 1518 25 1509 11 11 1664 1576 1.06 0.0980 0.0039 3.8067 0.1808 0.2794 0.0035 1587 68 1594 38 1589 18 12 625 606 1.03 0.1142 0.0013 5.2183 0.0664 0.3315 0.0027 1933 21 1856 11 1846 13 13 160 233 0.69 0.1254 0.0029 6.4519 0.1772 0.3728 0.0040 2035 41 2039 24 2043 19 16 1830 2656 0.69 0.0936 0.0046 3.6013 0.3362 0.2666 0.0108 1500 93 1550 74 1523 55 17 1369 2164 0.63 0.0976 0.0024 3.5412 0.1734 0.2558 0.0047 1589 46 1536 39 1468 24 18 2092 2597 0.81 0.0958 0.0025 3.7139 0.1259 0.2817 0.0021 1543 50 1574 27 1600 11 19 1397 886 1.58 0.0969 0.0015 3.2307 0.0649 0.2417 0.0016 1565 29 1465 16 1395 8 20 1181 2876 0.41 0.0945 0.0032 3.4486 0.2862 0.2444 0.0082 1520 65 1516 65 1409 42 21 1546 1428 1.08 0.1988 0.0025 14.9144 0.5665 0.5452 0.0203 2816 20 2810 36 2805 85 22 181 1411 0.13 0.0958 0.0019 3.5145 0.1477 0.2631 0.0050 1544 37 1530 33 1505 25 26 447 838 0.53 0.0947 0.0019 3.5205 0.1402 0.2586 0.0032 1524 36 1532 31 1483 16 27 1680 2626 0.64 0.0934 0.0009 3.4049 0.0521 0.2644 0.0017 1495 22 1506 12 1512 9 29 719 1745 0.41 0.0965 0.0008 3.5826 0.0350 0.2698 0.0019 1567 15 1546 8 1540 10 表 3 陇都地区辉长岩(D2208GS)锆石Hf同位素测试结果
Table 3 Hf isotopic compositions of the gabbro (Sample D2208GS) in the Nondo area
编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(0) εHf(t) TDM1/Ma TDM2/Ma fLu/Hf 01 1473 0.0220 0.0008 0.281996 0.000073 0.281975 -27.4 4.5 1757 1928 -0.96 03 1565 0.0242 0.0009 0.282158 0.000114 0.282132 -21.7 12.2 1538 1522 -0.97 06 1920 0.0401 0.0012 0.281418 0.000089 0.281373 -47.9 -6.7 2580 2963 -0.96 09 1555 0.0399 0.0013 0.282150 0.000125 0.282111 -22.0 11.2 1567 1575 -0.96 10 1531 0.0519 0.0016 0.282111 0.000163 0.282063 -23.4 9.0 1636 1696 -0.95 11 1587 0.0228 0.0007 0.282133 0.000050 0.282112 -22.6 12.0 1565 1552 -0.98 12 1933 0.0665 0.0022 0.281536 0.000063 0.281455 -43.7 -3.5 2481 2777 -0.93 20 1520 0.0239 0.0008 0.282099 0.000062 0.282077 -23.8 9.2 1615 1673 -0.98 表 4 1.55~1.50 Ga全球代表性基性岩浆事件
Table 4 Representative mafic magmatic events in the world during 1.55~1.50 Ga
序号 岩性名称 产出状态 年龄/Ma 测试矿物 测年方法 产地 大地构造位置 参考文献 1 辉绿岩 岩床 1549-1551 锆石 SHRIMP;LA-MC-ICP-MS 中国库鲁克塔格地区 塔里木克拉通 [8, 52] 2 辉长闪长岩 岩脉 1513-1531 锆石 LA-ICP-MS 中国川西通安镇 扬子克拉通西南缘 [9] 3 橄榄安粗岩 火山熔岩 1540±30 斜锆石 SIMS 加拿大北部Thelon盆地 劳伦古陆 [52] 4 辉绿岩、辉长岩 岩墙(基)群 1501±3 斜锆石 ID-TIMS Kuonamka大火山岩省 西伯利亚克拉通北部 [21] 5 辉绿岩 岩墙 1501±9.1 斜锆石 ID-TIMS 巴西Chapada Diamantina 圣弗兰西斯科克拉通中部 [5] 6 辉绿岩 岩墙 1506.7±6.9 斜锆石 ID-TIMS 巴西Curaçá 圣弗兰西斯科克拉通东北部 [5] 7 辉长岩 岩基 1514±22 锆石 - 圣弗兰西斯科盆地 圣弗兰西斯科克拉通 [19] 8 辉绿岩 岩基 1502±5 斜锆石 TIMS 安哥拉Humpata 刚果克拉通 [6] 9 辉绿岩 岩墙 1519-1523 斜锆石 TIMS 布基纳法索中部 西非克拉通 [51] 10 辉绿岩 岩墙 1521±2 斜锆石 TIMS 加纳西北部 西非克拉通 [51] 11 辉绿岩 岩墙 1525±3 斜锆石 TIMS 布基纳法索南部 西非克拉通 [51] 12 辉绿岩 岩墙 1528±2 斜锆石 TIMS 圭亚那南部 亚马逊克拉通 [51] 13 辉长岩 岩基 1544±17 锆石 LA-MC-ICP-MS 赞比亚东北部 班韦乌卢地块 本文 -
Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1) : 5-22. doi: 10.1016/S1342-937X(05)70883-2
Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9
Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2) : 91-123.
陆松年, 杨春亮, 李怀坤, 等. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘, 2002, 9(4) : 225-233. doi: 10.3321/j.issn:1005-2321.2002.04.002 Silveira E M, Söderlund U, Oliveira E P, et al. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 2013, 174: 144-156. doi: 10.1016/j.lithos.2012.06.004
Ernst R E, Pereira E, Hamilton M A, et al. Mesoproterozoic intraplate magmatic 'barcode' record of the Angola Portion of the Congo Craton: newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna(Columbia) supercontinent reconstructions[J]. Precambrian Research, 2013, 230: 103-118. doi: 10.1016/j.precamres.2013.01.010
Meert J G, Santosh M. The Columbia supercontinent revisited[J]. Gondwana Research, 2017, 50: 67-83. doi: 10.1016/j.gr.2017.04.011
张健, 李怀坤, 张传林, 等. 塔里木克拉通东北缘Columbia超大陆裂解事件: 库鲁克塔格地区辉绿岩床的地球化学、锆石U-Pb年代学和Hf-O同位素证据[J]. 地学前缘, 2018, 25(6) : 106-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806011.htm 耿元生, 旷红伟, 杜利林, 等. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 2019, 35(8) : 2299-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908002.htm 赵小明, 胡在龙, 裴毅俊, 等. 海南三亚中元古代变质砾岩的发现及其对Columbia超大陆裂解的指示[J]. 地质通报, 2021, 40(6) : 880-888. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210605&flag=1 张恒, 高林志, 张传恒, 等. 扬子板块西南部古元古代岩浆及变质事件——兼论扬子板块对Nuna超大陆事件的响应[J]. 地质通报, 2019, 38(11) : 1777-1789. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191102&flag=1 赵太平, 庞岚尹, 仇一凡, 等. 古/中元古代界线1.8 Ga[J]. 岩石学报, 2019, 35(8) : 2281-2298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908001.htm Feybesse J L, Johan V, Triboulet C, et al. The West Central African Belt: A model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 1998, 87: 161-216.
Janasi V A, Freitas V A, Heaman L H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite[J]. Earth and Planetary Science Letters, 2011, 302: 147-153. doi: 10.1016/j.epsl.2010.12.005
Schannor M, Lana C, Fonseca M A. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2) : 611-628. doi: 10.1016/j.gsf.2018.02.011
De Waele B, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia Puzzle[J]. Precambrian Research, 2008, 160(1/2) : 127-141.
Danderfer A, De Waele B, Pedreira A J, et al. New geochronological constraints on the geological evolution of Espinhaço Basin within the São Francisco Craton-Brazil[J]. Precambrian Research, 2009, 170: 116-128. doi: 10.1016/j.precamres.2009.01.002
Salminen J M, Evans D A D, Trindade R I F, et al. Paleogeography of the Congo/São Francisco Craton at 1.5 Ga: Expanding the Core of Nuna Supercontinent[J]. Precambrian Research, 2016, 286: 195-212. doi: 10.1016/j.precamres.2016.09.011
Ernst R E, Okrugin A V, Veselovskiy R V, et al. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks[J]. Russian Geology and Geophysics, 2016, 57(5) : 653-671. doi: 10.1016/j.rgg.2016.01.015
Unrug, R. The mid-Proterozoic Mporokoso Group of northern Zambia: Stratigraphy, sedimentation and regional position[J]. Precambrian Research, 1984, 24(2) : 99-121. doi: 10.1016/0301-9268(84)90053-6
Brewer M S, Haslam H W, Darbyshire P F P, et al. Rb-Sr age determinations in the Bangweulu Block, Luapula Province, Zambia[M]. London: Institute of Geological Sciences, 1979: 1-100.
De Waele B, Liégeois J P, Nemchin A A, et al. Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide Belt of South-Central Africa, the Southern metacratonic boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 2006, 148: 225-256. doi: 10.1016/j.precamres.2006.05.006
任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 2019, 42(3) : 161-186. doi: 10.3969/j.issn.1672-4135.2019.03.001 许康康, 刘晓阳, 谢薇, 等. 班韦卢地块和伊鲁米德带区域地质及构造演化特征[J]. 地质与勘探, 2018, 54(1) : 69-81. doi: 10.3969/j.issn.0495-5331.2018.01.008 邢仕, 张金达, 任军平, 等. 非洲中南部伊鲁米德构造带演化及成矿作用探讨[J]. 地质调查与研究, 2018, 41(3) : 176-184. doi: 10.3969/j.issn.1672-4135.2018.03.003 孙宏伟, 王杰, 任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6) : 1660-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006005.htm 古阿雷, 王杰, 任军平, 等. 赞比亚北部卡帕图地区古元古代花岗岩成因: 岩石地球化学、锆石年代学及Hf同位素约束[J]. 地质学报, 2021, 95(4) : 999-1018. doi: 10.3969/j.issn.0001-5717.2021.04.005 古阿雷, 王杰, 任军平, 等. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 2020, 43(1) : 63-71. doi: 10.3969/j.issn.1672-4135.2020.01.007 任军平, 王杰, 孙宏伟, 等. 赞比亚东北部卡萨马群形成环境: 碎屑锆石U-Pb年龄与Hf同位素的限定[J]. 中国地质, 2019, 46(3) : 575-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903010.htm 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10) : 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 张玉, 裴先治, 李瑞保, 等. 东昆仑东段阿拉思木辉长岩锆石U-Pb年代学、地球化学特征及洋盆闭合时限界定[J]. 中国地质, 2017, 44(3) : 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703011.htm Wilson M. Igneous Petrogenesis: A Global tectonic approach[M]. London: Unwin Hyman, 1989: 1-466.
Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Rare Earth Element Geochemistry, 1984: 63-114.
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 1989, 42: 313-345.
Gu A L, Sun J G, Bai L A, et al. Petrogenesis and geodynamic significance of the Ganhe Formation lavas, eastern Great Xing'an Range, China: Evidence from geochemistry and geochronology[J]. Island Arc, 2016, 25(2) : 87-110. doi: 10.1111/iar.12146
Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone(Southern Alps)[J]. Contributions to Mineralogy & Petrology, 1999, 134(4) : 380-404.
Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622. doi: 10.1007/s00410-002-0364-7
Knudsen T L, Griffin W, Hartz E, et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking[J]. Contributions to Mineralogy and Petrology, 2001, 141(1) : 83-94. doi: 10.1007/s004100000220
Langmuir C H, Bender J F, Bence A E, et al. Petrogenesis of basalts from the Famous Area: Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1977, 36(1) : 133-156. doi: 10.1016/0012-821X(77)90194-7
赵磊, 吴泰然, 罗红玲. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义[J]. 岩石学报, 2011, 27(10) : 3071-3082. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110023.htm 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2) : 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802006.htm Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica Et Cosmochimica Acta, 2000, 64(19) : 3413-3432. doi: 10.1016/S0016-7037(00)00440-3
吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2) : 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm Peter D K, Roland M. Lu-Hf and Sm-Nd Isotope Systems in zircon[J]. Reviews in Mineralogy and Geohemistry, 2003, 53(1) : 327-341. doi: 10.2113/0530327
Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland Plume[J]. Earth and Planetary Science Letters, 1997, 153(3/4) : 197-208.
Tack L, Wingate M T D, De Waele B, et al. The 1375 Ma Kibaranevent in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180: 63-84. doi: 10.1016/j.precamres.2010.02.022
Baratoux L, Söderlund U, Ernst R E, et al. New U-Pb baddeleyite ages of mafc dyke swarms of the West African and Amazonian cratons: Implication for their confguration in supercontinents through time[C]//Srivastava R K, Ernst R E, Peng P. Dyke Swarms of the World: A Modern Perspective. Springer, Singapore, 2019: 263-314.
Meschede M. A Method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3) : 207-218.
Cabanis B, Lecolle M. Le Diagramme La/10-Y/15-Nb/8: Un Outilpour La Discrimination Des Series Volcaniques Et La Mise En Evidence Des Processus De Melande et/ou De Contamination Crustale[J]. Comptes Rendus de I'Academie des Sciences: Serie Ⅱ, 1989, 309: 2023-2029.
Chamberlain K R, Schmitt A K, Swapp S M, et al. In Situ U-Pb SIMS(IN-SIMS) micro-baddeleyite dating of mafic rocks: Method with examples[J]. Precambrian Research, 2010, 183(3) : 379-387. doi: 10.1016/j.precamres.2010.05.004
Söderlund U, Isachsen C E, Bylund G, et al. U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga[J]. Contributions to Mineralogy & Petrology, 2005, 150(2) : 174-194.
Paleo-Mesoproterozoic magmatism in the Tarim Craton, NW China: Implications for episodic extension to initial breakup of the Columbia supercontinent[J]. Precambrian Research, 2021, 363: 106337.