• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

川西巴塘断裂带黄草坪滑坡形成机制

吴瑞安, 倪嘉伟, 郭长宝, 钟宁, 张绪教, 杨志华

吴瑞安, 倪嘉伟, 郭长宝, 钟宁, 张绪教, 杨志华. 2021: 川西巴塘断裂带黄草坪滑坡形成机制. 地质通报, 40(12): 1992-2001.
引用本文: 吴瑞安, 倪嘉伟, 郭长宝, 钟宁, 张绪教, 杨志华. 2021: 川西巴塘断裂带黄草坪滑坡形成机制. 地质通报, 40(12): 1992-2001.
WU Ruian, NI Jiawei, GUO Changbao, ZHONG Ning, ZHANG Xujiao, YANG Zhihua. 2021: Research on formation mechanism of the Huangcaoping landslide in the Batang fault, western Sichuan. Geological Bulletin of China, 40(12): 1992-2001.
Citation: WU Ruian, NI Jiawei, GUO Changbao, ZHONG Ning, ZHANG Xujiao, YANG Zhihua. 2021: Research on formation mechanism of the Huangcaoping landslide in the Batang fault, western Sichuan. Geological Bulletin of China, 40(12): 1992-2001.

川西巴塘断裂带黄草坪滑坡形成机制

基金项目: 

国家自然科学基金项目《青藏高原东缘古滑坡复活机理与早期识别研究》 41731287

《高原峡谷区内外动力耦合致灾机理研究》 41941017

中国地质调查局项目《川西—藏东地区交通廊道活动构造与地质调查》 DD20190319

中央科研院所基本科研业务费项目《川藏交通廊道水岩作用下大型深层滑坡灾变》 DZLXJK202009

详细信息
    作者简介:

    吴瑞安(1991-), 男, 博士, 助理研究员, 从事工程地质与地质灾害方面的研究。E-mail: wuruian1991@126.com

    通讯作者:

    倪嘉伟(1997-), 男, 在读硕士生, 资源与环境专业, 从事工程地质与地质灾害方面的研究。E-mail: nijiawei1997@163.com

  • 中图分类号: P642.22

Research on formation mechanism of the Huangcaoping landslide in the Batang fault, western Sichuan

  • 摘要:

    青藏高原东缘巴塘断裂带内地震滑坡大量发育,部分保存有堵江证据,是该区历史构造活动的良好地质载体。以川西地区巴塘县黄草坪滑坡为研究对象,通过遥感解译、现场调查、地质时代测年、工程地质分析等方法,对滑坡发育特征和形成演化过程进行研究。结果表明:①黄草坪滑坡为巴塘断裂带内全新世大型岩质滑坡,发育于中—下寒武统灰岩和板岩中,体积为142.5×104~237.5×104 m3,历史上曾堰塞巴曲,现今残留滑坡坝、湖相沉积物等滑坡堵江证据;②滑坡堰塞湖形成于约7.75 ka B.P.,滑坡坝在约1.07 ka B.P.之后发生溃决,堰塞湖存续时间大于6.68 ka;③黄草坪滑坡由降雨、冰川和冻融作用直接诱发形成的可能性较小,巴塘断裂带剧烈活动引起的强烈地震可能是直接诱因,在强震作用下坡脚处断层附近的板岩首先发生剪切破坏,上部灰岩结构面劣化并形成贯通滑面,滑体整体启动并高速下滑堵塞巴曲形成堰塞湖。该研究成果不仅可以为区内类似地震滑坡的形成机制分析提供参考,同时佐证了巴塘断裂带为全新世活动断裂带,对分析巴塘断裂带活动性与完善重建区域构造活动历史具有重要意义。

    Abstract:

    There are a large number of landslides triggered by the earthquake in the Batang fault zone on the eastern margin of the Qinghai-Tibet Plateau, and some evidence of blocking the river are preserved. It is a good geological case for studying historical tectonic activities in the study area. This paper takes the Huangcaoping landslide in Batang County as a case, to study the development characteristics, formation, and evolution process of the landslide through remote sensing interpretation, ground investigation, geological dating, and engineering geological analysis. The study results are listed as follows: (1) The Huangcaoping landslide is a huge Holocene rock landslide in the Batang fault zone, developing in limestone and slate of the Middle-Lower Cambrian strata, with a volume of 142.5×104~237.5×104 m3. That the Baqu river has been blocked in history is proved by the evidence of the landslide dam and lacustrine sediments. (2) The Huangcaoping landslide was formed in about 7.75 ka B.P., the landslide dam failure was about in 1.07 ka B.P. from now, and the dammed lake had preserved more than 6.68 ka. (3) The Huangcaoping landslide is unlikely to be directly induced by rainfall, glaciers, and freeze-thaw. A strong earthquake caused by the violent activities of the Batang fault zone could be the direct triggering factor. Under the action of a strong earthquake, the slate near the fault at the toe of the slope is broken first. The upper limestone structural deteriorates and the sliding surface was formed. The sliding mass started as a whole and slid at a high speed to block the Baqu river. The study results can not only provide a reference for the analysis of the formation mechanism of similar landslides triggered by the earthquake in this region but also prove that the Batang fault zone is a Holocene active fault zone, which is of great significance for analyzing the activity of the Batang fault and improving the reconstruction of regional tectonic activity history.

  • 中亚造山带东段二连-贺根山缝合带,既发育晚古生代SSZ型蛇绿岩和岛弧型岩浆岩[1-16],亦分布有大量中生代后造山A型花岗岩[17-22]和流纹岩[23]。然而,与蛇绿岩、岛弧岩浆岩和后造山A型花岗岩相比, 贺根山缝合带内中生代后造山A型流纹岩锆石U-Pb年代学、地球化学和地球动力学背景的研究相对缺乏[23]。对于二连-贺根山缝合带晚二叠世—早三叠世最终缝合与中三叠世-早白垩世后造山伸展作用演化阶段与过程的认识[24-35],尚缺乏后造山伸展阶段岩浆活动的证据。前人1:20万罕乌拉幅区域地质矿产调查将该区火山岩划归为上侏罗统兴安岭群,1:25万西乌旗幅等将其归为上侏罗统满克头鄂博组,缺少年代学、地球化学等资料。因此, 本文在1:5万区域地质调查的基础上,选择贺根山缝合带典型发育区的西乌旗白音瑞地区满克头鄂博组流纹岩进行年代学和地球化学研究,探讨满克头鄂博组火山岩的岩石属性、成因和构造环境,以期为中亚造山带东段二连-贺根山缝合带的最终缝合时限和后造山伸展作用演化阶段与过程研究,提供岩石学、地球化学和年代学证据与约束。

    内蒙古西乌旗白音瑞地区满克头鄂博组火山岩,位于二连-贺根山缝合带东段晚石炭世梅劳特乌拉SSZ型蛇绿岩和晚石炭世(—早二叠世)岛弧岩浆岩带内[10, 13-15]图 1-a)。研究区出露的地层主要为中生界上侏罗统满克头鄂博组火山岩和上古生界中二叠统哲斯组沉积岩(图 1-b),岩浆岩主要有早白垩世花岗斑岩、正长花岗岩[21]和晚石炭世梅劳特乌拉SSZ型蛇绿岩[10, 13-15]、奥长花岗岩、英云闪长岩等(图 1-b)。该区满克头鄂博组火山岩覆于晚石炭世梅劳特乌拉SSZ型蛇绿岩[10, 13-15]、奥长花岗岩、英云闪长岩和上古生界中二叠统哲斯组沉积岩之上,与早白垩世正长花岗岩[21]和花岗斑岩为侵入接触(图 1)。

    图  1  内蒙古白音瑞地区满克头鄂博组火山岩区域大地构造(a)和区域地质简图(b)[3]
    Figure  1.  Sketch tectonic map (a) and geological map (b) of volcanic rocks of the Manketouebo Formation in Baiyinrui area, Inner Mongolia

    白音瑞地区满克头鄂博组火山岩主要为球粒流纹岩、石泡流纹岩和角砾流纹岩,少量流纹质火山角砾岩、流纹质凝灰岩、英安岩、英安质凝灰岩、凝灰质砾岩等。流纹岩主要为斑状结构,流纹构造(图 2-ab)、基质球粒结构(图 2-cd),部分基质为玻璃质结构和霏细结构。流纹质凝灰岩主要包括流纹质熔结凝灰岩、流纹质玻屑、晶屑、岩屑凝灰岩、流纹质含角砾凝灰岩等。其中,熔结凝灰岩主要为流纹质含角砾浆屑玻屑熔结凝灰岩,岩石为熔结凝灰结构,假流纹构造;其他凝灰岩均为凝灰结构,块状构造。

    图  2  满克头鄂博组流纹岩野外(a、b)和显微照片(c、d)
    a、b—流纹构造;c、d—球粒结构
    Figure  2.  Representative field photos (a, b) and photomicrograph (c, d) of the rhyolites in the Manketouebo Formation

    笔者在研究区满克头鄂博组流纹岩中采集了1件锆石U-Pb同位素测年样品(RL05),采样位置见图 1,采样点地理位置为北纬45°07′50″、东经118°23′15″。

    本次流纹岩测年样品(RL05)的锆石分选在河北省廊坊区域地质调查研究所完成,样品制靶、透射光、反射光照片拍摄和阴极发光(CL)图像分析(图 3)在北京锆年领航科技有限公司完成。

    图  3  满克头鄂博组流纹岩(RL05)锆石阴极发光图像及206Pb/238U年龄
    Figure  3.  Cathodoluminescence images and 206Pb/238U ages of zircons from the rhyolite in the Manketouebo Formation

    锆石U-Pb年龄测定在中国地质调查局天津地质调查中心进行。首先,根据锆石的阴极发光(CL)图像和反射光、透射光照片,选择锆石原位LAICP-MS U-Pb同位素测年的最佳区域。然后,利用193nm激光器对锆石进行烧蚀,激光烧蚀的斑束直径为35μm, 剥蚀采样时间为45s。测试数据的普通铅校正采用Anderson的方法[36], 锆石U-Pb同位素比值及元素含量运用4.4版本Glitter程序, 年龄加权平均计算使用3.0版本的Isoplot程序完成。

    在阴极发光图像(CL)(图 3)上,流纹岩样品中的锆石结构均一,呈自形-半自形柱状,长宽比为2:1~4:1,24颗锆石均具清晰的振荡岩浆生长环带,为酸性火山岩成因锆石特征[37]。流纹岩样品(RL05)LA-ICP-MS锆石U-Th-Pb测试结果见表 1

    表  1  满克头鄂博组流纹岩(RL05)LA-ICP-MS锆石U-Th-Pb测试结果
    Table  1.  LA-ICP-MS U-Th-Pb dating results of zircons from the rhyolite in the Manketouebo Formation
    点号含量/10-6Th/U同位素比值表面年龄/Ma
    PbU207Pb*206Pb*±%207Pb*235U±%206Pb*238U±%206Pb/238U
    193220.920.0556.60.196.70.02500.88159±1
    272280.780.052110.18110.02500.93159±1
    382690.780.0587.20.207.20.02460.86157±1
    441370.620.051190.18180.02531.3161±2
    531140.470.0511020.18670.02502.4159±4
    6103220.850.0527.20.187.20.02480.87158±1
    72880.490.061260.21220.02522.3160±4
    861940.750.064100.22100.02481.0158±2
    951730.740.060120.21110.02501.1159±2
    1061980.730.052130.18120.02501.0159±2
    1141610.520.051150.17140.02451.0156±2
    1262210.700.055100.19100.02470.92158±1
    1351670.800.054140.18130.02481.1158±2
    1492900.830.0546.40.186.40.02480.90158±1
    1551470.650.129.90.409.90.02561.4163±2
    1672390.910.0647.30.227.30.02460.89157±1
    171480.520.0831030.27290.02423.0154±5
    182650.0630.106270.37230.02552.9162±5
    1941250.730.086140.29130.02471.5157±2
    203850.800.126180.43160.02471.9158±3
    213950.780.061680.21440.02501.7159±3
    2251731.040.058320.19320.02412.1153±3
    2372320.960.0519.90.179.90.02440.94155±1
    2461950.860.0589.10.209.10.02481.1158±2
    注:误差为1σ;Pb*指示放射成因铅。实验测试在中国地质调查局天津地质调查中心完成
    下载: 导出CSV 
    | 显示表格

    24颗锆石的Th/U值为0.063~1.04,平均值为0.72(表 1),与岩浆锆石的Th/U值(大于0.4)一致[37-38],为岩浆成因锆石特征。该样品24个测点的数据点集中于谐和线上及其附近,获得的206Pb/238U年龄加权平均值为158.0 ±0.7Ma(MSWD=0.87),代表了流纹岩的成岩年龄(表 1图 4),故将白音瑞地区满克头鄂博组火山岩的形成时代置于晚侏罗世。

    图  4  满克头鄂博组流纹岩(RL05)锆石U-Pb谐和图(a)和206Pb/238U年龄直方图(b)
    Figure  4.  U-Pb concordia diagram (a) and 206Pb/238U age histogram (b) of zircons from the rhyolite in the Manketouebo Formation

    研究区满克头鄂博组流纹岩共采集了5件地球化学样品, 全岩主量、微量和稀土元素的化学分析在河北省廊坊区域地质调查研究所完成。主量元素分析采用X射线荧光光谱(XRF)分析, 选用不同含量和不同基体的国家一级地球化学标准物质同时完成测定,检测下限为0.01%,分析误差优于5%。微量元素采用电感耦合等离子体质谱(ICP-MS)测定,检测限优于5×10-9,相对标准偏差优于5%。白音瑞地区满克头鄂博组流纹岩的主量、微量和稀土元素测试分析结果见表 2

    表  2  满克头鄂博组流纹岩主量、微量和稀土元素分析结果
    Table  2.  Major element, trace element and REE analyses of the rhyolites in the Manketouebo Formation
    样品号
    岩性
    RL01
    流纹岩
    RL02
    流纹岩
    RL03
    流纹岩
    RL05
    流纹岩
    RL06
    流纹岩
    世界A型花岗岩平均
    (148)[40]
    中国A型花岗岩平均
    (197)[40]
    SiO277.0876.3376.9276.1275.9273.8173.55
    Al2O312.4012.4212.6512.6512.8612.412.81
    TiO20.0510.0630.0410.0390.0880.260.23
    Fe2O30.540.890.530.870.791.241.42
    FeO0.260.120.120.430.411.581.18
    CaO0.440.770.330.390.440.750.82
    MgO0.0810.0420.0440.0480.110.20.27
    K2O4.544.754.574.424.894.654.69
    Na2O3.933.904.203.973.484.073.76
    MnO0.0110.0110.0100.0180.0120.060.09
    P2O50.0210.0180.0210.0170.0220.040.07
    烧失量0.640.670.550.870.87
    总量99.9899.9899.9799.8599.89
    Ba25.2021.5032.9031.4029.80352235.96
    Rb302.00345.40276.60184.70196.30169269.69
    Sr7.106.9016.5010.219.944857.54
    Pb17.7016.9013.2016.5021.5024
    Cr3.703.203.306.305.60
    Co0.300.200.300.800.90
    Ni1.802.702.503.203.10< 1
    V3.101.602.302.504.106
    Zr115.9089.60112.20284.20231.10528333.77
    Hf6.714.176.568.949.86
    Sc2.201.801.301.701.904
    Nb22.5623.0515.4015.2316.323734.93
    Ta4.012.882.845.843.65
    Th15.4329.9831.3129.6114.2523
    U3.275.373.276.574.215
    Cs5.985.135.679.468.25
    Ga34.2034.7027.9032.5027.5024.618.54
    Y60.6772.9135.7223.9819.247554.03
    La8.7821.8024.9926.9627.21
    Ce26.6656.8240.2949.8759.15
    Pr4.668.479.417.969.02
    Nd21.6136.5239.2127.5434.26
    Sm7.8710.6410.186.846.23
    Eu0.0610.0580.110.120.12
    Gd6.468.826.845.134.97
    Tb1.511.851.310.890.84
    Dy9.6410.947.086.245.21
    Ho2.002.201.261.140.97
    Er5.645.843.332.853.12
    Tm1.051.000.600.630.54
    Yb6.235.693.653.143.24
    Lu1.120.830.690.790.68
    ΣREE103.29171.48148.95140.10155.56
    δEu0.030.020.040.060.06
    (La/Yb)N0.952.584.625.795.66
    Ga/Al5.215.284.174.863.743.75
    注:主量元素含量单位为%,稀土、微量元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    表 2可知, 西乌旗白音瑞地区满克头鄂博组流纹岩以富硅(SiO2=75.92%~77.08%)、富钾(K2O=4.42%~4.89%)、富碱(Na2O+K2O 8.37%~8.77%)和贫CaO(0.33% ~0.77%)、MgO(0.042% ~0.11%)、P2O5(0.017%~0.022%)、TiO2(0.039%~0.088%)为特征。在火山岩TAS分类命名图解(图 5)中,5个样品点均落入亚碱性系列的流纹岩范围。岩石的Na2O/K2O值为0.71~0.92,在岩浆系列硅碱(SiO2-K2O)判别图解中,5个样品点均落在高钾钙碱性系列(图 6)。该岩石的Al2O3含量为12.40%~12.86%,A/CNK值变化于0.96~1.09之间,A/NK值变化于1.07~1.17之间, 属于弱过铝质岩石。

    图  5  满克头鄂博组流纹岩TAS分类图解
    Pc—苦橄玄武岩;B—玄武岩;O1—玄武安山岩;O2—安山岩;O3—英安岩;R—流纹岩;S1—粗面玄武岩;S2—玄武质粗面安山岩;S3—粗面安山岩;T—粗面岩、粗面英安岩;F—副长石岩;U1—碱玄岩、碧玄岩;U2—响岩质碱玄岩;U3—碱玄质响岩;Ph—响岩;Ir—Irvine分界线,上方为碱性,下方为亚碱性
    Figure  5.  Total alkali versus silica (TAS) diagram of the rhyolites in the Manketouebo Formation
    图  6  满克头鄂博组流纹岩SiO2-K2O分类图解[39]
    Figure  6.  SiO2-K2O classification diagram of the rhyolites in the Manketouebo Formation

    表 2可知, 与世界上酸性火成岩稀土元素总量(∑REE)平均值288×10-6相比,白音瑞地区满克头鄂博组流纹岩的稀土元素总量明显较低,∑REE为103.29×10-6~171.48×10-6表 2)。在稀土元素球粒陨石标准化配分图(图 7)上,5个流纹岩样品均具有典型的海鸥式分布特征和轻稀土元素略富集的平缓右倾变化趋势(图 7表 2),可能反映亏损地幔的岩浆源区性质或与源区IAB有关[42]。该岩石5个样品的负Eu异常均较显著,δEu值为0.02~0.06 (图 7表 2),可能反映流纹岩的岩浆源区有斜长石残留。

    图  7  满克头鄂博组流纹岩稀土元素球粒陨石标准化配分模式[41]
    Figure  7.  Chondrite-normalized REE patterns of the rhyolites in the Manketouebo Formation

    表 2图 8所示,该区满克头鄂博组流纹岩相对富集Ga(27.50×10-6~34.70×10-6)、Rb、Th、U、K等, 而明显贫Ba、Sr、P和Ti。在微量元素原始地幔标准化蛛网图(图 8)上,5个流纹岩样品均具有明显的Ba、Sr、P、Eu、Ti负异常“槽”和Rb、Th、U、Ta等略微富集的“峰”(图 8),可能与岩浆成因或A型花岗岩浆的特有性质有关。

    图  8  满克头鄂博组流纹岩微量元素原始地幔标准化蛛网图[43]
    Figure  8.  Primitive mantle-normalized trace element spider diagram of the rhyolites in the Manketouebo Formation

    如前所述,本区满克头鄂博组流纹岩具有富Si、K-碱-Ga、贫Ca、Mg-Ba-Sr-Ti-P,以及显著的负Eu异常等地球化学特征,其地球化学属性明显不同于I、S和M型花岗岩,而与二连-贺根山缝合带内的中生代A型花岗岩和世界上典型A型花岗岩的地球化学特征一致[17-23, 44-49],表明其岩石成因类型属于A型花岗岩的喷出岩——A型流纹岩[49-51]。在A型花岗岩与I、S和M型花岗岩成因类型判别图解(图 9)中,5个流纹岩样品均位于A型花岗岩区,明显区别于I、S和M型花岗岩(图 9[46]。且在K2O-Na2O和SiO2-Zr岩浆岩成因类型判别图解(图 10)中,研究区满克头鄂博组流纹岩样品点同样投在A型花岗岩区,明显区别于I和S型花岗岩(图 10[45]。这些特征进一步表明,西乌旗白音瑞地区满克头鄂博组流纹岩的岩石成因类型为A型流纹岩[17-23, 49-51]。研究区满克头鄂博组A型流纹岩与二连-贺根山缝合带内晚侏罗世或中生代A型花岗岩地球化学特征的一致性,可能表明二连-贺根山缝合带具有统一的A型花岗岩浆源区、成因及构造环境[21, 23]

    图  9  满克头鄂博组流纹岩10000×Ga/Al对(K2O+Na2O)(a)、(K2O+Na2O)/CaO)(b)、K2O/MgO(c)和TFeO/MgO(d)判别图解[46]
    Figure  9.  K2O+Na2O)(a), (K2O+Na2O)/CaO(b), K2O/MgO(c) and TFeO/MgO(d) versus 10000×Ga/Al discrimination diagrams of the rhyolites in the Manketouebo Formation
    图  10  满克头鄂博组流纹岩K2O-Na2O(a)和SiO2-Zr(b)图解[45]
    I、A、S—分别为I型、A型和S型花岗岩
    Figure  10.  K2O-Na2O (a) and SiO2-Zr (b) plots of the rhyolites in the Manketouebo Formation

    依据岩浆成因和构造环境,A型花岗岩类又进一步细分为非造山(anorogenic)A1型花岗岩和后造山(post-orogenic)A2型花岗岩[42, 45-51]。在A1和A2型花岗岩类的微量元素Nb-Y-Ce和Nb-Y-3Ga判别图解(图 11)上[44],白音瑞地区满克头鄂博组流纹岩样品点均落入后造山A2型花岗岩范围,并可与二连-贺根山缝合带内的中生代A2型花岗岩[17-22]和A2型酸性火山岩[23]相比,反映了造山带后造山伸展构造环境形成的后造山A2型花岗岩类特征。

    图  11  满克头鄂博组流纹岩A1和A2型花岗岩类Y-Nb-Ce(a)和Y-Nb-3Ga(b)三角形判别图解[44]
    Figure  11.  Y-Nb-Ce (a) and Y-Nb-3Ga (b) triangular plots for distinguishing between A1 and A2 granitoids from the rhyolites in the Manketouebo Formation

    在SiO2- Al2O3、SiO2- TFeO/(TFeO + MgO)、Rb-(Y+Nb)、Nb-Y和R1-R2构造环境判别图解(图 12-图 14)中,研究区流纹岩样品点均落入后造山(POG)花岗岩区,反映了造山带后造山阶段形成的后造山花岗岩特征,并与二连-贺根山缝合带内的中生代A2型花岗岩[17-22]和A2型酸性火山岩[23]吻合。

    图  12  满克头鄂博组流纹岩SiO2-Al2O3(a)和SiO2-TFeO/(TFeO+MgO)(b)构造环境判别图解[52]
    IAG—岛弧花岗岩;CAG—大陆弧花岗岩;CCG—大陆碰撞花岗岩;POG—后造山花岗岩;RRG—裂谷型花岗岩;CEUG—大陆造陆隆升花岗岩
    Figure  12.  SiO2-Al2O3 (a) and SiO2-TFeO/(TFeO+MgO) (b) tectonic discriminant diagrams of the rhyolites in the Manketouebo Formation
    图  13  满克头鄂博组流纹岩(Y+Nb)-Rb(a)和Y-Nb(b)构造环境判别图解[53]
    syn-COLG—同碰撞花岗岩;VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—洋脊花岗岩
    Figure  13.  (Y+Nb)-Rb (a) and Y-Nb (b) tectonic discriminant diagrams of the rhyolites in the Manketouebo Formation
    图  14  满克头鄂博组流纹岩R2-R1构造环境判别图解
    (R1=4Si-11(Na+K)-2(Fe+Ti), R2=6Ca+2Mg+Al)[54]
    Figure  14.  R2-R1 tectonic discriminant diagram of the rhyolites in the Manketouebo Formation

    这些地球化学特征和判别图解表明,研究区满克头鄂博组流纹岩形成于后造山伸展构造环境。

    综上所述,西乌旗白音瑞地区满克头鄂博组流纹岩岩石属性为A型流纹岩,形成于后造山伸展构造环境,为后造山A型花岗岩浆作用的产物。该A型流纹岩上覆于贺根山缝合带晚石炭世梅劳特乌拉SSZ型蛇绿岩、晚石炭世—早二叠世岛弧岩浆岩带[10, 13-15]和上古生界中二叠统哲斯组沉积岩之上(图 1),被早白垩世铝质A2型花岗岩(130.4±1.4Ma)[21]和花岗斑岩侵入(图 1),新获得的LA-ICP-MS锆石U-Pb年龄为158.0±0.7Ma,表明其为晚侏罗世A型花岗岩浆喷发活动的产物,反映了二连-贺根山缝合带晚侏罗世后造山A型花岗岩浆作用事件。而且,该A型流纹岩的形成年龄与二连-贺根山缝合带内中三叠世—早白垩世后造山A花岗岩岩浆活动吻合[17-23],进一步揭示二连-贺根山缝合带在晚侏罗世处于后造山伸展作用阶段。因此,结合区内晚石炭世梅劳特乌拉蛇绿岩、晚石炭世—早二叠世岛弧岩浆岩[10, 13-15]和早白垩世后造山A型花岗岩[21]的密切时空伴生关系,二连-贺根山缝合带石炭纪蛇绿岩、石炭纪—二叠纪岛弧岩浆岩[1-16, 25-31, 33-34, 55-57]和中三叠世—早白垩世后造山A型岩浆岩[17-23, 35]的时空分布与演化关系,以及西乌旗白音瑞地区晚侏罗世后造山A型流纹岩喷发活动,认为中亚造山带东段二连-贺根山缝合带在晚二叠世—早三叠世最终缝合后,在中三叠世—早白垩世经历了后造山伸展作用演化阶段与过程。

    (1)岩石学和岩石地球化学研究表明,西乌旗白音瑞地区满克头鄂博组火山岩主要为A型流纹岩,其形成于贺根山缝合带后造山伸展构造环境,为后造山A型花岗岩岩浆作用的产物。

    (2)白音瑞满克头鄂博组A型流纹岩的形成年龄为158.0±0.7Ma,时代为晚侏罗世,反映了贺根山缝合带晚侏罗世后造山A型花岗岩浆作用事件。

    (3)白音瑞晚侏罗世后造山A型流纹岩的识别与确定,及其与梅劳特乌拉晚石炭世SSZ型蛇绿岩及区域二连-贺根山缝合带石炭纪蛇绿岩、石炭纪—二叠纪岛弧岩浆岩和中三叠世—早白垩世后造山A型岩浆岩的时空分布与演化关系,反映二连-贺根山缝合带在晚二叠世—早三叠世最终缝合后,在中三叠世—早白垩世经历了后造山伸展作用。

    致谢: 中国地质科学院地质力学研究所李雪副研究员和中国地质大学(北京)博士研究生丁莹莹参加了部分野外地质调查工作,中国地质大学(北京)博士研究生张献兵和硕士研究生闫怡秋在部分图件绘制上给予帮助,在此一并表示感谢。
  • 图  1   研究区构造图

    Figure  1.   Tectonic location of the Study area

    图  2   黄草坪滑坡发育特征

    a—黄草坪滑坡卫星影像图(据Google Earth公开影像);b—巴曲右岸滑坡残留堆积体(镜向210°);c—滑坡发育两级滑动平台(镜向130°)

    Figure  2.   Development characteristics of the Huangcaoping landslide

    图  3   黄草坪滑坡地质平面图

    1—断裂;2—地层分界;3—滑坡边界;4—等高线(m);5—房屋;6—道路;7—地质剖面线;8—河湖相沉积剖面点;9—陡坎;φξ51-b—角闪正长岩; Є1-2a—中下寒武统;Qhl—湖相沉积物;Qhal—冲积物;Qhdl—坡积物;Qhal+pl—冲洪积物;Qhdel—滑坡堆积体

    Figure  3.   Geological plane of the Huangcaoping landslide

    图  4   黄草坪滑坡a-a’地质剖面(剖面位置见图 3)

    Figure  4.   Geological profile (a-a') of the Huangcaoping landslide

    图  5   黄草坪滑坡残留堆积体发育特征

    a—推测原始坝体地形(镜向210°); b—巨型砾石停积于河道中(镜向230°); c—软沉积变形构造(镜向135°); d—卵砾石堆载于湖相沉积层之上(镜向110°)

    Figure  5.   Development characteristics of residual accumulation of the Huangcaoping landslide

    图  6   黄草坪滑坡上游湖相沉积物发育特征

    Ⅰ—坡积物;Ⅱ—河流相沉积物;Ⅲ—湖相沉积物;Ⅳ—滑坡堆积体

    Figure  6.   Development characteristics of lacustrine sediments on the upstream of the Huangcaoping landslide

    图  7   巴塘断裂带典型地震滑坡发育特征

    Figure  7.   Characteristics of typical earthquake-triggered landslide in the Batang fault

    图  8   黄草坪滑坡形成与演化过程示意图

    a—斜坡原始形态;b—地震作用下坡脚发生剪切破坏;c—地震诱发滑坡形成堵江滑坡坝;d—滑坡坝发生溃决

    Figure  8.   Formation and evolution of the Huangcaoping landslide

    表  1   光释光(OSL)样品剂量率及年龄测定结果

    Table  1   Dose rate and OSL dating results of samples

    样品编号 深度/m U相对含量/10-6 Th相对含量/10-6 K相对含量/% 含水率/% 环境剂量率/(Gy/ka) 等效剂量/Gy 年龄/ka
    B20-13 1.8 2.19±0.06 13.3±0.07 1.75±0.01 1.28 3.4±0.14 3.62±0.14 1.07±0.06
    B20-14 3.4 2.52±0.06 11.7±0.07 1.89±0.01 5.27 3.31±0.13 19.62±1.22 5.93±0.44
    注:该OSL样品由中国地震局地壳应力研究所测试
    下载: 导出CSV
  • 陈剑, 崔之久, 陈瑞琛, 等. 金沙江上游特米古滑坡堰塞湖成因与演化[J]. 地学前缘, 2021, 28(2): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102008.htm
    王家柱, 任光明, 葛华. 金沙江上游某特大型滑坡发育特征及堵江机制[J]. 长江科学院院报, 2019, 36(2): 46-51, 57. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902011.htm
    陈松, 陈剑, 刘超. 金沙江上游雪隆囊古滑坡堰塞湖溃坝堆积物粒度分维特征分析[J]. 中国地质灾害与防治学报, 2016, 27(2): 78-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201602012.htm
    王鹏飞. 金沙江上游苏洼龙滑坡形成机制与稳定性研究[D]. 中国地质大学(北京)硕士学位论文, 2015.
    杨志华, 吴瑞安, 郭长宝, 等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J/OL]. 中国地质, 2021. http://kns.cnki.net/kcms/detail/11.1167.P.20210111.1514.010.html.
    徐则民, 刘文连, 黄润秋. 金沙江寨子村巨型古滑坡的工程地质特征及其发生机制[J]. 岩石力学与工程学报, 2011, 30(S2): 3539-3550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2025.htm

    Chen J, Dai F C, Lv T Y, et al. Holocene landslide-dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 2013, 298: 107-113. doi: 10.1016/j.quaint.2012.09.018

    Guo C B, Zhang Y S, David R M, et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China?[J]. Geomorphology, 2016, 259: 145-154. doi: 10.1016/j.geomorph.2016.02.013

    徐锡伟, 张培震, 闻学泽, 等. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质, 2005, 27(3): 446-461. doi: 10.3969/j.issn.0253-4967.2005.03.010
    周荣军, 陈国星, 李勇, 等. 四川西部理塘-巴塘地区的活动断裂与1989年巴塘6.7级震群发震构造研究[J]. 地震地质, 2005, 27(1): 31-43. doi: 10.3969/j.issn.0253-4967.2005.01.004
    徐锡伟, 闻学泽, 于贵华, 等. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学(D辑), 2005, 35(6): 540-551. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506006.htm
    程佳. 川西地区现今地壳运动的大地测量观测研究[D]. 中国地震局地质研究所硕士学位论文, 2008.
    王新民. 1870年四川巴塘地震的烈度及等震线特征[J]. 四川地震, 1990, 4: 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199004013.htm
    伍先国, 蔡长星. 金沙江断裂带新活动和巴塘6.5级地震震中的确定[J]. 地震研究, 1992, 15(4): 401-410. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ199204006.htm
    罗灼礼. 1989年巴塘6.7级地震群现场工作纪事[J]. 国际地震动态, 2017, 464(8): 1-13. doi: 10.3969/j.issn.0253-4975.2017.08.001
    何玉林, 张绪奇, 郭劲. 1996年12月21日四川白玉、巴塘间5.5级地震烈度考察[J]. 四川地震, 1997, 2: 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199702006.htm
    郭劲, 张庆云, 袁灿林. 巴塘6.7级强震群灾害及其影响[J]. 四川地震, 1990, 1: 43-47, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ199001008.htm
    李勇, 钟建华, 邵珠福, 等. 软沉积变形构造的分类和形成机制研究[J]. 地质论评, 2012, 58(5): 829-838. doi: 10.3969/j.issn.0371-5736.2012.05.004
    钟宁, 蒋汉朝, 李海兵, 等. 青藏高原东部河湖相沉积中的软沉积物变形的主要成因类型及其特征[J]. 地球学报, 2020, 41(1): 23-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202001003.htm
    王莅斌, 尹功明, 袁仁茂, 等. 金沙江中游永胜昔格达层软沉积变形构造[J]. 地震地质, 2020, 42(5): 1072-1090. doi: 10.3969/j.issn.0253-4967.2020.05.004
    许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. doi: 10.3969/j.issn.1004-9665.2012.02.001
    张永双, 郭长宝, 姚鑫, 等. 青藏高原东缘活动断裂地质灾害效应研究[J]. 地球学报, 2016, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm

    Yin Y P, Wang F W, Sun P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152. doi: 10.1007/s10346-009-0148-5

    闫茂华, 魏云杰, 李亚民, 等. 云南德钦日因卡滑坡孕灾背景及形成机理[J]. 地质通报, 2020, 39(12): 1971-1980. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201211&flag=1
    向小龙, 孙炜锋, 谭成轩, 等. 降雨型滑坡失稳概率计算方法[J]. 地质通报, 2020, 39(7): 1115-1120. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200716&flag=1
    吴瑞安, 马海善, 张俊才, 等. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 2021, 48(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202105013.htm
    龙维. 金沙江上游特米大型古滑坡成因及稳定性研究[D]. 中国地质大学(北京)硕士学位论文, 2015.

    Densmore A L, Mcadoo B G. Hillslope Evolution by Bedrock Landslides[J]. Science, 1997, 275(5298): 369-372. doi: 10.1126/science.275.5298.369

    李艳豪, 蒋汉朝, 徐红艳, 等. 四川岷江上游滑坡触发因素分析[J]. 地震地质, 2015, 37(4): 1147-1161. doi: 10.3969/j.issn.0253-4967.2015.04.017
    钟荫乾. 滑坡与降雨关系及其预报[J]. 中国地质灾害与防治学报, 1998, 9(4): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH804.014.htm

    Dai F C, Lee C F. Frequency-volume relation and prediction of rainfall-induced landslides[J]. Engineering Geology, 2001, 59(3): 253-266. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0013795200000776&originContentFamily=serial&_origin=article&_ts=1437958870&md5=9437676729eb094af86d5c55d2d515a7

    Dai F C, Xu C, Yao X, et al. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011, 40(4): 883-895. doi: 10.1016/j.jseaes.2010.04.010

    Tang L Y, Shen C M, Liu K, et al. Climatic and hydrological changes in the southeastern Qinghai-Tibetan Plateau during the past 18000 years[J]. Acta Micropalaeontologica Sinica, 2000, 17(2): 113-124. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT200002000.htm

    常宏, 韩会卿, 章昱, 等. 鄂西清江流域滑坡崩塌致灾背景及成灾模式[J]. 现代地质, 2014, 28(2): 429-437. doi: 10.3969/j.issn.1000-8527.2014.02.022
    温铭生, 方志伟, 王阳谷. 都江堰市五里坡特大滑坡灾害特征与致灾成因[J]. 现代地质, 2015, 29(2): 448-453. doi: 10.3969/j.issn.1000-8527.2015.02.032
    张永双, 吴瑞安, 郭长宝, 等. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 2018, 33(7): 728-740. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807006.htm
    张永双, 任三绍, 郭长宝, 等. 活动断裂带工程地质研究[J]. 地质学报, 2019, 93(4): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201904001.htm
    张永双, 苏生瑞, 吴树仁, 等. 强震区断裂活动与大型滑坡关系研究[J]. 岩石力学与工程学报, 2011, 30(S2): 3503-3513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2020.htm

    Zhang Y S, Guo C B, Lan H X, et al. Reactivation mechanism of ancient giant landslides in the tectonically active zone: a case study in Southwest China[J]. Environmental Earth Sciences, 2015, 74(2): 1719-1729. doi: 10.1007/s12665-015-4180-6

    闫怡秋, 杨志华, 张绪教, 等. 基于加权证据权模型的青藏高原东部巴塘断裂带滑坡易发性评价[J]. 现代地质, 2021, 35(1): 26-37. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202101004.htm
    白永健, 李明辉, 王东辉, 等. 金沙江中游巴塘县地质灾害发育特征及成灾规律分析[J]. 中国地质灾害与防治学报, 2014, 25(2): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH201402023.htm

    Keefer D K. Landslides caused by earthquakes[J]. GSA Bulletin, 1984, 95(4): 406-421. doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2

    丁彦慧, 王余庆, 孙进忠. 地震崩滑与地震参数的关系及其在边坡震害预测中的应用[J]. 地球物理学报, 1999, 42(S1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1999S1014.htm
  • 期刊类型引用(3)

    1. 杜庆祥,伍赛男,张永,沈晓丽,韩金瑞. 内蒙古北山造山带圆包山—希热哈达地区白山组火山岩锆石U-Pb年龄、地球化学特征及对古亚洲洋俯冲作用的启示. 地质通报. 2023(11): 1875-1893 . 本站查看
    2. 程海峰,张正平,段先乐,刘广,李慧,孟庆涛,杨菊,朱炜,提振海,冯翼鹏,苏朋涛,范超. 内蒙古黑红山-园包山地区石炭纪火山岩的发现及其地质意义. 地质与勘探. 2022(02): 335-351 . 百度学术
    3. 田健,辛后田,滕学建,段霄龙,程先钰,孙立新,张永,任邦方. 内蒙古北山造山带白云山蛇绿混杂岩的厘定及其对北山洋俯冲消减的指示. 地质通报. 2020(09): 1436-1447 . 本站查看

    其他类型引用(4)

图(8)  /  表(1)
计量
  • 文章访问数:  2281
  • HTML全文浏览量:  425
  • PDF下载量:  1652
  • 被引次数: 7
出版历程
  • 收稿日期:  2021-07-13
  • 修回日期:  2021-08-30
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-12-14

目录

/

返回文章
返回