Construction of field scientific observation base for water cycle of Hefeng Basin, Jiangxi Province
-
摘要:
水循环观测基地是指对区域大气降水、蒸发蒸腾、河川径流、断面流量、地下水补径排等要素开展系统性连续观测,是水资源调查监测和水资源管理的重要科学依据。中国水循环观测基地经历了3个发展阶段,取得了丰硕成果,但仍存在观测基地空间布局不合理、部分区域代表性丧失、设备老化落后等问题。为适应新时期地表水地下水一体化水资源调查,在长江流域选取江西省赣州市禾丰盆地作为典型小流域,建设水循环观测基地。在此背景下,介绍了禾丰盆地水循环野外科学观测基地建设进展。此外,基于当地地质环境条件构建了禾丰盆地水循环监测网络,并综合使用遥感综合解译、大气降水监测、地表河流监测、地下水动态监测井、地下水环境分层监测井等技术手段进行定量观测,根据野外监测数据对地表水地下水循环转换进行了初步分析。
-
关键词:
- 水循环 /
- 水资源监测 /
- 监测网络 /
- 分层监测 /
- 地表水与地下水相互转换
Abstract:The water cycle observation, as an important scientific basis for water resources investigation and water resources management, refers to the systematic and continuous observation of regional atmospheric precipitation, evaporation and transpiration, river runoff, cross-sectional flow, groundwater replenishment and drainage.Water cycle observation bases in China have witnessed three stages' development and achieved fruitful results, but there are some problems such as unreasonable spatial layout of observation bases, loss of representativeness of some regions due to urbanization, and old and backward equipment.To adapt to the integrated surface and groundwater resources survey, the Hefeng Basin in Ganzhou City of Jiangxi Province was chosen as a typical small watershed to build a water cycle observation base.In the context, this paper introduces the construction of Field Scientific Observation Base for water cycle of Hefeng Basin.In addition, based on the hydrogeology condition, a water cycle monitoring network was established in the Hefeng Basin.The remote sensing interpretation, atmospheric precipitation monitoring, surface water monitoring, groundwater dynamic monitoring, groundwater multilevel monitoring and other technical means were used for quantitative observation.Based on the field monitoring data, the groundwater-surface water transformation was preliminarily analyzed.
-
致谢: 感谢河海大学井淼博士对水循环转换分析的提升;感谢武汉工程大学田斌副教授、中国科学院武汉岩土力学研究所肖威工程师在基地建设、仪器选型安装等方面的支撑
-
表 1 禾丰盆地地下水监测井基本情况
Table 1 Groundwater monitoring wells in the Hefeng catchment
钻孔编号 孔深/m 地下水埋深/m 单位涌水量/(m3·d*m-1) 渗透系数K/(m·d-1) JC01 18.2 2.88 35.35 2.77 JC02 14.5 1.96 4.69 0.46 JC03 17.7 2.03 / / JC04 39.0 28.64 / / JC05 28.0 3.41 1.22 0.41 JC06 6.3 1.21 / / JC07 32.0 / / / ZK09 82.7 0.90 68.64 1.34 ZK21 101.6 2.80 82.35 1.26 ZK22 80.50 5.34 0.079 0.0011 -
刘昌明. 黄河流域水循环演变若干问题的研究[J]. 水科学进展, 2004, 15(5): 608-614. doi: 10.3321/j.issn:1001-6791.2004.05.013 严登华, 任立良, 王国庆, 等. 关于陆地水循环演变及其在全球变化中的作用研究设想[J]. 水科学进展, 2016, 27(6): 935-942. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201606019.htm Prakash M R, Slingh V S.Network design for groundwater monitoring-a case study[J]. Environmental Geology, 2000, 6(39): 628-632. doi: 10.1007/s002540050474
Rentier C, Delloye F, Brouyère S, et al. A framework for an optimised groundwater monitoring network and aggregated indicators[J]. Environmental Geology, 2006, 50(2): 194-201. doi: 10.1007/s00254-006-0200-x
Chapman D V, Bradley C, Gettel G M, et al. Developments in water quality monitoring and management in large river catchments using the Danube River as an example[J]. Environmental Science & Policy, 2016, 64: 141-154. http://www.sciencedirect.com/science/article/pii/S1462901116303434
魏明海, 刘伟江, 白福高, 等. 国内外地下水环境监测工作研究进展[J]. 环境保护科学, 2016, 42(5): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBH201605005.htm 周仰效, 李文鹏. 地下水水质监测与评价[J]. 水文地质工程地质, 2008, (1): 1-11. doi: 10.3969/j.issn.1000-3665.2008.01.002 周仰效, 李文鹏. 区域地下水位监测网优化设计方法[J]. 水文地质工程地质, 2007, (1): 1-9. doi: 10.3969/j.issn.1000-3665.2007.01.002 李文鹏. 地质灾害隐患和水文地质环境地质调查计划进展[J]. 水文地质工程地质, 2019, 46(2): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201902001.htm 杨建锋. 地下水-土壤水-大气水界面水分转化研究综述[J]. 水科学进展, 1999, 10(2): 3-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ902.015.htm 朱永华, 仵彦卿. 黑河流域地下水监控研究[J]. 干旱区资源与环境, 2000, 14(3): 60-64. doi: 10.3969/j.issn.1003-7578.2000.03.010 朱德全. 浅谈均衡试验场在供水水文地质勘察中的作用[J]. 工程勘察, 1987, (3): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC198703009.htm 西北、内蒙六省区地下水均衡试验场站设计方案技术研讨会会议纪要[J]. 地下水, 1985, (3): 18-19. 周金龙, 张建文. 地矿部地下水均衡试验研究现状与展望[J]. 地下水, 1993, 15(3): 125-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199303013.htm 周金龙, 艾克日木·阿不都拉. 内陆干旱区潜水年垂向补耗差的试验分析[J]. 地下水, 2002, 24(1): 6-7. doi: 10.3969/j.issn.1004-1184.2002.01.002 张德祯, 徐世民. 河南省地下水均衡监测试验研究[J]. 河南地质, 1994, 12(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDD401.006.htm Qin R, Cao G, Wu Y, et al. A method for selecting monitoring wells and measured water-quality characteristics with application to the Liaohe River(China)groundwater system[J]. Environmental Earth Sciences, 2016, 75(9): 792. doi: 10.1007/s12665-016-5593-6
段萌语, 李俊霞, 谢先军. 大同盆地典型小区域高砷地下水化学与同位素特征分析[J]. 安全与环境工程, 2013, 20(6): 1-5. doi: 10.3969/j.issn.1671-1556.2013.06.001 苏小四, 林学钰. 包头平原地下水水循环模式及其可更新能力的同位素研究[J]. 吉林大学学报(地球科学版), 2003, 33(4): 503-508, 529. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304020.htm Liu J, Gao X, Shao W, et al. Water Resources Monitoring System Construction in Shanxi Province, China[J]. Procedia Engineering, 2016, 154: 326-333. doi: 10.1016/j.proeng.2016.07.484
王焰新, 苏春利, 谢先军, 等. 大同盆地地下水砷异常及其成因研究[J]. 中国地质, 2010, 37(3): 771-780. doi: 10.3969/j.issn.1000-3657.2010.03.033 周金龙, 张建文. 昌吉地下水综合试验场简介[J]. 地下水, 1993, 15(4): 177-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU199304018.htm 邵新民, 于得胜, 王蓓. 新疆乌拉泊水均衡试验场凝结水对地下水补给的观测研究[J]. 水文地质工程地质, 2012, 39(2): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202004.htm 李俊亭, 王帅, 宋高举, 等. 郑州地下水均衡试验场的改建工程——总体思路与应用展望[J]. 水文地质工程地质, 2019, 46(4): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201904009.htm 乔晓英, 肖平, 王继华, 等. 郑州地下水均衡试验场的改建工程——试验场监测资料的推广应用核心问题[J]. 水文地质工程地质, 2020, 47(1): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202001006.htm 周金龙, 王斌. 新疆平原区灌溉水入渗补给地下水试验分析[J]. 地下水, 2002, 24(4): 202-203. doi: 10.3969/j.issn.1004-1184.2002.04.004 周金龙, 董新光, 艾克日木·阿不都拉. 天山北坡平原区零通量面形成发育规律研究[J]. 新疆农业大学学报, 2003, 26(1): 62-65. doi: 10.3969/j.issn.1007-8614.2003.01.018 郭占荣, 荆恩春, 聂振龙, 等. 种植条件下潜水入渗和蒸发机制研究[J]. 水文地质工程地质, 2002, (2): 42-44. doi: 10.3969/j.issn.1000-3665.2002.02.011 井柳新, 刘伟江, 王东, 等. 中国地下水环境监测网的建设和管理[J]. 环境监控与预警, 2013, 5(2): 1-4. doi: 10.3969/j.issn.1674-6732.2013.02.001 李志勇, 黎义勇, 黄长生, 等. 赣江流域红层盆地典型构造样式与地下水动力学模式[J]. 地质通报, 2020, 39(12): 1873-1882. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201201&flag=1 郑跃军, 李文鹏, 王瑞久, 等. 潮白河冲洪积扇地下水循环演化特征[J]. 人民长江, 2012, 43(15): 43-46. doi: 10.3969/j.issn.1001-4179.2012.15.012 李文鹏, 郑跃军, 郝爱兵. 北京平原区地下水位预警初步研究[J]. 地学前缘, 2010, 17(6): 166-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006022.htm Cherry J A, Parker B L, Keller C.A New Depth-Discrete Multilevel Monitoring Approach for Fractured Rock[J]. Groundwater Monitoring & Remediation, 2007, 27(2): 57-70. http://www.ingentaconnect.com/content/bsc/gwmr/2007/00000027/00000002/art00004
刘学浩, 李琦, 王清, 等. 一孔多层地下水环境监测技术国际经验与对中国的启示[C]//2017中国环境科学学会科学与技术年会论文集(第二卷), 2017, (7): 2104-2112. 李琦, 刘学浩, 李霞颖, 等. 基于U型管原理的浅层地下流体环境监测与取样技术[J]. 环境工程, 2019, 37(2): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201902008.htm 刘学浩, 李琦, 方志明, 等. 一种新型浅层井CO2监测系统的研发[J]. 岩土力学, 2015, 36(3): 898-904. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503049.htm