• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据

车亚文, 刘建峰, 赵硕, 葛茂卉, 吕前露

车亚文, 刘建峰, 赵硕, 葛茂卉, 吕前露. 2021: 大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据. 地质通报, 40(1): 152-163. DOI: 10.12097/gbc.dztb-40-1-152
引用本文: 车亚文, 刘建峰, 赵硕, 葛茂卉, 吕前露. 2021: 大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据. 地质通报, 40(1): 152-163. DOI: 10.12097/gbc.dztb-40-1-152
CHE Yawen, LIU Jianfeng, ZHAO Shuo, GE Maohui, LYU Qianlu. 2021: Early early-Cretaceous post-collisional tectonic setting of the southern segment of the Great Xing'an Range: Evidence from the Lanjiayingzi gabbro-diorite in Linxi area. Geological Bulletin of China, 40(1): 152-163. DOI: 10.12097/gbc.dztb-40-1-152
Citation: CHE Yawen, LIU Jianfeng, ZHAO Shuo, GE Maohui, LYU Qianlu. 2021: Early early-Cretaceous post-collisional tectonic setting of the southern segment of the Great Xing'an Range: Evidence from the Lanjiayingzi gabbro-diorite in Linxi area. Geological Bulletin of China, 40(1): 152-163. DOI: 10.12097/gbc.dztb-40-1-152

大兴安岭南段早白垩世早期后碰撞构造环境——来自林西县兰家营子辉长闪长岩的证据

基金项目: 

国家重点研发计划项目《北方东部复合造山带岩石圈三维架构与成矿地质背景》 2017YFC0601301

国家自然科学基金项目《内蒙古东南部早—中三叠世镁铁质火山岩的成因及地质意义》 41472055

中国地质调查局项目《北方山系西拉木伦与贺根山基础地质调查》 DD20190004

《兴蒙造山带关键地区构造格架与廊带地质调查》 DD20160201-01

详细信息
    作者简介:

    车亚文(1995-), 男, 在读硕士生, 地球化学专业。E-mail: 1824186650@qq.com

    通讯作者:

    刘建峰(1981-), 男, 博士, 研究员, 从事岩石地球化学和区域大地构造研究。E-mail: wenjv@aliyun.com

  • 中图分类号: P588.12;P534.53

Early early-Cretaceous post-collisional tectonic setting of the southern segment of the Great Xing'an Range: Evidence from the Lanjiayingzi gabbro-diorite in Linxi area

  • 摘要:

    对大兴安岭南段林西县以北兰家营子辉长闪长岩开展了系统的岩石学、锆石年代学和地球化学分析,以揭示该岩体的成因,并探讨大兴安岭南段早白垩世大地构造背景。锆石U-Pb定年结果表明,该岩体的形成时代为145.6±0.6 Ma,为早白垩世早期侵入体。地球化学分析结果表明,该岩体SiO2含量为53.38%~54.45%,K2O含量为1.34%~1.43%,Na2O含量为3.85%~4.05%,铝饱和指数A/CNK值介于0.8~0.9之间,属于钙碱性偏铝质岩浆岩。岩石的MgO和TFe2O3含量分别为5.44%~5.73%和7.53%~8.33%,相应的Mg#值介于36.96~38.24之间,结合斜长石的环带和辉石的包橄结构,认为岩石是幔源原始岩浆经历分离结晶作用的产物。岩石相对富集Rb、Ba等大离子亲石元素,亏损Nb、Ta等高场强元素,锆石εHft)介于5.4~9.0之间,指示岩浆起源于亏损的受俯冲流体交代过的岩石圈地幔。兰家营子辉长闪长岩与林西地区同时代A型花岗岩构成双峰式岩浆岩组合,指示它们是伸展环境的产物。综合区域地质资料,认为大兴安岭南段早白垩世早期岩浆岩的形成与蒙古-鄂霍茨克洋闭合引起的碰撞后伸展背景有关。

    Abstract:

    Based on the systematic petrology, zircon chronology and geochemistry analysis of the Lanjiayingzi gabiodiorite pluton in the north of Linxi County in southern Great Khingan Range, genesis of the pluton and the Early Cretaceous tectonic setting are discussed.Zircon U-Pb dating reveals that the pluton was formed in Early Cretaceous (145.6±0.6 Ma).Geochemistry of the pluton is characterized by 53.38%~54.45% of SiO2 contents, 1.34%~1.43% of K2O contents and 3.85%~4.05 % of Na2O contents, with 0.8~0.9 of A/CNK, which indicates that the pluton belongs to a calc-alkaline metaluminous magmatic rock.Its MgO and TFe2O3 contents vary from 5.44%~5.73% and 7.53%~8.33% respectively, with 36.96 to 38.24 of Mg# values.Combined with the girdle of plagioclase and the poikilitic texture of olivine in clinopyroxene, it is suggested that the pluton was the product of the fractional crystallization of mantle-derived primary magma.In addition, the pluton is relatively rich in LILEs such as Rb and Ba, and depletion in HFSEs such as Nb and Ta, with +5.4 to +9.0 of zircon εHf(t) values, which indicates that the pluton was derived from a depleted lithospheric mantle that experienced metasomatism from the subduction fluid.The Lanjiayingzi gabbrodiorite and coeval A-type granites in Linxi area constitute the bimodal magmatic assemblage, which suggests that they were formed in an extensional setting.Combined with regional geology, it is suggested that the formation of the Early Cretaceous magmatic rocks in southern Great Khingan Range has relation with the post-collision extensional setting resulting from closure of the Mongol-Okhotsk Ocean.

  • 关于国际地层年表中的侏罗系/白垩系界线年龄,在21世纪80年代初国际地学界分别提出了144Ma和130Ma两种方案。英国剑桥大学Harland等[1]提出了侏系系/白垩系界线年龄为144Ma,是用“年龄平摊法”算出的;法国居里大学Kennedy等[2]根据各国海相地层中海绿石年龄的测定结果提出侏罗系/白垩系界线年龄为130Ma [3](包括世界各国20个实验室、136位专家提供的研究成果)。

    对上述2种方案,144Ma(现在国际地层年表修改为145Ma)方案被认为不可取[4]。王思恩等[3]评述中国陆相生物地层的侏罗系/白垩系界线在河北滦平盆地;王思恩等[5]确认130.7Ma为中国陆相地层侏罗系/白垩系的界线年龄。本文依据全国地层委员会组织的滦平盆地中生代地层野外考察时采集的凝灰岩样品,对大北沟组顶部凝灰岩(斑脱岩)锆石实测年龄数据表明:侏罗系/白垩系界线的年龄应在129.9±1.1Ma,该数据与Odin为首的各国专家提出的130Ma方案一致,考虑了法国、英国、前苏联、瑞典、美国的侏罗系/白垩系界线附近地层中多国的海绿石测年数据,建议采用法国侏罗系/白垩系界线为标准[2]

    “国际地层表说明” [6]明确指出,“侏罗系—白垩系界线无疑是所有系(纪)中最成问题的界线之一”。究其原因,无论海相或陆相均未找到沉积连续和化石丰富的界线地层剖面,更未建立层型,使研究者讨论问题缺乏统一的标准。中国陆相侏罗纪—白垩纪地层发育得天独厚,自Grabau于1923年提出“热河生物群”开始,两系界线划分一直存在激烈争论,争论焦点是热河生物群的发展演化和层位归属[7-8]

    中国陆相侏罗系—白垩系相当发育,分布广泛。在中国东部地区主要分布于各种断陷盆地和山间小盆地中。中国侏罗纪和白垩纪的陆相地层中赋存丰富的煤、石油、天然气资源;火山岩地层中含有多种金属矿产,因此,对侏罗纪—白垩纪地层的研究有重要的意义。通过建立“陆相层型”工作[9-22],于冀北滦平盆地火斗山乡张家沟找到了大北沟组-大店子组-西瓜园组沉积连续剖面,该剖面出露完整、化石丰富、无后期构造干扰;该剖面属单一断陷湖盆沉积,以半深湖-深湖相夹扇三角洲相为特征,夹多层火山岩。剖面上发育丰富的多门类化石,富含三尾拟蜉蝣、介形虫、叶肢介、腹足类、双壳类、两栖类龟鳖类、节肢动物虾类、脊椎动物狼鳍鱼、鲟等。特别是张家沟下营榆树下剖面,大北沟组顶部—大店子组底部界线为典型的陆相地层剖面,属单一浅湖相泥岩夹砂岩沉积。经过多学科的综合研究,建立陆相侏罗系—白垩系界线层型,确定界线点位以介形虫Cypridea stenolonga的始现为标志。

    目前侏罗系/白垩系界线附近的生物地层学研究,对地层的划分和对比仍存在不同的意见,例如,以冀北—辽西地区为例,侏罗系/白垩系界线划在义县组底,还是划在义县组之中?这是依然需要研究与讨论的问题。

    陆相侏罗系—白垩系界线过渡地层在冀北滦平盆地分别称大北沟组和大店子组,发育于该地区南部,(从东到西)沿西沟—大北沟—大店子—张家沟—兴隆沟—柏砬沟一线呈带状出露(图 1)。大北沟组剖面位于榆树下村的西侧,起点坐标:北纬40o49' 20″、东经117o12'99″;终点坐标:北纬40o 49' 144″、东经117o 12' 50″,总厚226.95m。出露完好且化石丰富。笔者对冀北滦平盆地侏罗系/白垩系界线附近大北沟组顶部的凝灰岩进行了采样(图版Ⅰ)。

    图  1  冀北滦平县榆树下侏罗系与白垩系界线剖面[23]
    Figure  1.  The section of the boundary between Jurassic and Cretaceous in Yushuxia, Luanping County, Hebei Province
      图版Ⅰ 
    a.滦平县榆树下大北沟组剖面;b.滦平县榆树下土城子组砾岩;c、d.大北沟组采样点;e、f.大北沟组凝灰岩薄片;g、h.大北沟组凝灰岩锆石特征
      图版Ⅰ. 

    下白垩统义县阶(下部)大店子组一段(K1d1)黄褐色厚层细砾岩和含砾粗砂岩

    —————————整合—————————

    上侏罗统大北沟阶大北沟组三段(J3d3)

    27.黄绿色粉砂质泥岩、粉砂岩,夹大量小泥灰岩透镜体。含介形类Eoparacypris surriensis, E.jingshangensis, Torinina obesa, Darwinula leguminellaD.xiayingensis;叶肢介Nestoria pissovi                                                                          10.96m

    26.灰绿色泥岩、粉砂质泥岩,夹灰色薄层泥灰岩和黑色页岩。由下至上发育4个韵律,每一韵律下部为均一的泥岩,上部夹泥灰岩和黑色页岩。含丰富的介形类Luanpingella postacuta, L. dorsincurva, Torinina obesa, Eoparacypris surriensis, E. jingshangensis, E. aff. macroselina, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, P. dorsalta, Limnocypridea subplana, Rhinocypris dadianziensis, R. subechinata, Djungarica sp. 1, Djungarica sp. 2, Darwinula xiayingensi, D. leguminella, D. dadianziensis等;叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, Pseudograpta zhangjiagouensis, P.dadianziensis, Nestoria sp., Yanshania xishunjingensis, Y. subovata, N. latiovata, P. huodoushanensis;双壳类Arguniella lingyuanensis, A. yanshanensis                                                                                                                        18.27m

    25.厚层土黄色钙质泥岩为底,上覆灰绿色钙质粉砂岩和深灰色钙质泥岩,夹灰黑色钙质泥页岩和薄板状粉砂岩、泥灰岩。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. longipoda, Pseudograpta zhangjiagouensis, P. dabeigouensis             21.23m

    24.灰绿色粉砂质泥岩和钙质粉-细砂岩,夹深灰色钙质页岩、硅质泥岩和薄层泥灰岩。向上粉砂岩增多。含丰富的介形类Luanpingella postacuta, L. dorsicurva, Eoparacypris jingshangensis, E. surriensis, Pseudoparacypridopsis luanpingensis, P. muntfieldensis, Rhinocypris dadianzienis, R. subechinata, Darwinula leguminella, D. dadianziensis, D. xiayingensis, Djungarica sp. 2等;叶肢介Nestoria xishunjingensis, Keratestheria gigantea, K. ovata                                                                             38.20m

    23.灰黄色、灰绿色中-厚层中-粗粒凝灰质砂岩,层理发育欠佳                                                                             7.94m

    22.灰紫色凝灰角砾岩。角砾粒径小,岩层内分布不均,具有流动构造,横向呈透镜状                                                        1.77m

    ————————整合—————————

    上侏罗统大北沟阶大北沟组二段(J3d2)

    21.黄褐色中薄层钙质粉砂岩、粉砂质泥岩                                                                                                5.43m

    20.黄褐色泥岩夹薄中层粉砂岩。产昆虫Ephemeropsis trisetailis;叶肢介Nestoria pissovi, N. xishunjingensisYanshania xishunjingensis, N. cf. krasinetzi, Pseudograpta cf. dadianziensis                                                          20.18m

    19.灰色中-薄层钙质泥岩,夹黑色页岩和灰黄色粉砂岩。含叶肢介Nestoria pissovi, N. xishunjingensis                                                                                                                      1.39m

    18.黄褐色粉砂岩,夹灰色薄层钙质泥岩。含叶肢介Nestoria pissovi, N. xishunjingensis, N. krasinetzi, N. karaica, N. Rotalaria 11.88m

    17.黄褐色粉砂岩,夹灰色薄层泥灰岩                                                                                                   5.28m

    16.灰褐色硅质页岩和钙质页岩。含叶肢介Nestoria pissovi, N.karaica, N. xishunjingensis, N. rotalaria, N. mirififormis, N. oblongaJibeilimnadia ovata, Yanshania cf. xishunjingensis, Pseudograpta cf. zhangjiagouensis                                                                                                                     1.92m

    15.黄褐色中-厚层中-粗粒长石石英砂岩、块状粉砂岩                                                                                                                                      0.96m

    14.深灰色钙质泥岩和土黄褐色粉砂岩、粉砂质泥岩,夹褐黑色钙质页岩和硅质页岩。含叶肢介Jibeilimnadia ovata, J. curtiovata, J. latiovata, J. elliptica, Nestoria pissoviN. karaica, N. krasinetziN. xishunjingensisYanshania zhangjiagouensis               5.28m

    13.灰黄色中-薄层粉砂岩,夹褐黑色钙质页岩和薄层泥灰岩。含叶肢介Nestoria pissovi, Nestoria sp.及大量植物碎片                      7.25m

    12.褐黑色薄片状硅质泥页岩、褐黄色钙质页岩和灰绿色泥岩,夹粉砂质泥岩,泥灰岩透镜体和薄层凝灰质中粗砂岩。含叶肢介Nestoria xishunjingensis, N. pissovi, N. luanpingensis, N. karaica, N. krasinetzi, Yanshania xishunjingensis, Y. subovata, Y. zhangjiagouensis     7.25m

    11.黄褐色薄-中层粗粉砂岩,夹透镜状细砂岩和硅质泥岩                                                                                                                                           3.02m

    10.灰褐色薄-中层硅质泥岩,夹灰绿色薄层粉砂泥岩。含叶肢介N. pissovi, Yanshania xishunjingensis                                     6.04m

    9.浅灰黄色中-薄层状粗粉砂岩和细砂岩。形成下细上粗的5个旋回                                                                                4.23m

    8.灰褐色薄层状硅质泥岩、硅质页岩,顶部为浅灰色中层凝灰质细砂岩                                                                           2.42m

    7.灰褐色中-厚层状硅质泥岩和黄绿色粉砂质泥岩互层。含叶肢介Yanshania xishunjingensis, Y. subovata, Nestoria cf. reticulata, N. pissovi, N. xishunjingensis, Jibeilimnadia ovata                                                                                                4.23m

    —————————整合————————

    上侏罗统大北沟阶大北沟组一段(J3d1)

    6.灰绿色中-厚层凝灰质砂岩、含砾砂岩与粉砂岩、泥岩互层                                                                                     12.90m

    5.灰绿色厚层含砾粗砂岩与粗砾岩,砾石分布不均,局部透镜状,岩层横向变化较大                                                                                                                                            2.20m

    4.灰绿色中-厚层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩,发育斜层理层                                                                                                                                            6.20m

    3.灰绿色砂屑沉凝灰岩,层理发育                                                                                                             3.50m

    2.褐灰色中薄层凝灰质中细粒砂岩、含砾粗夹凝灰质粉砂岩、泥岩互层                                                                                                                                            8.80m

    1.灰绿色、褐灰色中薄层夹厚层凝灰质含砾砂岩、夹薄层沉凝灰岩                                                                                1.50m

    ——————火山喷发不整合——————

    下伏地层:上侏罗统待建阶张家口组灰绿色凝灰岩

    锆石U-Th-Pb同位素测定在北京离子探针中心的SHRIMP-Ⅱ上进行,参照分析流程[24]。原始数据的处理[24-25]和锆石U-Pb谐和图的绘制采用Ludwig博士编写的Squid和Isoplot程序[26]。所扣除普通铅的组成根据Stacey等给出的模式计算得出[27](表 1),同位素比值和年龄的误差为1σ相对误差,206Pb/238U年龄加权平均值为95%的置信度误差。

    表  1  滦平盆地侏罗纪—白垩纪斑脱岩样品(2PDBG-2-1) SHRIMP锆石U-Th-Pb测定结果
    Table  1.  SHRIMP U-Th-Pb results for zircons bentonate(2PDBG-2-1) from the Luanping Basin, Hebei Province
    测点 206Pbc/% U/10-6 Th/10-6 232Th/
    238U
    206Pb*/10-6 206Pb/238U
    年龄/Ma
    207Pb*/235U 206Pb*/238U 误差相关系数
    比值 ±1 比值 ±1σ
    2PDBG-2-1-1.1 0.64 825 446 0.56 14.4 129.0±2.2 0.1136 7.6 0.02022 1.7 0.229
    2PDBG-2-1-2.1 0.57 435 189 0.45 7.77 131.8±2.4 0.128 8.4 0.02066 1.8 0.215
    2PDBG-2-1-3.1 0.21 509 221 0.45 8.93 130.0±2.3 0.1299 7.1 0.02038 1.8 0.248
    2PDBG-2-1-4.1 0.00 545 327 0.62 9.49 130.6±2.4 0.151 9.4 0.02047 1.8 0.195
    2PDBG-2-1-5.1 1.24 595 366 0.64 10.5 129.6±2.2 0.0967 9.6 0.02031 1.8 0.183
    2PDBG-2-1-6.1 0.22 676 395 0.60 12.1 132.6±2.2 0.1311 3.9 0.02079 1.7 0.433
    2PDBG-2-1-7.1 3.45 432 184 0.44 7.52 125.0±2.7 0.054 51 0.01958 2.2 0.043
    2PDBG-2-1-8.1 0.00 836 556 0.69 14.9 132.4±2.2 0.1407 3.4 0.02075 1.7 0.482
    2PDBG-2-1-9.1 0.62 644 337 0.54 11.2 128.3±2.2 0.1128 8.7 0.02010 1.8 0.201
    2PDBG-2-1-10.1 9.71 848 696 0.85 16.3 128.8±3.9 0.074 76 0.02019 3.1 0.041
    2PDBG-2-1-11.1 0.51 789 540 0.71 13.6 127.0±2.1 0.1195 4.4 0.01990 1.7 0.385
    2PDBG-2-1-12.1 0.00 381 192 0.52 6.74 134.9±3.0 0.204 13 0.02115 2.2 0.175
    2PDBG-2-1-13.1 0.00 521 286 0.57 9.11 130.8±2.3 0.145 8.3 0.02049 1.8 0.217
    2PDBG-2-1-14.1 0.41 611 233 0.39 10.9 132.1±2.4 0.1325 4.3 0.02070 1.8 0.424
    2PDBG-2-1-15.1 1.66 744 437 0.61 12.8 126.2±2.2 0.091 15 0.01977 1.8 0.122
    2PDBG-2-1-16.1 0.00 745 430 0.60 13.1 131.1±2.2 0.1444 3.4 0.02054 1.7 0.490
    2PDBG-2-1-17.1 0.00 443 225 0.53 7.63 128.0±2.2 0.1448 4.7 0.02005 1.8 0.379
    2PDBG-2-1-18.1 0.00 940 767 0.84 16.3 129.2±2.1 0.1375 3.2 0.02024 1.6 0.510
    下载: 导出CSV 
    | 显示表格

    样品中的锆石晶体呈无色透明-浅黄色自形,粒度多在150~200μm之间,长宽比为2~3。阴极发光图像(CL)显示,锆石具典型的岩浆生长环带,古锆石属于岩浆结晶的产物(图版Ⅰ-gh)。根据可见光图像和CL图像选择合适的位置进行测定,即根据可见光图像剔出裂隙发育和含包裹体较多的颗粒,选取无裂缝、无包裹体的区域;同时根据CL图像,避免测定位置跨越不同世代的混合区域。

    凝灰岩样品(2PDBG-2-1)共测试18颗锆石;其中U含量为381×10-6~848×10-6;个别可达940×10-6;Th含量为184×10-6~696×10-6;个别可达767×10-6;Th/U值为0.21~3.45,个别可到9.71(表 1)。样品2PDBG-2-1测试了18个数据点,15个数据点位于谐和线上(图 2),排除受后期普通铅影响的3个数据点(7.1、10.1、15.1)的年龄值。15个数据点的206Pb/238U年龄为129.9±1.1 Ma,MSWD=0.79,该年龄代表了大北沟组顶部凝灰岩的形成时代。

    图  2  侏罗系与白垩系界线(2PDBG-2-1)锆石U-Pb谐和图
    Figure  2.  Zircon U-Pb concordia diagrams of Jurassic and Cretaceous strata

    (1) 依据生物地层的研究,将中国陆相侏罗系/白垩系界线划在大北沟组与大店子组之间,由此结合前人资料推测,国际海相侏罗系/白垩系界线的年龄应接近130.7Ma。

    (2) 参考前人资料土城子组(后城组)下部年龄为142.6 ± 1.9Ma,中部为139.6 ± 1.5Ma,上部为136.4±1.9~137.3±1.1Ma;张家口组底部锆石年龄为133.7±1.1Ma,张家口组顶部锆石年龄为130.8± 0.7Ma;本文获得大北沟组顶部精确锆石年龄129.9±1.1M,建议将大北沟组顶部凝灰岩(斑脱岩)锆石年龄129.9±1.1Ma视为中国陆相侏罗系/白垩系界线年龄。

    (3) 冀北滦平盆地侏罗系—白垩系同位素年龄测定表明,侏罗系/白垩系界线年龄值可能接近130Ma,而非145Ma。

    致谢: 写作过程中得到中国地质科学院地质研究所张进研究员和曲军峰副研究员的指导和帮助,分析测试得到武汉上谱分析科技有限公司和中国地质科学院矿产资源研究所实验室老师的帮助,审稿专家对本文也提出了宝贵的意见,在此一并表示由衷的感谢。
  • 图  1   中亚造山带构造分区[1](a)和大兴安岭南段地区地质简图(b)

    (年龄数据据参考文献[2-12])

    Figure  1.   Tectonic division of Central Asian Orogenic belt (a) and simplified regional geological map of Southern Great Khingan Range (b)

    图  2   林西地区地质图和采样位置

    Figure  2.   Geological map with the sampling location of the Linxi area

    图  3   兰家营子地区辉长闪长岩结构构造和矿物组成

    a—辉长闪长岩块状构造;b—辉长闪长岩主要组成矿物(正交偏光);c—斜长石环带结构;d—单斜辉石包橄结构;Pl—斜长石;Cpx—单斜辉石;Ol—橄榄石

    Figure  3.   Textare, structure and mineral assembly of the gabbrodiorite pluton in the Lanjiayingzi area

    图  4   兰家营子辉长闪长岩部分锆石阴极发光(CL)图像(a)和年龄谐和图(b)

    (小圆圈为U-Pb定年位置,大圆圈为Hf同位素分析位置)

    Figure  4.   Representative CL images (a) and U-Pb concordia diagram (b) of zircons from the Lanjiayingzi gabbrodiorite

    图  5   大兴安岭南段早白垩世早期侵入岩TAS图解[62-63](a,数据据参考文献[8, 12, 26, 59-61]) 和兰家营子辉长闪长岩SiO2-K2O图解[64](b)

    Figure  5.   TAS diagram of Early Cretaceous intrusive in Southern Great Khingan Range (a) and SiO2-K2O diagram of the Lanjiayingzi gabbrodiorite (b)

    图  6   辉长闪长岩球粒陨石标准化稀土元素配分模式图[65](a)和原始地幔标准化微量元素蛛网图[66](b)

    Figure  6.   Chondrite-normalized REE patterns(a) and primitive mantle-normalized trace element patterns (b) of the Lanjiayingzi gabbrodiorite

    图  7   兰家营子辉长闪长岩锆石Hf同位素演化图解

    (图a中兴蒙造山带东段和燕山褶皱带岩浆岩锆石εHf(t)范围据参考文献[67];图b为图a的局部放大)

    Figure  7.   Zircon Hf isotope data evolution diagrams of the Lanjiayingzi gabbrodiorite

    表  1   兰家营子地区辉长闪长岩LA-ICP-MS锆石U-Th-Pb分析数据

    Table  1   U-Th-Pb age of LA-ICP-MS zircon from the Lanjiayingzi gabbrodiorite

    点号 含量/10-6 232Th/238U 同位素比值 年龄/Ma
    Pb 232Th 238U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ
    DX03-1-01 39.1 1043 1370 0.76 0.0492 0.0017 0.1536 0.0051 0.0226 0.0002 154 77.8 145 4.5 144 1.4
    DX03-1-02 34.7 808 1264 0.64 0.0472 0.0017 0.1498 0.0055 0.0228 0.0002 61.2 81.5 142 4.8 145 1.6
    DX03-1-03 40.4 1088 1414 0.77 0.0491 0.0016 0.1561 0.0050 0.0229 0.0002 150 80.5 147 4.4 146 1.4
    DX03-1-04 41.2 1040 1471 0.71 0.0492 0.0016 0.1555 0.0052 0.0226 0.0002 167 77.8 147 4.6 144 1.4
    DX03-1-05 72.6 2424 2393 1.01 0.0485 0.0014 0.1545 0.0042 0.0228 0.0002 124 66.7 146 3.7 145 1.2
    DX03-1-06 53.6 1870 1729 1.08 0.0488 0.0016 0.1553 0.0050 0.0228 0.0002 139 77.8 147 4.4 145 1.4
    DX03-1-07 38.5 920 1372 0.67 0.0477 0.0017 0.1536 0.0056 0.0230 0.0002 83.4 85.2 145 4.9 146 1.6
    DX03-1-08 21.32 472 788 0.60 0.0456 0.0019 0.1460 0.0060 0.0230 0.0003 138 5.3 146 1.6
    DX03-1-09 27.90 587 999 0.59 0.0495 0.0018 0.1592 0.0054 0.0232 0.0002 172 83.3 150 4.7 148 1.5
    DX03-1-10 58.1 1710 1993 0.86 0.0471 0.0014 0.1502 0.0044 0.0228 0.0002 57.5 66.7 142 3.9 146 1.3
    DX03-1-11 38.6 1139 1271 0.90 0.0480 0.0017 0.1559 0.0051 0.0233 0.0002 98.2 88.0 147 4.5 148 1.5
    DX03-1-12 49.4 1292 1772 0.73 0.0493 0.0016 0.1542 0.0051 0.0224 0.0002 161 77.8 146 4.4 143 1.4
    DX03-1-13 213 10678 5844 1.83 0.0494 0.0012 0.1583 0.0038 0.0229 0.0002 169 62.0 149 3.4 146 1.3
    DX03-1-14 144.0 5856 4321 1.36 0.0491 0.0013 0.1568 0.0039 0.0229 0.0002 154 56.5 148 3.4 146 1.3
    DX03-1-15 16.84 429 578 0.74 0.0491 0.0021 0.1567 0.0064 0.0230 0.0003 150 100 148 5.7 146 1.7
    DX03-1-16 29.5 798 1026 0.78 0.0492 0.0020 0.1548 0.0062 0.0225 0.0002 167 99.1 146 5.5 144 1.5
    DX03-1-17 18.31 551 638 0.86 0.0493 0.0023 0.1563 0.0075 0.0226 0.0003 165 139 147 6.6 144 1.6
    DX03-1-18 30.5 889 1037 0.86 0.0496 0.0020 0.1566 0.0061 0.0228 0.0003 176 125.0 148 5.4 146 1.7
    DX03-1-19 25.93 538 955 0.56 0.0485 0.0021 0.1562 0.0067 0.0231 0.0003 120 100 147 5.9 147 1.7
    DX03-1-20 35.5 779 1276 0.61 0.0476 0.0017 0.1518 0.0055 0.0229 0.0002 79.7 85.2 143 4.9 146 1.6
    DX03-1-21 40.3 1100 1395 0.79 0.0486 0.0016 0.1538 0.0049 0.0228 0.0002 132 77.8 145 4.3 145 1.5
    DX03-1-22 23.04 486 826 0.59 0.0481 0.0019 0.1546 0.0061 0.0230 0.0002 102 92.6 146 5.4 147 1.6
    DX03-1-23 59.2 2051 1903 1.08 0.0485 0.0016 0.1563 0.0048 0.0232 0.0003 124 71.3 147 4.2 148 1.7
    DX03-1-24 62.4 2556 1915 1.34 0.0492 0.0014 0.1548 0.0044 0.0226 0.0002 167 73.1 146 3.9 144 1.4
    下载: 导出CSV

    表  2   兰家营子辉长闪长岩主量、微量和稀土元素含量

    Table  2   Contents of major and trace elements, as well as REE of the Lanjiayingzi gabbrodiorite

    样品号 DX03-1 DX03-2 DX03-3 DX03-4 DX03-5 样品号 DX03-1 DX03-2 DX03-3 DX03-4 DX03-5
    SiO2 54.09 53.7 53.38 54.45 53.45 Cr 84.4 94.3 109 83.1 84.2
    TiO2 0.99 1.05 1.23 1.15 1.16 Hf 2.82 2.88 2.94 2.71 2.81
    Al2O3 18.49 18.18 17.95 18.61 18.23 Cs 3.09 3.23 2.8 2.19 2.22
    TFe2O3 7.95 8.21 8.33 7.53 8.13 Sc 13.6 14.6 15.9 13.8 13.8
    MnO 0.11 0.12 0.12 0.12 0.12 Ta 0.3 0.32 0.37 0.34 0.33
    MgO 5.54 5.7 5.73 5.44 5.56 Co 29.4 31.4 31.5 27.2 31.3
    CaO 7.63 7.66 7.81 7.59 7.73 U 0.86 0.96 0.83 1 0.89
    Na2O 3.97 3.92 3.85 4.05 3.9 Sn 1.17 1.11 1.18 1.1 1.04
    K2O 1.43 1.34 1.35 1.41 1.35 La 32.9 18.7 102 17 14.8
    P2O5 0.22 0.24 0.23 0.26 0.29 Ce 54.7 37.1 140 36 33.6
    烧失量 0.08 0.21 0.05 0.16 0.31 Pr 5.88 4.52 12.5 4.53 4.44
    总计 100.58 100.39 100.1 100.83 100.29 Nd 22.5 18.9 41 19.2 19.2
    A/CNK 0.84 0.83 0.82 0.85 0.83 Sm 4.08 3.89 5.36 4 4.08
    Ba 461 452 467 455 444 Eu 1.51 1.48 1.72 1.53 1.47
    Rb 27.8 27.7 26.9 28.5 25.9 Gd 3.54 3.43 4.06 3.66 3.68
    Sr 818 828 842 839 820 Tb 0.49 0.51 0.55 0.52 0.55
    Y 14.8 15.9 16.1 15.7 16.1 Dy 2.8 2.93 3.2 3.09 3.17
    Zr 118 115 114 106 111 Ho 0.53 0.55 0.58 0.57 0.57
    Nb 4.41 4.71 5.6 5.03 5.02 Er 1.39 1.47 1.45 1.45 1.46
    Th 2.57 2.69 4.17 2.78 2.38 Tm 0.21 0.21 0.22 0.22 0.22
    Pb 6.62 6.45 6.66 6.84 6.75 Yb 1.19 1.37 1.32 1.32 1.32
    Ga 20.6 20.4 21 20.8 20.5 Lu 0.17 0.19 0.2 0.2 0.2
    Zn 76.5 83.5 85.2 75.7 84 Mg# 37.39 37.31 37.09 38.24 36.96
    Cu 11.8 9.51 10.7 9.93 13.9 δEu 1.21 1.24 1.13 1.22 1.16
    Ni 30.2 32.1 32.6 25.2 31.2 (La/Yb)N 18.64 9.20 52.10 8.68 7.56
    V 140 147 169 157 150
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV

    表  3   兰家营子辉长闪长岩锆石Lu-Hf同位素分析结果

    Table  3   Zircon Lu-Hf isotopic data of the Lanjiayingzi gabbrodiorite

    测点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) TDM1/Ma fLu/Hf
    DX03-1-01 144 0.025142 0.000640 0.282888 0.000019 4.1 7.2 0.7 512 -0.98
    DX03-1-02 145 0.021711 0.000557 0.282890 0.000016 4.2 7.3 0.6 508 -0.98
    DX03-1-03 146 0.017745 0.000402 0.282911 0.000016 4.9 8.1 0.6 476 -0.99
    DX03-1-04 144 0.036712 0.000868 0.282895 0.000019 4.3 7.4 0.7 505 -0.97
    DX03-1-05 145 0.066984 0.001591 0.282905 0.000020 4.7 7.7 0.7 500 -0.95
    DX03-1-07 146 0.022079 0.000523 0.282887 0.000017 4.1 7.2 0.6 512 -0.98
    DX03-1-08 146 0.020129 0.000501 0.282886 0.000015 4.0 7.2 0.5 512 -0.98
    DX03-1-09 148 0.021605 0.000490 0.282877 0.000017 3.7 6.9 0.6 525 -0.99
    DX03-1-10 146 0.031634 0.000729 0.282886 0.000021 4.0 7.2 0.8 515 -0.98
    DX03-1-11 148 0.053899 0.001231 0.282904 0.000019 4.7 7.8 0.7 497 -0.96
    DX03-1-12 143 0.032645 0.000768 0.282902 0.000017 4.6 7.7 0.6 494 -0.98
    DX03-1-13 146 0.027665 0.000595 0.282911 0.000019 4.9 8.1 0.7 479 -0.98
    DX03-1-14 146 0.053093 0.001158 0.282896 0.000018 4.4 7.5 0.6 507 -0.97
    DX03-1-15 146 0.033945 0.000623 0.282898 0.000024 4.5 7.6 0.9 497 -0.98
    DX03-1-16 144 0.042239 0.000877 0.282923 0.000019 5.3 8.4 0.7 466 -0.97
    DX03-1-17 144 0.031130 0.000635 0.282908 0.000026 4.8 7.9 0.9 483 -0.98
    DX03-1-18 146 0.045799 0.000869 0.282938 0.000025 5.9 9.0 0.9 443 -0.97
    DX03-1-19 147 0.015344 0.000297 0.282887 0.000021 4.1 7.3 0.7 509 -0.99
    DX03-1-20 146 0.019434 0.000419 0.282877 0.000020 3.7 6.9 0.7 524 -0.99
    DX03-1-22 147 0.040944 0.000848 0.282900 0.000021 4.5 7.7 0.8 497 -0.97
    DX03-1-23 148 0.037534 0.000781 0.282914 0.000026 5.0 8.2 0.9 477 -0.98
    DX03-1-24 144 0.056441 0.001153 0.282838 0.000029 2.3 5.4 1.0 590 -0.97
    下载: 导出CSV
  • Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Res. , 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003

    Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30. doi: 10.1016/j.jseaes.2010.11.014

    李鹏川, 李世超, 刘正宏, 等. 内蒙古林西地区满克头鄂博组火山岩形成时代及构造环境[J]. 世界地质, 2016, 35(1): 77-88. doi: 10.3969/j.issn.1004-5589.2016.01.008
    王建国, 和钟铧, 许文良. 大兴安岭南部钠闪石流纹岩的岩石成因: 年代学和地球化学证据[J]. 岩石学报, 2013, 29(3): 853-863. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm
    覃锋, 刘建明, 曾庆栋, 等. 内蒙古克什克腾旗小东沟斑岩型钼矿床成岩成矿机制探讨[J]. 岩石学报, 2009, 25(12): 3357-3368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912024.htm
    刘翼飞. 内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究[D]. 中国地质科学院硕士学位论文, 2009.
    杨奇荻, 郭磊, 王涛, 等. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 2014, 30(7): 1961-1981. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407011.htm
    刘伟, 潘小菲, 谢烈文, 等. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 2007, 23(2): 441-460. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702023.htm
    江思宏, 梁清玲, 刘翼飞, 等. 内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其对成矿时间的约束[J]. 岩石学报, 2012, 28(2): 495-513. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202013.htm
    王迪, 赵国春, 苏尚国, 等. 大兴安岭南段晚中生代侵入岩时空分布及主脊与东坡岩体特征对比[J]. 现代地质, 2020, 34(3): 466-482. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202003005.htm
    李雪菲, 赵庆英, 王晓志, 等. 内蒙古扎鲁特地区毛伊勒吐岩体形成时代及构造环境[J]. 地质与资源, 2012, 21(2): 194-199. doi: 10.3969/j.issn.1671-1947.2012.02.003

    Li S, Wilde A, Wang T, et al. Incremental growth and origin of the Cretaceous Renjiayingzi pluton, southern Inner Mongolia, China: Evidence from structure, geochemistry and geochronology[J]. Journal of Asian Earth Sciences, 2013, 75: 226-242. doi: 10.1016/j.jseaes.2013.07.005

    李锦轶, 刘建峰, 曲军峰, 等. 中国东北地区主要地质特征和地壳构造格架[J]. 岩石学报, 2019, 35(10): 2989-3016. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201910005.htm
    许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302002.htm
    刘永江. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 4: 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
    徐备, 王志伟, 张立杨, 等. 兴蒙陆内造山带[J]. 岩石学报, 2018, 34(10): 2819-2844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201810002.htm
    祝洪臣, 张烔飞, 权恒. 大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J]. 吉林大学学报, 2005, 35(4): 436-442. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200504004.htm
    潘小菲, 郭利军, 王硕, 等. 内蒙古维拉斯托铜锌矿床的白云母39Ar/40Ar年龄探讨[J]. 岩石矿物学杂志, 2009, 28(5): 473-479. doi: 10.3969/j.issn.1000-6524.2009.05.007
    邵积东, 王守光, 赵文涛, 等. 大兴安岭地区成矿地质特征及找矿前景分析[J]. 地质与资源, 2007, (4): 252-262. doi: 10.3969/j.issn.1671-1947.2007.04.002
    曾庆栋, 刘建明, 禇少雄, 等. 大兴安岭南段多金属矿成矿作用和找矿潜力[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1100-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604010.htm

    Zhang J H, Ge W C, Wu F Y, et al. Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 2008, 102: 138-157. doi: 10.1016/j.lithos.2007.08.011

    赵辉, 李舢, 王涛, 等. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代, 成因及其构造意义[J]. 地质通报, 2015, 34(12): 2203-2218. doi: 10.3969/j.issn.1671-2552.2015.12.007

    Zeng Q D, Liu J M, Chu S X, et al. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting[J]. International geology review, 2012, 54(16): 1843-1869. doi: 10.1080/00206814.2012.677498

    葛文春, 林强, 孙德有, 等. 大兴安岭中生代玄武岩的地球化学特征: 壳幔相互作用的证据[J]. 岩石学报, 1999, 15(3): 396-407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903007.htm
    林强, 葛文春, 孙德有, 等. 东北地区中生代火山岩的大地构造意义[J]. 地质科学, 1998, 33(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm
    姚百赫, 来林, 徐文坦, 等. 内蒙古敖仑敖包早白垩世A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质学刊, 2018, 42(2): 264-276. doi: 10.3969/j.issn.1674-3636.2018.02.012
    吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm
    吴福元, 孙德有. 中国东部中生代岩浆作用与岩石圈减薄[J]. 长春科技大学学报, 2000, 4(1): 313-318. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199904000.htm

    Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119. http://www.researchgate.net/publication/222992706_nature_and_significance_of_the_early_cretaceous_giant_igneous_event_in_eastern_china

    程银行, 刘永顺, 滕学建, 等. 内蒙古莫合尔图中-晚侏罗世火山岩年代学、地球化学研究及其意义[J]. 地质学报, 2013, 87(7): 943-956. doi: 10.3969/j.issn.0001-5717.2013.07.004
    陈志广, 张连昌, 周新华, 等. 满洲里新右旗火山岩剖面年代学和地球化学特征[J]. 岩石学报, 2006, 22(12): 2971-2986. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612013.htm
    郝彬, 宋江, 李朝柱, 等. 赤峰地区晚中生代火山岩锆石U-Pb年代学及地球化学特征[J]. 大地构造与成矿学, 2016, 40(6): 1261-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201606013.htm

    Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range(NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters, 2006, 251(1/2): 179-198.

    张鹏, 和钟铧, 隋振民, 等. 内蒙古索伦地区花岗斑岩岩石成因及构造背景[J]. 世界地质, 2019, 38(1): 46-57. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201901005.htm
    王春林, 孟明亮, 鲁孝军, 等. 内蒙古多伦晚中生代中酸性火山岩岩石地球化学特征及构造环境分析[J]. 地质与勘探, 2018, 5(10): 988-1000. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201805010.htm
    郭锋, 范蔚茗, 王岳军, 等. 大兴安岭南段晚中生代双峰式火山作用[J]. 岩石学报, 2001, 17(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm
    葛文春, 林强, 孙德有, 等. 大兴安岭中生代两类流纹岩成因的地球化学研究[J]. 地球科学, 2000, 25(2): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm
    葛文春, 吴福元, 周长勇, 等. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 2005, 21(3): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503016.htm
    李益龙. 华北-西伯利亚板块对接带早白垩纪的裂解: 来自西拉木伦断裂带中性岩墙群的锆石U-Pb年龄及地球化学数据[J]. 中国地质大学学报, 2010, 35(6): 921-932. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201006005.htm
    李舢. 北山-内蒙古地区三叠纪花岗岩及其构造意义[D]. 中国地质科学院博士学位论文, 2013.
    王成文, 金巍, 张兴洲, 等. 东北及邻区晚古生代大地构造属性新认识[J]. 地层学杂志, 2008, 2: 119-136. doi: 10.3969/j.issn.0253-4959.2008.02.001

    Xu B, Charvet J, Chen Y, et al. Middle Paleozoic Convergent Orogenic Belts In Western Inner Mongolia(China): Framework, Kinematics, Geochronology And Implications For Tectonic Evolution Of The Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4): 1342-1364. doi: 10.1016/j.gr.2012.05.015

    Jian P, Liu D, Kröner A, et al. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for continental growth[J]. Lithos, 2008, 101(3/4): 233-259. http://www.sciencedirect.com/science/article/pii/S0024493707001508

    Li S, Wilde S A, Wang T, et al. Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2016, 29(1): 168-180. doi: 10.1016/j.gr.2014.11.006

    Jian P, Liu D Y, Kröner A, et al. Evolution of a Permian intraoceanic arctrench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118: 169-190. doi: 10.1016/j.lithos.2010.04.014

    Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 288-308. http://petrology.oxfordjournals.org/external-ref?access_num=10.1029/2002TC001484&link_type=DOI

    Zhang W, Wu T, Zheng R, et al. Post-collisional Southeastern Beishan granites: Geochemistry, geochronology, Sr-Nd-Hf isotopes and their implications for tectonic evolution[J]. Journal of Asian Earth Sciences, 2012, 58: 51-63. doi: 10.1016/j.jseaes.2012.07.004

    王瑜, 李春风, 陈洪洲. 中国东北地区新生代火山活动的构造背景[J]. 地质论评, 1999, 45(增): 180-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1025.htm
    李锦轶, 高立明, 孙桂华, 等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 2007, (3): 565-582. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
    刘建峰, 迟效国, 张兴洲, 等. 内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J]. 地质学报, 2009, 83(3): 365-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm
    刘建峰, 迟效国, 赵芝, 等. 内蒙古巴林右旗建设屯埃达克岩锆石U-Pb年龄及成因讨论[J]. 岩石学报, 2013, 29(3): 827-839. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303008.htm

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.sciencedirect.com/science/article/pii/s0009254108003501

    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4

    Ludwing K R. Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Genter, Berkeley, California, 2003.

    侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 2007, (10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, (16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    Koschek G. Origin and significance of the SEM cathodoluminescence from ziron[J]. Journal of Microscopy, 1993, 171(3): 223-232. doi: 10.1111/j.1365-2818.1993.tb03379.x

    Belousova E, Griffin W, O'Reilly S, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

    Yuan L L, Zhang X H, Yang Z L. Early Cretaceous gabbro-granite complex from central Inner Mongolia: Insights into initial rifting and crust-mantle interaction in the northern China-Mongolia basin-range tract[J]. Lithos, 2019, 324/325: 859-876. doi: 10.1016/j.lithos.2018.12.010

    刘峰岩, 和钟铧, 高龙飞, 等. 内蒙古索伦地区黄土达坂花岗岩形成时代、地球化学特征及构造背景[J]. 世界地质, 2018, 37(3): 761-776. doi: 10.3969/j.issn.1004-5589.2018.03.009
    龙舟, 来林, 张学斌, 等. 内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质与勘探, 2017, 53(6): 1115-1128. doi: 10.3969/j.issn.0495-5331.2017.06.007

    Middlemost E A K. Naming materials in the magma/igneous rock System[J]. Earth Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9

    Irivin T N, Baragar W R A. A guide to the chemical classification of the common volacnic rock[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. http://petrology.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gscjes&resid=8/5/523

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 1989, 22(4): 247-263. doi: 10.1016/0024-4937(89)90028-5

    Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier, 1984: 63-114.

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352.

    豆孝芳, 陈鑫, 郑有业, 等. 西藏班戈寒武纪辉长闪长岩体的发现及其构造意义[J]. 地球科学, 2020, 45(6): 2091-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006022.htm
    董春艳, 王晨, 颉颃强, 等. 冀东新太古代晚期界岭口闪长岩成因: U-Pb-Nd-Hf-O同位素研究[J]. 岩石学报, 2018, 34(9): 2793-2810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809018.htm

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. http://www.sciencedirect.com/science/article/pii/0009254177900572

    Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. Treatise on Geochemistry, 2003, 3: 1-64.

    Zhao J H, Zhou M F. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district(Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle[J]. Precambrian Research, 2007, 152(1/2): 27-47. http://www.sciencedirect.com/science/article/pii/S030192680600218X

    刘建峰. 内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D]. 吉林大学博士学位论文, 2009.
    刘建峰, 李锦轶, 迟效国, 等. 内蒙古东南部早三叠世花岗岩带岩石地球化学特征及其构造环境[J]. 地质学报, 2014, 88(9): 1677-1690. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409005.htm
    鲍庆中, 张长捷, 吴之理, 等. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. 吉林大学学报(地球科学版), 2007, 37(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200701002.htm
    鲍庆中, 张长捷, 吴之理, 等. 内蒙古东南部晚古生代裂谷区花岗质岩石锆石SHRIMP U-Pb定年及其地质意义[J]. 中国地质, 2007, 34(5): 790-798. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200705004.htm
    陈斌, 赵国春. 内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J]. 地质论评, 2001, 47(4): 361-367. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm

    Daly R A. The geology of Ascension Island[J]. Proc. Amer. A-cad. Arts Sci. , 1925, 60: 180.

    王焰, 钱青, 刘良, 等. 不同构造环境中双峰式火山岩的主要特征[J]. 岩石学报, 2000, (2): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002003.htm
    邓晋福, 肖庆辉, 苏尚国, 等. 火成岩组合与构造环境: 讨论[J]. 高校地质学报, 2007, (3): 392-402. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703004.htm

    Ringwood A E. Slab-mantle interactions: Petrogenesis of intraplate magmas and structure of the upper mantle[J]. Chemical Geology, 1990, 82: 187-207. http://www.onacademic.com/detail/journal_1000035297533810_2c0a.html

    Sorokin A A, Sorokin A P, Ponomarchuk V A, et al. The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan-Ogodzha volcanoplutonic belt(Amur region)[J]. Russian Geology and Geophysics, 2010, 51(4): 369-379. http://www.sciencedirect.com/science/article/pii/S1068797110000350

    李锦轶. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 1998, 44(4): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804001.htm
    李锦轶, 张进, 杨天南, 等. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J]. 吉林大学学报(地球科学版), 2009, 39(4): 584-605. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904002.htm
    李锦轶, 曲军峰, 张进, 等. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J]. 地质通报, 2013, 32(2/3): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1000.htm
    黄始琪, 董树文, 胡健民, 等. 蒙古-鄂霍次克构造带的形成与演化[J]. 地质学报, 2016, 90(9): 2192-2205. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201609011.htm
    中国地质调查局发展研究中心, 中国石油化工股份有限公司石油勘探开发研究院等. 中华人民共和国1:250万地质图. 2002.
    内蒙古自治区地质调查局. 林西县刘家营子地区1:20万地质图. 1968.
图(7)  /  表(3)
计量
  • 文章访问数:  3661
  • HTML全文浏览量:  531
  • PDF下载量:  1893
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-08-15
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-01-14

目录

/

返回文章
返回