• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景

张北航, 张进, 曲军峰, 赵衡, 牛鹏飞, 惠洁

张北航, 张进, 曲军峰, 赵衡, 牛鹏飞, 惠洁. 2021: 阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景. 地质通报, 40(1): 110-124.
引用本文: 张北航, 张进, 曲军峰, 赵衡, 牛鹏飞, 惠洁. 2021: 阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景. 地质通报, 40(1): 110-124.
ZHANG Beihang, ZHANG Jin, QU Junfeng, ZHAO Heng, NIU Pengfei, HUI Jie. 2021: Intracontinental deformation, paleo-stress field and tectonic setting in northeastern Alxa Block since Late Mesozoic. Geological Bulletin of China, 40(1): 110-124.
Citation: ZHANG Beihang, ZHANG Jin, QU Junfeng, ZHAO Heng, NIU Pengfei, HUI Jie. 2021: Intracontinental deformation, paleo-stress field and tectonic setting in northeastern Alxa Block since Late Mesozoic. Geological Bulletin of China, 40(1): 110-124.

阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景

基金项目: 

中国地质调查局项目《狼山尔驼庙幅1:5万构造地质填图试点》 12120115069601

国家自然科学基金项目《阿拉善北部蛇绿混杂岩形成机制、变形过程与构造环境》 41972224

中国地质调查局项目《北方山系西拉木伦与贺根山基础地质调查》 DD20190004

详细信息
    作者简介:

    张北航(1990-), 男, 博士后, 从事构造变形与区域构造研究。E-mail: chungbh@yeah.net

  • 中图分类号: P534.5;P542

Intracontinental deformation, paleo-stress field and tectonic setting in northeastern Alxa Block since Late Mesozoic

  • 摘要:

    陆内变形及其构造背景是地质学研究的热点之一。阿拉善地块东北缘的狼山地区中生代以来发育多期陆内变形,是研究陆内变形的理想地区。通过在狼山地区开展1:5万构造地质填图,根据大量的野外观测、详细的测量和构造切割叠加关系,结合前人所做锆石年代学和低温热年代学工作,厘定出狼山地区自晚侏罗世以来发育6期陆内变形。断层面矢量数据反演显示不同期次构造变形形成于不同的构造应力场。先存构造和欧亚板块边缘自晚侏罗世以来不同方向的增生是控制狼山地区陆内变形的主要因素。晚侏罗世—晚白垩世,狼山地区的构造变形主要受古太平洋构造域的影响,进入新生代,狼山地区开始受到青藏高原构造演化的影响。

    Abstract:

    Intracontinental deformation and its tectonic setting is one of the hot topics of geological research. As the Langshan area in northeastern Alxa Block experienced multistage intracontinental deformations since Late Mesozoic, it is an ideal representative region to study intracontinental deformation. Based on large-scale structural mapping, detailed geological survey to clarify field cutting relationship, combined with published zircon geochronology and low-temperature thermochronology results, six stages of intracontinental deformation since the Late Jurassic in Langshan area have been determined.The vector data inversion of fault planes indicates that the deformations in different periods were formed in different paleo-stress fields. Both the previous structures and continuous accretion to the Eurasian continental margin from different directions control the tectonic evolution of Langshan area since Late Jurassic.From Late Jurassic to Late Cretaceous, the tectonic deformations of the Langshan area were mainly affected by the Paleo-Pacific tectonic domain, whereas, in Cenozoic, it began to be affected by the tectonic evolution of the Qinghai-Tibet Plateau.

  • 生态系统服务指生态系统所形成和维持的人类赖以生存的自然环境条件与效用,是人类直接或间接从生态系统得到的所有收益[1]。黄河流域是中国重要的生态屏障,拥有多个国家重点生态功能区,生态系统服务功能十分重要。黄河流域在近40年的经济快速发展的同时,面临水资源短缺、环境污染、自然生态系统面积减少、生物多样性降低、生境破碎、生态灾难频发等系列资源环境问题[2]。从“十八大”报告提出的“把生态文明建设放在突出地位”,到2019年习近平总书记提出的实现黄河流域生态保护与高质量发展,都是要求在发展经济的同时加强生态保护,在发展与保护之间找到平衡点,实现“双赢”。对黄河流域生态系统服务价值变化进行评估,可为流域生态地质调查、生态环境保护、国土空间规划、环境经济核算、生态补偿等决策提供重要依据,也是实现流域高质量发展的关键。

    生态系统服务评价开始于20世纪50年代。1951年,美国水资源委员会发表的《流域经济分析的实践建议》从经济学的角度对流域进行定量分析,成为生态系统服务经济价值研究的起始点[3]。之后,通过损害成本法、收益转移、条件价值法、享乐价格和交通成本法、当量因子法、能值分析法等多种方法将生态系统服务的经济价值和一部分社会文化价值币值化[4]。国外已经对密西西比河流域[5]、亚马逊流域[6-7]、湄公河流域[8]进行了生态系统服务的评估,为系统了解流域生态环境问题及产品和服务供给能力提供了基础。中国也针对黄河流域的区域生态系统服务价值估算开展了大量理论与技术方法研究,如牛叔文[9]估算了黄河上游玛曲地区的生态系统服务价值,宋伟伟等[10]计算了兰州地表水生态服务价值,张楠等[11]定量计算了陕西省安塞县1999—2010年的退耕林生态系统服务价值,丁辉等[12]估算了黄河上游甘南段生态系统服务价值,杨荣等[13]对黄河包头湿地生态系统服务价值进行了货币化估算等。但大多数研究集中于流域局部区域或个别生态系统类型中,缺乏对黄河流域整体性、包含各生态系统的生态系统服务价值及其变化的研究。

    本次研究结合国内外经验,根据黄河流域实际情况,以黄河流域整体为研究对象,并考虑公众和决策者对生态服务的理解状况,将生态服务划分为供给服务:食物生产、原材料生产、水资源供给,调节服务:气体调节、气候调节、水文调节、净化环境,支持服务:土壤保持、维持养分循环、生物多样性,文化服务:美化景观,四大类11项服务,将生态系统类型划为森林、草地、农田、湿地、水体和荒漠6类。定量分析流域生态系统服务功能的空间变化和价值变化,揭示黄河流域生态系统服务功能的强弱及生态系统的稳定性状况,有助于管理者对黄河流域生态系统所提供服务的类型、大小与相对组合进行权衡管理,可以为流域国土空间结构的优化调整和自然资源综合管理提供决策依据。

    黄河干流河道全长5464 km,流经9省71个市(包括州、盟),本次研究以流经市域范围作为流域范围,流域总面积198.46×104 km2。流域内土地、矿产、水资源等自然资源非常丰富,具有极大的发展潜力,在中国经济社会发展和生态环境安全方面具有十分重要的意义。从黄河流域2015年生态系统服务价值分布图(图 1)可知,黄河流域11种生态系统服务价值总量在2015年达到5.03亿元,占当年流域GDP总量的43%;流域生态系统服务以水文、气候、土壤保持调节服务为主,三者占总生态服务价值比重分别为25.7%、20.0%、18.0%;流域生态系统服务价值空间分布上呈“南高北低、上下游低、中游高”的空间特征,中游地区大于下游地区,下游地区大于上游地区。其中,生态系统总服务价值最高的区域为甘肃省南部、阿坝藏族羌族自治州和陕西省,每公顷超过3万元,部分地区大于8万元。

    图  1  2015年黄河流经市域生态系统服务价值分布图
    Figure  1.  Distribution of ecosystem service value of the city through which the Yellow River was flowing in 2015

    研究数据来自中国科学院资源环境科学数据中心提供的2000年、2005年、2010年、2015年4期中国陆地生态系统服务价值空间分布数据集、基于DEM提取的中国流域、河网数据集等[14-15]。其中,陆地生态系统服务价值空间分布数据是以中国陆地生态系统类型遥感分类结果为基础,根据谢高地等[16-17]的生态服务价值当量因子法,借助全国净初级生产力、土壤保持空间分布数据、降水量,分别对生态系统内各服务价值当量因子价值进行一定的调整,计算得到全国范围内食物生产、水资源供给、水文调节等11种生态服务价值,单种生态服务价值求和得到总服务价值。研究还使用了北京大学城市与环境学院地理数据共享服务平台(http://geodata.pku.edu.cn)提供的2015年中国地市行政边界数据。

    借助ArcGIS空间分析功能,按黄河流经地市边界范围重新提取生成黄河流域边界数据,从4期中国陆地生态系统服务价值数据中提取生成黄河流域生态系统服务价值数据。运用Google Earth Engine平台提供的统计分析函数工具,采用线性回归[18-19]、滑动平均[20-21]和Sen’s斜率估计[22]等趋势分析方法,评估黄河流域四大类共11种生态系统服务价值的变化速率,最终得到1 km×1 km分辨率流域每公顷十一种生态服务价值,以及总生态服务价值年变化速率的空间分布图。

    2000—2015年,流域食物生产价值和原料生产价值均呈递增趋势(图 2),玉树—阿坝一带山区和下游引黄灌区减少明显。其中,食物生产价值由1027亿元上涨到1727亿元,上涨了68%;原料生产价值由990亿元上涨到1554亿元,上涨了57%。

    图  2  2000—2015年原料和食物生产价值变化
    Figure  2.  Changes in the value of raw materials and food production during 2000—2015

    宁夏河套平原、黄河三角洲地区农田面积呈增加趋势,且宁蒙河套平原、汾渭盆地农田生产潜力增长趋势较大,食物生产价值增加。下游引黄灌区的河南和山东两省,农田总面积显著下降,食物生产价值呈减少趋势。其余地区变化速率较低。

    黄河流域的不同生态系统通过其系统内部水分的蒸发、蒸腾、光合作用等一定的调温和减弱温室效应功能,其中森林和湿地是气体和气候调节功能的主要承担者。2000—2015年,黄河流域气体调节价值总体上呈递增的趋势(图 3),由2974亿元上涨到4690亿元,增长幅度为58%,其中在2005—2010年间增速放缓。2000年黄河流域气候调节价值为7223亿元,到2015年为止为10889亿元,增长近51%。气候调节价值变化和气体调节变化趋势大致相同,增长速率高的地区主要为黄土丘陵沟壑区、榆林地区、陇中黄土高原区、汾河盆地等地区,主要是由于该地区植被(森林和草地)逐渐恢复。

    图  3  2000—2015年气体和气候调节价值变化
    Figure  3.  Change in the value of gas and climate regulation during 2000—2015

    上游西部玉树地区作为全球气候变化的敏感区,受温室气体排放加剧影响比流域其他地区更显著,增温幅度最大,调节价值变小。上游非保护区域过度放牧、中游地区工农业用水激增,导致河流下泄量日趋减少,使下游河床、湖泊干涸,地下水位下降,湿地、草地生态系统退化明显,导致气体和气候价值减少。

    提供淡水是流域生态系统的服务功能之一。流域资源型缺水禀赋条件长期存在,不考虑冰川融水的生态系统服务流的变化,受整体气候暖干化影响,流域水资源供给价值整体减少(图 4)。在2000—2005的5年间由818亿元上升22.9%,达到1005亿元,但是在2005年后持续下降,下降20.6%,降至798亿元。

    图  4  2000—2015年水资源供给和水文调节价值变化
    Figure  4.  Change of water resources supply and hydrological regulation value from 2000 to 2015

    黄河上游青铜峡以上流域受气候暖干化影响,径流量和水资源供给价值呈减少趋势,主要是汛期降水减少,非汛期降水增加,非汛期产流系数低于汛期;大范围长历时有利于产流的降水过程减少,降水日数减少;降水强度有所增加,局地暴雨增多,以及增温影响。局部海西地区因为气候暖湿化影响,降水量增多,径流量增加。中部宁夏平原、河套平原、黄土高原区、泾河流域、渭河流域,以及下游黄河三角洲等地,由于植被恢复,水土流失得到有效控制,降雨量增加,径流量呈增加趋势,水资源供给价值呈增加趋势。

    生态水文调节可以理解为生态系统通过水库、湖泊、沼泽等对降水截留、过滤、吸收作用等改变降雨径流的时空分配,在一定程度上起到削峰补枯、缓和地表径流、增加地下径流等的作用。黄河流域水文调节价值在2000—2015年间呈先增后减的趋势(图 4),2005年为转折点。其中,在2000—2005年间,黄河流域水文调节价值由1.07万亿增长到1.29万亿元,增长了20%。但是2005年后,水文调节价值不断降低,降到1.06万亿元,下滑18%。

    黄河流域水少沙多,水沙关系不协调。除中游鄂尔多斯高原、汾渭盆地,上游海西、海北及阿拉善盟西部暖湿化地区,下游黄河三角洲地区增加外,大部分地区减少。流域水文调节价值的减少除与大尺度的气候变暖有关外,区域尺度的植被覆盖变化和人类用水量(如农业灌溉)的增加也是不可忽视的原因。在黄河上游,气候变化的影响占主导地位;在中下游,人类活动的影响甚至与气候变化作用旗鼓相当。

    生物多样性对于保持水土、调节气候、维持生态平衡、稳定环境具有关键性作用。黄河流域生物多样性调节价值在2000—2015年呈递增趋势(图 5),由2000年的3012亿元上涨到4775亿元,增幅59%,其中在2005—2010年间变化较平缓。

    图  5  2000—2015年生物多样性调节和净化环境价值变化
    Figure  5.  Changes in the environmental value of biodiversity regulation and purification from 2000 to 2015

    宁蒙河套平原、黄土高原、西北暖湿化地区等大部分地区生物多样性价值呈增长趋势。而上游生态环境脆弱区、下游城市化扩张严重地区,存在河流空间过度管控、生态空间被挤占、水资源过度开发等问题,导致一些重要生态空间与干支流重要廊道的生态功能遭到破坏。

    净化服务是生态系统重要的生态服务之一,通过生态系统的生态过程,在一系列物理、化学和生物作用下,将废弃物降解和净化。2000—2015年黄河流域的净化环境价值呈递增趋势(图 5),由2396亿元增加到4099亿元,增加了1703亿元,占2000年价值总量的71%。

    山区生态脆弱区、关中-天水经济区、下游中段等地区存在农业面源污染、河流底泥污染问题,部分河段纳污超载问题严重,净化环境价值呈减少态势。流域大部分地区净化环境价值呈增加趋势,流域内生态环境正在得到积极有效的恢复。

    2000—2015年呈现“增-减-增”的变化趋势(图 6),2000年初总价值为6810亿元,到2005年为止增加到8916亿元;之后到2010年减少到8088亿元。2010年后,土壤保持价值缓慢上升到8498亿元,整体上呈增加的趋势,增长了19%。土壤保持价值减少地区主要位于晋陕峡谷段和汾河地堑地区。黄河晋陕峡谷段黄土侵蚀严重,是主要的产沙段,尤其是西部黄土高原,黄土高原沟谷发育与黄河阶地相对应[23],下游阶地级数多,黄土侵蚀破碎严重,沟谷长[24];上游阶地级数少,黄土较为完整,沟谷较短。汾河地堑地区第四纪早中期发育的河流也对盆地边缘的黄土造成强烈侵蚀,黄土多支离破碎,很少残留塬面,沟谷多为老年U型沟谷[25-28]。流域整体上土壤保持价值呈增加趋势,和流域内荒漠的减少、植被覆盖的增加有密不可分的关系[27]。从2000年开始流域荒漠化扩展得到遏制,流域中游黄土高原蓄水保土能力显著增强,实现了“人进沙退”的治沙奇迹[28]

    图  6  2000—2015年土壤保持和维持养分价值变化
    Figure  6.  Changes in the value of soil conservation and maintenance nutrients from 2000 to 2015

    养分元素的循环利用是黄河流域内生态系统主要的功能之一。2000—2015年,流域内维持养分循环价值呈递增趋势(图 6),2000年价值总量为324亿元,15年内上涨了57%,达到509亿元。下游沿黄农业生产基地、关中—天水经济区、玉树—果洛—阿坝一带山区等地维持养分循环价值呈减少趋势。宁夏平原、内蒙河套平原、汾渭盆地、甘肃南部,以及延安黄土丘陵沟壑区等地区维持养分循环价值显著增加[29]

    景观美学是景观服务的重要组成部分。2000—2015年,黄河流域景观美学价值总体上呈递增趋势(图 7),由1353亿元跃为2206亿元,增长幅度达63%。中上游和西北部地区随着植被恢复、荒漠化遏制、水多沙少等情况的改善,景观美学价值不断增加。但玉树—阿坝—商洛一带林木分布转向由单一树种或生态特性相似的树种组成的单纯林为主趋势,景观美学价值降低。近30年流域内湖泊湿地、沼泽湿地、河口滩涂湿地等重要自然湿地分别减少25%、21%和40%,而景观单一的人工湿地面积增加60%以上。黄河下游滩区居住有190万居民,开发建设活动密集,存在三角洲侵蚀衰退、河流廊道破碎化严重现象[30-32]

    图  7  2000—2015年美学景观价值变化
    Figure  7.  The change of aesthetic landscape value from 2000 to 2015

    (1) 总生态系统服务价值除水文调节和水资源供给服务呈下降趋势外,总体呈上升趋势。流域总服务价值呈上升趋势。除水文调节和水资源供给服务先增后减,呈下降趋势外,其他9项服务均呈增加趋势。通过对流域食物生产、原材料生产、水资源供给等11项生态服务价值进行求和,得到流域总生态服务价值。2000年流域总生态服务价值为3.77万亿元,2005年上涨22%,为4.59万亿元,2010年下降到4.48万亿元,到2015年又上涨至5.03亿元,相比2000年增长了33.4%。

    (2) 总生态系统服务价值呈现上游南部山区明显减少、中游黄土高原区显著增加、下游轻微降低的空间格局特点(图 8)。

    图  8  2000—2015年总生态服务价值变化速率空间分布
    Figure  8.  Spatial distribution of the change rate of total ecological service value from 2000 to 2015

    ① 上游属于青藏高原和西北部干旱风沙区,物质变化和能量转换缓慢,抗干扰水平和自我平衡水平较差,一旦遭到破坏将很难逆转,生态环境脆弱性高,受全球气候变化影响,玉树—果洛—阿坝一带山区以及青海湖服务价值呈明显下降趋势;②中游黄土高原区生态服务价值增加尤为明显,增幅达48%,其南部改善面积较大而北部地区改善速度缓慢,价值增加主要是因为近年生态保护与修复取得积极有效的成果,森林植被覆盖率大幅度提高,荒漠化趋势得到遏制,生物多样性逐步提高,以国家公园为主题的自然保护地体系逐步完善;③中游太行山区和下游引黄灌区地区等城镇化率高的地区资源开发、工程建设等人类活动易于破坏原有的自然环境,导致其生态功能受损,服务价值降低。

    (3) 价值总量增长了33.4%,但增速低于GDP增速,生态环境与经济发展处于低度协调状态。流域生态系统服务价值增速低于经济发展增速。2000年、2005年、2010年、2015年GDP分别为14555亿元、52249亿元、66089亿元、116236亿元,生态服务价值占GDP比例由315%、85%、76%,下降至43%,生态系统服务价值和GDP变化率比值为0.048,生态环境与经济发展处于低度协调状态。

    (4) 服务供给与下游人口聚居的服务需求之间存在空间不匹配问题。服务供给与需求之间存在空间不匹配问题。如黄河流域生态系统服务分布呈南高北低、上下游低、中游高的空间特征,而上下游由于生态退化其生态系统服务价值在持续下降。下游河南、山东人口密度高、数量大,生态系统服务供给与人口聚居的服务需求之间存在空间不匹配(图 8)。

    为恢复、维持进而提高黄河流域生态系统服务功能,针对黄河流域生态系统服务价值变化,从生态地质工作角度出发,提出如下建议。

    (1) 动态评估流域生态系统承载力。根据生态系统服务价值变化格局,动态评估黄河流域生态系统承载力,分析生态系统服务在区域之间的流动,积极调整和改善国土空间利用类型结构、地质调查工作部署,实施生态恢复措施,为保护生态系统服务和增强流域可持续性提供有用的信息。

    (2) 聚焦关键过程、关键区域、关键要素,开展生态地质调查工作,提升生态系统服务价值,优化流域国土空间结构。其中,在食物生产和原材料生产价值减少明显区,开展土地资源及其利用问题调查研究,开展清洁能源和关键矿产绿色勘查开发;在水资源供给价值减少区,开展“气候-水-人类活动”相互作用机理研究,开展水资源系统行星边界研究,优化配置流域水资源;在气体和气候调节价值下降区,开展气候变化应对研究,分区实施植被恢复措施;在水文调节价值下降区,开展气候变化对水源涵养功能退化影响机制研究,开展重大水利工程环境效应调查研究;在生物多样性调节价值减少明显区,在典型地区建立生态修复示范,开展湿地生态系统修复;在净化环境价值呈减少态势区,开展水体富营养化、土壤污染问题和矿山地质环境问题调查研究;在土壤保持价值明显减少区,开展黄土斜坡水文-应力响应机制研究,查明淤地坝溃决风险;在维持养分循环价值减少区,开展流域生态系统承载力研究;在景观美学价值下降明显区,开展生态林业建设,开展地质遗迹调查、旅游廊道和国家公园建设。

    (1) 黄河流域生态系统服务价值以水文调节、气候调节、土壤保持调节服务为主,空间分布上呈“南高北低、上下游低、中游高”的空间特征。

    (2) 2000—2015年黄河流域生态系统11种类型服务中,水文调节和水资源供给服务以2005年为转折点,呈先增后减整体小幅下降的趋势,分别减少1%、2.3%;其他9项服务呈波动或递增上升趋势,除土壤保持价值小幅增长19%外,其他均大幅上涨50%以上,净化环境价值涨幅高达71%。

    (3) 相比2000年,2015年黄河流域生态系统总服务价值增长了33.4%,呈现“上游玉树—阿坝一带山区明显减少、中游黄土高原区显著增加、下游轻微降低”的空间格局特点;服务价值增速远低于GDP增速,生态环境与经济发展处于低度协调状态;下游生态系统服务与需求之间存在空间不匹配问题。

    (4) 从生态地质调查工作角度出发,建议动态评估黄河流域生态系统承载能力,聚焦关键过程、关键区域、关键要素,开展黄河流域生态地质调查工作,提升生态系统服务价值,优化国土空间结构。

    致谢: 感谢南京大学张庆龙教授在野外工作中的帮助及建设性的讨论,兰州乐途汽车租赁有限公司张新义在野外给予了热心帮助,在此表示感谢。
  • 图  1   阿拉善地块大地构造位置(a)及地质简图(b)

    Figure  1.   Tectonic location (a) and simplified geological map (b) of the Alxa Block

    图  2   狼山地区地质图(据参考文献[32]修改)及主要构造变形期次

    Figure  2.   Geological map and the deformation period of the Langshan region

    图  3   晚侏罗世逆冲构造

    a—二叠纪花岗岩与叠布斯格岩群之中发育的双冲构造;b—二叠纪花岗岩逆冲于二叠纪玄武岩之上;c—叠布斯格岩群片麻岩逆冲于中侏罗统页岩之上

    Figure  3.   Thrusting structure in Late Jurassic

    图  4   早白垩世伸展构造

    a—下白垩统与古元古代叠布斯格岩群之间发育低角度拆离断层,渐新统寺口子组不整合覆盖于下白垩统之上;b—断层带内发育“S-C”组构指示上盘向下运动;c—灰绿色、黄白色厚层断层角砾岩

    Figure  4.   Extension in Early Cretaceous

    图  5   晚白垩世左行走滑断层

    a—沿断层带形成深谷地貌;b—左行走滑断层切割晚侏罗世逆冲断层;c—左行走滑断层切割下白垩统砾岩,砾石错断指示左行走滑(镜头向下);d—左行走滑断层切割下白垩统,沿断层带形成深谷地貌

    Figure  5.   Sinistral strike-slip faults in Late Cretaceous

    图  6   早新生代右行走滑断层

    a—断层带内发育厚层断层角砾岩;b—断层带内发育“S-C”组构,指示右行剪切;c—断层面上发育两期擦痕,早期为左行走滑(黄色虚线),晚期为右行走滑(白色虚线)

    Figure  6.   Dextral strike-slip faults in Early Cenozoic

    图  7   中新世逆冲构造

    a—狼山山前石炭纪花岗岩逆冲于渐新统寺口子组之上,最大主压应力方向为北西—南东向;b—狼山山前石炭纪花岗岩逆冲于下白垩统砾岩之上;c—断层带附近砾岩中砾石发生剪切破裂,形成R破裂,指示上盘向上运动

    Figure  7.   Thrusting in Miocene

    图  8   晚新生代正断层

    a—狼山山前高角度正断层;b—山前正断层切割更新世吉兰泰组

    Figure  8.   Late Cenozoic normal faults

    图  9   狼山地区晚侏罗世以来构造应力场

    Figure  9.   Stress field of the Langshan region since the Late Jurassic

    图  10   亚洲东部晚侏罗世以来构造背景演化

    (据参考文献[14]修改)

    Figure  10.   Tectonic evolution of East Asia since Late Jurassic

  • Brown W G. Deformational style of Laramide uplifts in Wyoming foreland. Interaction of the Rocky Mountain foreland and the Coredilleran thrust belt[J]. Geological Society of America Memoir, 1988, 171: 1-25. http://www.researchgate.net/publication/278730173_Deformation_style_of_Laramide_uplifts_in_the_Wyoming_foreland

    Sandiford M, Hand M. Controls on the locus of intraplate deformation in central Australia[J]. Earth and Planetary Science Letters, 1998, 162(1/4): 97-110. http://adsabs.harvard.edu/abs/1998E%26PSL.162...97S

    Ziegler P A, Van Wees J D, Cloetingh S. Mechanical controls on collision-related compressional intraplate deformation[J]. Tectonophysics, 1998, 300(1/4): 103-129. http://www.onacademic.com/detail/journal_1000035475532610_08a3.html

    Raimondo T, Hand M, Collins W J. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth-Science Reviews, 2014, 130: 128-153. doi: 10.1016/j.earscirev.2013.11.009

    Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0

    Sengör A M C, Natal'in B A. Paleotectonics of Asia: Fragments of a synthesis[C]//Yin A, Harrison T M. The tectonic evolution of Asia. New York: Cambridge University Press, 1996: 486-640.

    Windley B, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254

    Lamb M A, Hanson A D, Graham S A, et al. Left-lateral sense offset of Upper Proterozoic to Paleozoic features across the Gobi Onon, Tost, and Zuunbayan faults in southern Mongolia and implications for other central Asian faults[J]. Earth and Planetary Science Letters, 1999, 173: 183-194. doi: 10.1016/S0012-821X(99)00227-7

    Johnson C L, Webb L E, Graham S A, et al. Sedimentary and structural records of late Mesozoic high-strain extension and strain partitioning, East Gobi basin, southern Mongolia[C]//Hendrix M S, Davis G A. Paleozoic and Mesozoic tectonic evolution of central Asia: From continental assembly to intracontinental deformation.Boulder, Colorado: Geological Society of America, 2001, 194: 413-433.

    Cunningham D. Folded basinal compartments of the southern mongolian borderland: a structural archive of the final consolidation of the central asian orogenic belt[J]. Geosciences, 2017, 7(1): 1-23. doi: 10.3390/geosciences7010001

    Darby B J, Ritts B D. Mesozoic structural architecture of the Lang Shan: North-Central China: Intraplate Contraction, Extension, and Synorogenic Sedimentation[J]. Journal of Structural Geology, 2007, 29: 2006-2016. doi: 10.1016/j.jsg.2007.06.011

    Zhang J, Li J Y, Li Y F, et al. Mesozoic-Cenozoic Multi-Stage Intraplate Deformation Events in the Langshan Region and their Tectonic Implications[J]. Acta Geologica Sinica, 2014, 88: 78-102. doi: 10.1111/1755-6724.12184

    Zhang J, Wang Y N, Qu J F, et al. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geology Review, 2020: 1-31. doi: 10.1080/00206814.2020.1783583.

    牛鹏飞, 曲军峰, 张进, 等. 狼山地区叠布斯格岩群变形研究及其构造意义[J]. 地质学报, 2019, 93(8): 1867-1884. doi: 10.3969/j.issn.0001-5717.2019.08.005
    赵衡, 张进, 李岩峰, 等. 内蒙古狼山地区新生代断层活动特征: 对正断层生长的限定[J]. 中国地质, 2019, 46(6): 1433-1453. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201906014.htm
    赵衡, 张进, 曲军峰, 等. 阿拉善地块东缘新生代中新世挤压变形及动力学背景[J]. 地球科学, 2020, 45(4): 1337-1361. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202004018.htm

    Huang T K. On the major tectonic forms of China[J]. Geological Memoir, Ser. A, 1945, 20: 1-165. http://adsabs.harvard.edu/abs/1947JG.....55...59.

    耿元生, 周喜文. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志, 2010, 29(6): 779-795. doi: 10.3969/j.issn.1000-6524.2010.06.014
    李锦轶, 张进, 曲军峰, 等. 华北与阿拉善两个古陆在早古生代晚期拼合——来自宁夏牛首山沉积岩系的证据[J]. 地质论评, 2012, 58(2): 208-214. doi: 10.3969/j.issn.0371-5736.2012.02.002

    Zhang J, Li J Y, Xiao W X, et al. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 2013, 57: 38-57. doi: 10.1016/j.jsg.2013.10.002

    Zhang J, Zhang Y P, Xiao W X, et al. Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic: Constraints from detrital zircon U-Pb ages and Cambrian sedimentary records[J]. Gondwana Research, 2015, 28: 1168-1182. doi: 10.1016/j.gr.2014.09.012

    Zhang J, Zhang B H, Zhao H. Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U-Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 2016, 668/669: 65-81. doi: 10.1016/j.tecto.2015.12.006

    Yuan W, Yang Z Y. The Alashan Terrane was not part of North China by the Late Devonian: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Gondwana Research, 2015, 27: 1270-1282. doi: 10.1016/j.gr.2013.12.009

    李锦轶. 中国大陆地壳"镶嵌与叠覆"的结构特征及其演化[J]. 地质通报, 2004, 23(9/10): 986-1004. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409174&flag=1
    葛肖虹, 马文璞, 刘俊来, 等. 对中国大陆构造格架的讨论[J]. 中国地质, 2009, 36(5): 949-965. doi: 10.3969/j.issn.1000-3657.2009.05.001

    Yuan W, Yang Z Y. The Alashan Terrane did not amalgamate with North China block by the Late Permian: Evidence from Carboniferous and Permian paleomagnetic results[J]. Journal of Asian Earth Sciences, 2015, 104: 145-159. doi: 10.1016/j.jseaes.2014.02.010

    王廷印, 王金荣, 王士政. 阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义[J]. 兰州大学学报(自然科学版), 1992, 28(2): 194-196. doi: 10.3321/j.issn:0455-2059.1992.02.037
    王廷印, 张铭杰, 王金荣, 等. 恩格尔乌苏冲断带特征及大地构造意义[J]. 地质学报, 1998, 33(4): 385-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX804.000.htm
    吴泰然, 何国琦. 阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J]. 现代地质, 1992, 6(3): 286-296. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199203005.htm

    Zheng R G, Wu T R, Zhang W, et al. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: Geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 2014, 25: 842-858. doi: 10.1016/j.gr.2013.05.011

    张进, 李锦轶, 刘建峰, 等. 内蒙古狼山西南地区枕状玄武岩LA-ICP-MS锆石U-Pb年龄及意义[J]. 地质通报, 2013, 32(2/3): 287-296. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2013Z1007.htm
    田荣松, 解国爱, 张进, 等. 内蒙古狼山地区新元古代狼山群变形特征及区域构造意义[J]. 地质论评, 2018, 63(5): 1180-1192. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201705006.htm
    张北航. 阿拉善地块南缘古生代构造属性: 来自碎屑锆石年龄和变形的限定[D]. 中国地质科学院博士学位论文, 2019: 1-165.

    Friedmann S J, Burbank D W. Rift basins and supradetachment basins: intracontinental extensional end-members[J]. Basin Research, 1995, 7: 109-127. doi: 10.1111/j.1365-2117.1995.tb00099.x

    Darby B J, Ritts B D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold-thrust belt: China[J]. Earth & Planetary Science Letters, 2002, 205: 13-24. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V61-478RN70-2&_user=6894003&_coverDate=12%2F30%2F2002&_rdoc=3&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235801%232002%23997949998%23368863%23FLA%23display%23

    Cui X Y, Zhao Q H, Zhang J, et al. Late cretaceous-cenozoic multi-stage denudation at the western ordos block: constraints by the apatite fission track dating on the Langshan[J]. Acta Geologica Sinica, 2018, 92: 536-555. doi: 10.1111/1755-6724.13541

    Rao G, Chen P, Hu J M, et al. Timing of Holocene paleo-earthquakes along the Langshan Piedmond Fault in the western Hetao Basin, North China: implications for seismic risk[J]. Tectonophysics, 2016, 677: 115-124. http://www.sciencedirect.com/science/article/pii/S0040195116300282

    董树文, 张岳桥, 李海龙, 等. "燕山运动"与东亚大陆晚中生代多板块汇聚构造-纪念"燕山运动"90周年[J]. 中国科学: 地球科学, 2019, 49(6): 913-938.
    郑亚东, 王士政, 王玉芳. 中蒙边界区新发现的特大型推覆构造及伸展变质核杂岩[J]. 中国科学(B辑), 1990, 12: 1299-1305. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199012010.htm
    郑亚东, Davis G A, 王琮, 等. 内蒙古大青山大型逆冲推覆构造[J]. 中国科学(D辑), 1998, 28(4): 289-295. doi: 10.3321/j.issn:1006-9267.1998.04.001

    Davis G A, Wang C, Zheng Y D, et al. The Enigmatic Yinshan Fold-and-Thrust Belt of Northern China: New Views on Its Intraplate Contractional Styles[J]. Geology, 1998, 26: 43-46. doi: 10.1130/0091-7613(1998)026<0043:TEYFAT>2.3.CO;2

    张长厚, 张勇, 李海龙. 燕山西段及北京西山晚中生代逆冲构造格局及其地质意义[J]. 地学前缘, 2006, 13(2): 165-183. doi: 10.3321/j.issn:1005-2321.2006.02.015
    张岳桥, 施炜, 廖昌珍, 等. 鄂尔多斯盆地周边断裂运动学分析与晚中生代构造应力体制转换[J]. 地质学报, 2006, 80(5): 639-647. doi: 10.3321/j.issn:0001-5717.2006.05.002
    张岳桥, 董树文, 赵越, 等. 华北侏罗纪大地构造: 综评与新认识[J]. 地质学报, 2007, 81(11): 1462-1480. doi: 10.3321/j.issn:0001-5717.2007.11.002
    张岳桥, 廖昌珍, 施炜, 等. 论鄂尔多斯盆地及其周缘侏罗纪变形[J]. 地学前缘, 2007, 14(2): 182-196. doi: 10.3321/j.issn:1005-2321.2007.02.015
    张长厚, 李程明, 邓洪菱, 等. 燕山-太行山北段中生代收缩变形与华北克拉通破坏[J]. 中国科学: 地球科学, 2011, 41(5): 593-617. doi: 10.3969/j.issn.1000-3045.2011.05.016

    Faure M, Lin W, Chen Y. Is the Jurassic(Yanshanian)intraplate tectonics of North China due to westward indentation of the North China block[J]. Terra Nova, 2012, 24: 456-466. doi: 10.1111/ter.12002

    Zhao H, Zhang J, Qu J F, et al. Nature of the eastern boundary of the Mesozoic Ordos Basin and the formation of the Luliangshan anticline[J]. The Journal of Geology, 2020, 128(2): 157-187. doi: 10.1086/707346

    Song D F, Glorie S, Xiao W J, et al. Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology[J]. Tectonophysics, 2018, 722: 577-594. doi: 10.1016/j.tecto.2017.11.029

    Zorin Y A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region(Russia)and Mongolia[J]. Tectonophysics, 1999, 306: 33-56. doi: 10.1016/S0040-1951(99)00042-6

    Liu J, Xie F, Lü Y. Seismic hazard assessments for the Ordos Block and its periphery in China[J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 70-82. doi: 10.1016/j.soildyn.2016.02.007

    Hui J, Cheng H Y, Zhang J, et al. Early Cretaceous continent basalts in the Alxa Block, NW China: geochronology, geochemistry, and tectonic implications[J]. International Geology Review, 2020: 1-18. doi: 10.1080/00206814.2020.1734974

    Davis G A, Darby B J, Zheng Y D, et al. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 2002, 30: 1003-1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2

    Meng Q R, Hu J M, Jin J Q, et al. Tectonics of the late Mesozoic wide extensional basin systemin the China-Mongolia border region[J]. Basin Research, 2003, 15: 397-415. doi: 10.1046/j.1365-2117.2003.00209.x

    Johnson C L. Polyphase evolution of the East Gobi basin: sedimentary and structural records of Mesozoic-Cenozoic intraplate deformation in Mongolia[J]. Basin Research, 2004, 16: 79-99. doi: 10.1111/j.1365-2117.2004.00221.x

    Davis G A, Darby B J. Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geoscience Frontiers, 2010, 1: 1-20. doi: 10.1016/j.gsf.2010.08.001

    Wang T, Zheng Y, Zhang J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30: 1-27. doi: 10.1029/2011TC002896

    Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian(Jura-Cretaceous)magmatism and tectonism[J]. Lithos, 2007, 96: 22-35. doi: 10.1016/j.lithos.2006.09.009

    Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton[J]. Chinese Science Bulletin, 2009, 54: 3367-3378. http://www.springerlink.com/content/v2556212u2422025/

    林伟, 王军, 刘飞, 等. 华北克拉通及邻区晚中生代伸展构造及其动力学背景的讨论[J]. 岩石学报, 2013, 29(5): 1791-1810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305025.htm

    Donskaya T V, Windley B F, Mazukabzov A M, et al. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia[J]. Journal of the Geological Society, London, 2008, 165: 405-421. doi: 10.1144/0016-76492006-162

    Vincent S J, Allen M B. Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike-slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 1999, 111: 725-742. doi: 10.1130/0016-7606(1999)111<0725:EOTMAC>2.3.CO;2

    Horton B K, Yin A, Spurlin M S. et al. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine dominated basins of eastcentral Tibet[J]. Geological Society of America Bulletin, 2002, 114: 771-786. doi: 10.1130/0016-7606(2002)114<0771:PESSIN>2.0.CO;2

    Murphy M A, Yin A, Harrison, T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25: 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2

    DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119: 654-680. doi: 10.1130/B26074.1

    Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119: 917-932. doi: 10.1130/B26033.1

    Volkmer J E, Kapp P, Guynn J H, et al. Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet[J]. Tectonics, 2007, 26, TC6007: 1-18. doi: 10.1029/2005TC001832

    Haider V L, Dunkl I, von Eynatten Hilmar, et al. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2013, 70/71: 79-98. doi: 10.1016/j.jseaes.2013.03.005

    Leier A L, DeCelles P G, Kapp P, et al. The Takena formation of the Lhasa terrane, southern Tibet: the record of a Late Cretaceous retroarc foreland basin[J]. Geological Society of America Bulletin, 2007, 119: 31-48. doi: 10.1130/B25974.1

    Pullen A, Kapp P, Gehrels G E, et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 33: 323-336. doi: 10.1016/j.jseaes.2008.01.005

    George A D, Marshallsea S J, Wyrwoll K H, et al. Miocene cooling in the northern Qilianshan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology, 2001, 29: 939-942. doi: 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2

    Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints[J]. Tectonophysics, 2001, 343: 111-134. doi: 10.1016/S0040-1951(01)00196-2

    Zhang B H, Zhang J, Wang Y N, et al. Late Mesozoic-Cenozoic exhumation of the Northern Hexi Corridor: Constrained by Apatite Fission Track ages of the Longshoushan[J]. Acta Geologica Sinica, 2017, 91: 1624-1643. doi: 10.1111/1755-6724.13402

    Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23: 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic mapsof the Japanese Islands: plate tectonic systhesis from 750 Ma to the present[J]. Island Arc, 1997, 6: 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x

    Niu Y L, Liu Y, Xue Q Q, et al. Exotic origin of the Chinese continental shelf: new insight into the tectonic evolution of the western Pacific and eastern China since the Mesozoic[J]. Science Bulletin, 2015, 60: 1598-1616. doi: 10.1007/s11434-015-0891-z

    Yang, Y T, Guo Z X, Song C C, et al. A short-lived but significant Mongol-Okhotsk collisional orogey in latest Jurassic-earliest Cretaceous[J]. Gondwana Research, 2015, 28: 1096-1116. doi: 10.1016/j.gr.2014.09.010

    Faure M. Pre-Eocene synmetamorphic structure in the Mindoro-Romblon-Palawan area, west Philippines, and implications for the history of Southeast Asia[J]. Tectonics, 1989, 8: 963-979. doi: 10.1029/TC008i005p00963

    Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23: 1342-1364. doi: 10.1016/j.gr.2012.05.015

    Ding L, Xu Q, Yue Y H, et al. The Andean-type Gangdese Mountains: paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045

    Ritts B D, Yue Y J, Graham S A. Oligocene-Miocene tectonics and sedimentation along the Altyn Tagh fault, Northern Tibetan Plateau: analysis of the Xorkol, Subei, and Aksay basins[J]. Geology, 2004, 112: 207-229. doi: 10.1086/381658

    Zhuang G S, Hourigan J K, Ritts B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China[J]. American Journal of Science, 2011, 311: 116-152. doi: 10.2475/02.2011.02

    Zhang J, Wang Y N, Zhang B H, et al. Exhumation of marginal mountain ranges of the Xining Basin in NW China and its implication for the evolution of the NE Qinghai-Tibetan Plateau during the Cenozoic[J]. Journal of Asian Earth Sciences, 2015, 97: 10-23. doi: 10.1016/j.jseaes.2014.10.002

    Webb L E, Johnson C L. Tertiary strike-slip faulting in southeastern Mongolia and implications for Asian tectonics[J]. Earth and Planetary Science Letters, 2006, 241: 323-335. doi: 10.1016/j.epsl.2005.10.033

    Ren J Y, Tamaki K, Li S T, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics, 2002, 344: 175-205. doi: 10.1016/S0040-1951(01)00271-2

    Seno T, Maruyama S. Paleogeographic reconstruction and origin of the Philippine Sea[J]. Tectonophysics, 1984, 102: 53-84. doi: 10.1016/0040-1951(84)90008-8

    Leloup P H, Arnaud N, Lacassin R, et al. New constriants on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SW Asia[J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6683-6732. doi: 10.1029/2000JB900322

    Briais A, Patriat P, Tapponnier P. Updated interpretation of Magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328. doi: 10.1029/92JB02280

    Yeh Y C, Sibuet J C, Hsu S K, et al. Tectonic evolution of the Northeastern South China Sea from seismic interpretation[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6): B06103.

    Jolivet L, Tamaki K, Fournier M. Japan Sea, opening history and mechanism: a synthesis[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B11): 22237-22259. doi: 10.1029/93JB03463

    De Grave J, Buslov M M, Van den haute P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: constraints from apatite fission track thermochronology[J]. Journal of Asian Earth Sciences, 2007, 29(2/3): 188-204. http://www.sciencedirect.com/science/article/pii/S136791200600071X

    Yue Y J, Liou J G. Two-stage evolution model for the Altyn Tagh Fault, China[J]. Geology, 1999, 27(3): 227-230. doi: 10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2

    Zhang J, Li J Y, Li Y F, et al. How did the Alxa Block respond to the Indo-Eurasian collision?[J]. International Journal of Earth Sciences, 2009, 98(6): 1511-1527. doi: 10.1007/s00531-008-0404-2

    Zhang J, Cuningham D, Cheng H Y. Sedimentary characteristics of Cenozoic strata in Central-Southern Ningxia, NW China: implications for the evolution of the NE Qinghai-Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2010, 39(6): 740-759. doi: 10.1016/j.jseaes.2010.05.008

    Lu H, Fu B, Shi P, et al. Constraints on the uplift mechanism of northern Tibet[J]. Earth and Planetary Science Letters, 2016, 453: 108-118. doi: 10.1016/j.epsl.2016.08.010

    Yue Y J, Ritts B D, Graham S A, et al. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2004, 217: 111-122. doi: 10.1016/S0012-821X(03)00544-2

    陈正乐, 万景林, 王小风, 等. 阿尔金断裂带8Ma左右的快速走滑及其地质意义[J]. 地球学报, 2002, 23(4): 295-300. doi: 10.3321/j.issn:1006-3021.2002.04.002

    Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years: Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308: 657-678. doi: 10.2475/05.2008.01

    Wang W, Zhang P, Yu J, et al. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin[J]. Scientific Reports, 2016, 6: 27604. doi: 10.1038/srep27604

    Yuan W M, Dong J Q, Wang S C. Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences, 2006, 27: 847-856. doi: 10.1016/j.jseaes.2005.09.002

    Bovet P M, Ritts B D, Gehrels G, et al. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the Western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 2009, 309: 290-329. doi: 10.2475/00.4009.02

    Zheng D W, Wang W, Wan J L, et al. Progressive northward growth of the northern Qilian Shan-Hexi Corridor(northeastern Tibet)during the Cenozoic[J]. Lithosphere, 2017, 9(3): 408-416. doi: 10.1130/L587.1

    Wang W T, Kirby E, Zhang P Z, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: Evidence for basin formation during Oligocene transtension[J]. GSA Bulletin, 2013, 125(3/4): 377-400. doi: 10.1130/b30611.1

    万景林, 王瑜, 李齐, 等. 阿尔金山北段晚新生代山体抬升的裂变径迹证据[J]. 矿物岩石地球化学通报, 2001, 20(4): 222-224. doi: 10.3969/j.issn.1007-2802.2001.04.004
    万景林, 郑文俊, 郑德文, 等. 祁连山北缘晚新生代构造活动的低温热年代学证据[J]. 地球化学, 2010, 39(5): 439-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201005004.htm

    Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39: 359-362. doi: 10.1130/G31356.1

    Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941. doi: 10.1130/GES00523.1

    Zheng D W, Zhang P Z, Wan J L. Rapid exhumation at ~8Ma on the Liupanshan Thrust Fault from apatite fission-track thermochronology: Implications for growth of the Northeastern Tibetan Plateau[J]. Earth and Planetary Science Letters, 2006, 248: 198-208. doi: 10.1016/j.epsl.2006.05.023

    张进, 曲军峰, 张北航, 等. 中华人民共和国地质图(K48E021017)巴彦哈拉幅(1:5万). 中国地质科学院地质研究所, 2019.
图(10)
计量
  • 文章访问数:  3070
  • HTML全文浏览量:  519
  • PDF下载量:  1674
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-09
  • 修回日期:  2020-10-19
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-01-14

目录

/

返回文章
返回