• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

用于专题地质填图的地球物理技术——短周期密集台阵

卢占武, 李文辉, 张新彦, 李秋生, 蔡玉国, 任彦宗, 程永志, 王光文

卢占武, 李文辉, 张新彦, 李秋生, 蔡玉国, 任彦宗, 程永志, 王光文. 2021: 用于专题地质填图的地球物理技术——短周期密集台阵. 地质通报, 40(1): 1-12.
引用本文: 卢占武, 李文辉, 张新彦, 李秋生, 蔡玉国, 任彦宗, 程永志, 王光文. 2021: 用于专题地质填图的地球物理技术——短周期密集台阵. 地质通报, 40(1): 1-12.
LU Zhanwu, LI Wenhui, ZHANG Xinyan, LI Qiusheng, CAI Yuguo, REN Yanzong, CHENG Yongzhi, WANG Guangwen. 2021: A geophysical technology for thematic geological mapping: Short period dense array. Geological Bulletin of China, 40(1): 1-12.
Citation: LU Zhanwu, LI Wenhui, ZHANG Xinyan, LI Qiusheng, CAI Yuguo, REN Yanzong, CHENG Yongzhi, WANG Guangwen. 2021: A geophysical technology for thematic geological mapping: Short period dense array. Geological Bulletin of China, 40(1): 1-12.

用于专题地质填图的地球物理技术——短周期密集台阵

基金项目: 

国家自然科学基金项目《藏南错那洞穹隆及邻区岩石圈结构与铍锡钨多金属矿产形成的深部背景研究》 91962109

自然资源部深地动力学重点实验室自主研究课题《喜马拉雅、三江成矿带混合源地震探测与浅-深结构研究》 J1901-3

中国地质调查局项目《阿拉善、藏东南等关键地段地壳圈层物质与演变基础地质调查》 DD20190001

《冈底斯构造带关键地区深部地质调查》 DD20190016

《雄安新区深部三维地质结构探测(地质所)》 DD20189629

详细信息
    作者简介:

    卢占武(1978-), 男, 博士, 研究员, 从事地球物理和岩石圈结构探测研究。E-mail: luzhanwu78@163.com

  • 中图分类号: P623;P315.7

A geophysical technology for thematic geological mapping: Short period dense array

  • 摘要:

    以问题和需求为驱动的专题地质填图强调,针对某个主要地质体、沉积盆地、重要成矿带、地震带断裂系统等,采用现代化的技术手段开展针对性的专题调查和填图,以解决目标地质体结构、沉积盆地基底起伏、成矿地质体规模、断裂系统分布等重大问题。地球物理是专题填图不可缺少的手段之一,近10年发展起来的短周期密集台阵技术,因其布设灵活、应用广泛、精度高、成本低等特点备受关注。通过介绍短周期密集台阵发展现状,以及在城市、矿山、地震灾害区、沉积盆地等不同地质地貌条件下,利用短周期密集台阵进行近地表结构调查的应用实例,提出了该技术在专题地质填图中的应用前景和技术方案建议,力图通过短周期密集台阵的调查构建结构成像方法,丰富和完善专题填图的技术方法体系。

    Abstract:

    Thematic geological mapping driven by the demands and problems emphasizes that for different geological environments such as a major geological body, sedimentary basin, important metallogenic belt and fault system, modern technical means can be adopted to carry out thematic geological investigation and mapping, so as to solve some major problems of above-mentioned geological environments.Geophysics, as one indispensable means in thematic mapping, its short-period dense array technology developed in recent 10 years has attracted much attention due to flexible layout, wide application, high precision and low cost.This paper mainly introduces the current situation of short period dense array, and its application to near surface structure investigation under different geological and geomorphic conditions such as cities, mines, earthquake and sedimentary basins, etc.The application prospect and technical scheme suggestions of its technology in thematic geological mapping is put forward to improve and perfect the method system of thematic geological mapping technology by means of constructing structure imaging method through the investigation of short period dense array.

  • 致谢: 本文在前期工作积累和撰写期间,与北京卫星环境工程研究所李志伟研究员、南方科技大学郭震老师、中国地质科学院梁峰博士进行了有益讨论,在此表示衷心感谢。
  • 图  1   唐山断裂及邻区短周期密集台阵部署位置图[8]

    Figure  1.   Location of the short period dense array in Tangshan fault area

    图  2   唐山断裂及邻区短周期密集台阵观测的浅层结构[19]

    Figure  2.   The shallow structure observed with short period dense array in Tangshan fault and adjacent area

    图  3   唐山震区第四纪沉积厚度和基底埋深图[8]

    Figure  3.   Quaternary sedimentary thickness and basement of Tangshan earthquake area

    图  4   程海断裂短周期密集台阵位置及S波速度模型[22]

    a—程海断裂位置与地震台站分布;b—程海断裂S波速度模型

    Figure  4.   Location of the short period dense array in Chenghai Fault area and shear wave velocity model

    图  5   济南城区短周期密集台阵部署位置[9]

    Figure  5.   Location of the short period dense array in Jinan City

    图  6   济南城区不同深度(100 m、300 m、600 m、1000 m)横波速度切片图[9]

    Figure  6.   Section of shear wave velocity model at different depths(100 m, 300 m, 600 m and 1000 m)in Jinan urban area

    图  7   合肥市地震台阵部署图和浅层速度剖面[24]

    a—合肥市地震台阵布设位置;b—2条S波速度剖面,PP’和QQ’的位置见图 8-b

    Figure  7.   Distribution of seismic array stations and the velocity structure section in Hefei City

    图  8   合肥市不同深度S波速度结构[24](a~d分别为30 m、50 m、100 m、300 m深度的结构)

    Figure  8.   The Vs structure of Hefei City at depths of 30 m, 50 m, 100 m and 300 m

    图  9   新丰江水库库区地震台阵位置及浅层速度结构[25]

    a—新丰江库区地理位置与地震台阵部署位置图;b—100 m、300m、450 m、650 m深度剪切波速度图像;c—剪切波垂直剖面图

    Figure  9.   The location of the dense seismic array and shear wave structure in Xinfengjiang Reservoir

    图  10   喀拉通克矿集区地震台阵部署位置及剪切波速度结构[26]

    a—台阵分布;b—矿区地理位置和周围地震活动性分布;c—三维剪切波速度结构

    Figure  10.   Location of the seismic array and shear wave velocity structure in Karatungk mine area

    图  11   美国西海岸San Jacinto断层的浅层速度结构与地形数据、断裂信息融合实例[36]

    Figure  11.   Joint result of the shallow velocity, topographic data and fault information of the San Jacinto fault area in west coast of the United States

  • 王涛, 计文化, 胡建民, 等. 专题地质填图及有关问题讨论[J]. 地质通报, 2016, 35(5): 633-641. doi: 10.3969/j.issn.1671-2552.2016.05.001
    孟贵祥, 吕庆田, 严加永, 等. "穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J]. 地球学报, 2019, 40(5): 637-650. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905001.htm

    Lin F C, Li D Z, Clayton R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4): 45-56. http://www.researchgate.net/publication/274518231_High-resolution_3D_shallow_crustal_structure_in_Long_Beach_California_Application_of_ambient_noise_tomography_on_a_dense_seismic_array?ev=auth_pub

    Yao H J, Wang B S, Tian X B, et al. Preface to the special issue of dense array seismology[J]. Earthquake Science, 2018, 31: 225-226. doi: 10.29382/eqs-2018-0225-1

    Inbal A, Clayton R W, Ampuero J P. Imaging widespread seismicity at midlower crustal depths beneath Long Beach, CA, with a dense seismic array: Evidence for a depth-dependent earthquake size distribution[J]. Geophysical Research Letters, 2015, 42(15): 6314-6323. doi: 10.1002/2015GL064942

    Inbal A, Ampuero J P, Clayton R W. Localized seismic deformation in the upper mantle revealed by dense seismic arrays[J]. Science, 2016, 354(6308): 88-92. doi: 10.1126/science.aaf1370

    Liu Z, Tian X B, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, (480): 33-41. http://www.sciencedirect.com/science/article/pii/S0012821X17305587

    Bao F, Li Z W, Tian B F, et al. Sediment thickness variations of the Tangshan fault zone in North China from a dense seismic array and microtremor survey[J]. Journal of Asian Earth Sciences, 2019, (185): 104045. https: //doi. org/10.1016/j. jseaes. 2019.104045 http://www.sciencedirect.com/science/article/pii/S1367912019303979

    梁锋, 高磊, 王志辉, 等. 利用背景噪声层析成像研究济南浅层横波速度结构[J]. 地学前缘, 2019, 26(3): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201903020.htm

    Li Z W, Ni S D, Zhang B L, et al. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophysical Research Letters, 2016, 43: 4951-496. doi: 10.1002/2016gl068895

    张明辉, 武振波, 马立雪, 等. 短周期密集台阵被动源地震探测技术研究进展[J]. 地球物理学进展, 2020, 35(2): 495-511. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002014.htm

    Liu Z, Tian X B, Gao R, et al. New images of the crustal structure beneath eastern Tibet from a high-density seismic array[J]. Earth and Planetary Science Letters, 2017, 480: 33-41. doi: 10.1016/j.epsl.2017.09.048

    张路, 白志明, 徐涛, 等. 哀牢山地区新生代岩浆活动与掀斜式抬升: 来自短周期密集台阵观测的证据[J]. 中国科学: 地球科学, 2020, 50(8): 1069-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202008003.htm

    Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bull. Earthq. Res. Inst. , 1957, 35: 415-456. http://www.ams.org/mathscinet-getitem?mr=90217

    Nakamura Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Reports, Railway Technical Research Institute, 1989, 30(1): 25-33. http://ci.nii.ac.jp/naid/10007555176

    Brenguier F, Duputel Z, Shapiro N M. Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geoscience, 2008, 1(2): 126-130. doi: 10.1038/ngeo104

    Xu Z J, Song X D. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14207-14212. doi: 10.1073/pnas.0901164106

    Bensen G D, Ritzwoller M, Barmin M, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169: 1239-1260. doi: 10.1111/j.1365-246X.2007.03374.x

    Bao F, Li Z W, Yuen D, et al. Shallow structure of the Tangshan fault zone unveiled by dense seismic array and horizontal-to-vertical spectral ratio method[J]. Physics of the Earth and Planetary Interiors, 2018, 281: 46-54. doi: 10.1016/j.pepi.2018.05.004

    刘保金, 曲国胜, 孙铭心, 等. 唐山地震区地壳结构和构造: 深地震反射剖面结果[J]. 地震地质, 2011, 33(4): 901-912. doi: 10.3969/j.issn.0253-4967.2011.04.014
    郭慧, 江娃利, 谢新生. 对1976年河北唐山MS7.8地震地表破裂带展布及位移特征的新认识[J]. 地震地质, 2011, 33(3): 506-524. doi: 10.3969/j.issn.0253-4967.2011.03.002

    Yang H F, Duan Y H, Song J H, et al. Fine structure of the Chenghai fault zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2020, 125: 1-14. doi: 10.1029/2020JB019565

    林良俊, 李亚民, 葛伟亚, 等. 中国城市地质调查总体构想与关键理论技术[J]. 中国地质, 2017, 44(6): 1086-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706006.htm

    Li C, Yao H J, Fang H J, et al. 3D Near-surface shear-wave velocity structure from ambient-noise tomography and borehole data in the Hefei urban area, China[J]. Seismological Research Letters, 2016, 87(4): 882-892. doi: 10.1785/0220150257

    王爽, 孙新蕾, 秦加岭, 等. 利用密集地震台网高频环境噪声研究广东新丰江库区浅层地下结构[J]. 地球物理学报, 2018, 61(2): 593-603. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201802018.htm

    Du P X, Wu J, Wang J, et al. Imaging Karatungk Cu-Ni mine in Xinjiang, western China with a passive seismic array[J]. Minerals, 2020, 10(7): 601. doi: 10.3390/min10070601

    田忠华, 刘福来, 许王, 等. 构造变形在变质岩专题填图中的作用及其意义——以辽南辽河群试点填图区为例[J]. 地质通报, 2017, 36(11): 1942-1952. doi: 10.3969/j.issn.1671-2552.2017.11.005
    童英, 郭磊, 王涛, 等. 同源花岗岩谱系填图——内蒙古二连宝德尔石林花岗岩填图试点[J]. 地质通报, 2017, 36(11): 1963-1970. doi: 10.3969/j.issn.1671-2552.2017.11.007
    薛怀民, 曹光跃, 刘哲. 陆相火山岩区岩性组合-岩相填图试验——以内蒙古西太仆寺破火山为例[J]. 地质通报, 2017, 36(11): 2030-2035. doi: 10.3969/j.issn.1671-2552.2017.11.012
    许欢, 柳永清, 旷红伟, 等. 燕山西部尚义盆地沉积岩区专题地质填图方法与成果[J]. 地质通报, 2017, 36(11): 1893-1918. doi: 10.3969/j.issn.1671-2552.2017.11.002
    闫臻, 王宗起, 付长垒, 等. 混杂岩基本特征与专题地质填图[J]. 地质通报, 2018, 37(2/3): 167-191. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020301&flag=1
    张进, 曲军峰, 张庆龙, 等. 基岩区构造地质填图方法思考、实践、探索[J]. 地质通报, 2018, 37(2/3): 192-221. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2018020302&flag=1

    Yao H J, Hilst R D V D, Hoop M V D. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2): 732-744. doi: 10.1111/j.1365-246X.2006.03028.x

    Yao H J, Pierre G, Collins J A, et al. Structure of young East Pacific Rise lithosphere from ambient noise correlation analysis of fundamental- and higher-mode Scholte-Rayleigh waves[J]. Comptes Rendus Geoence, 2011, 343(8): 571-583. http://www.em-consulte.com/en/article/664890

    Bowden D C, Tsai V C, Lin F C. Site amplification, attenuation, and scattering from noise correlation amplitudes across a dense array in Long Beach, CA[J]. Geophysical Research Letters, 2015, 42(5): 1360-1367. doi: 10.1002/2014GL062662

    Mordret A, Roux P, Boué P, et al. Shallow three-dimensional structure of the San Jacinto fault zone revealed from ambient noise imaging with a dense seismic array[J]. Geophysical Journal International, 2019, 216: 896-905. doi: 10.1093/gji/ggy464

图(11)
计量
  • 文章访问数:  3293
  • HTML全文浏览量:  566
  • PDF下载量:  1920
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2020-08-26
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2021-01-14

目录

    /

    返回文章
    返回