LA-ICP-MS zircon U-Pb dating of the Nuhete Early Cretaceous A-type granite in Xi Ujimqin Banner of Inner Mongolia and its geological significance
-
摘要:
内蒙古西乌旗努和特A型花岗岩位于贺根山缝合带内,侵位于晚石炭世梅劳特乌拉蛇绿岩带、中二叠统哲斯组和晚石炭世英云闪长岩中,岩性为正长花岗岩。努和特A型花岗岩富硅、富钾、富碱、贫Al2O3、CaO、MgO、TiO2、P2O、Sr、Ba、Eu、Ti和P,具有较高的Ga/Al、(Na2O+K2O)/CaO、K2O/MgO、TFeO/MgO、Rb/Nb、Y/Nb、Sc/Nb值,稀土元素配分曲线为海鸥式分布,δEu值为0.25~0.54,负Eu异常明显,地球化学特征明显不同于I、S和M型花岗岩,为铝质A型花岗岩。在地球化学分类判别图解上,努和特A型花岗岩显示后造山A2型花岗岩特征,反映其形成于后造山伸展环境。LA-ICP-MS锆石U-Pb测年表明,该花岗岩的侵位年龄为130.4±1.2Ma和130.4±1.4Ma,其形成时代为早白垩世。根据蛇绿岩、俯冲-岛弧型-碰撞型和后造山型岩浆岩的时空分布与演化特征,贺根山缝合带在早白垩世可能处于后造山伸展阶段。
-
关键词:
- 铝质A型花岗岩 /
- LA-ICP-MS锆石U-Pb定年 /
- 早白垩世 /
- 后造山伸展环境 /
- 内蒙古西乌旗
Abstract:Located along the Hegenshan collisional orogenic suture zone in Xi Ujimqin Banner of Inner-Mongolia, the Nuhete Atype granite intruded into Late Carboniferous Meilaotewula ophiolite, Middle Permian Zhesi Formation and Late Carboniferous tonal-ite and consists mainly of syenogranites. The granite is geochemically characterized by high SiO2(72.92%~76.18%), K2O(4.1%~5.03%) and absolute alkali values (Na2O+K2O=8.01%~8.64%), low Al2O3, CaO, MgO, TiO2, P2O5, Sr, Ba, Eu, Ti, P values, and relatively high Ga/Al, (Na2O +K2O)/CaO, K2O/MgO, TFeO/MgO, Rb/Nb, Y/Nb, Sc/Nb ratios. It is characterized by a slightly right-inclined gull-wing shaped REE patterns with negative Eu anomalies (δEu=0.25~0.54). The Nuhete syenogranite exhibits the typical geochemi-cal characteristics of aluminous A-type granites, being significantly different from I, S and M type granites in geochemistry. According to the chemical subdivision diagrams of the A-type granitoids, the Nuhete A-type granite belongs to aluminous A2-type granitoid formed and emplaced in a post-orogenic extension setting. The LA-ICP-MS zircon U-Pb dating shows that the age of the granite is 130.4 ±1.2 Ma and 130.4 ±1.4Ma, suggesting early Cretaceous. According to the temporal and spatial distribution and evolution charac-teristics of the ophiolites, subductional arc granitoids, collisional granites and post orogenic granitoids in the Hegenshan collisional oro-genic suture zone, the authors hold that the Hegenshan suture zone was in a post orogenic extension stage in the Early Cretaceous period.
-
A型花岗岩为花岗岩研究领域的重要课题之一,其分为板内非造山(anorogenic)A1型花岗岩和造山带后造山(post-orogenic)A2型花岗岩[1-19]。地质工作者普遍认为,A型花岗岩具有特定的矿物学、岩石学和地球化学特征,主要形成于造山带造山后和板内非造山的伸展拉张环境,蕴涵着造山带和大陆地壳构造演化过程的信息,对地球动力学背景具有重要指示意义[2-24]。在造山带形成演化过程中,A型花岗岩与I、S和M型花岗岩同为造山带的重要组成部分,为造山带大洋扩张-洋壳俯冲-碰撞造山-后造山演化过程不同阶段的岩浆演化产物与标志特征。通常形成于后造山伸展拉张环境的A型花岗岩的识别与研究,可为判别造山带碰撞造山事件结束进入造山后的伸展拉张阶段提供岩石学证据与时间约束。
内蒙古中部西乌旗地区作为中亚造山带东段贺根山缝合带的典型发育区,广泛分布近东西向的蛇绿岩(带)和俯冲岛弧型-碰撞型-后造山型花岗岩(图 1)[25-30]。西乌旗地区后造山A型花岗岩形成时代的报道有早三叠世[13]、中三叠世[31]和早白垩世[30],而侵位于贺根山缝合带蛇绿岩之中的后造山A型花岗岩体尚未见有报道。贺根山缝合带的后造山伸展拉张阶段起止时间尚缺乏明确的造山后岩石学和年代学证据与约束。近年,笔者在内蒙古中部西乌旗地区进行1:5万区域地质调查时,新识别和发现有早白垩世A型花岗岩体出露。前人1:20万罕乌拉幅区域地质调查将其划为印支期,1:25万西乌旗幅将其划为侏罗纪哈日根台单元钾长花岗岩。最新的LA-ICP-MS锆石U-Pb测定结果表明,该A型花岗岩的形成时代为早白垩世。本文通过岩相学、岩石地球化学和LA-ICP-MS锆石U-Pb年代学研究,结合相关研究成果[13,17-19,26-31],明确了西乌旗梅劳特乌拉蛇绿岩中存在造山后伸展阶段形成与侵位的早白垩世A型花岗岩,并探讨了岩石的属性、成因和构造意义,以期为贺根山缝合带后造山伸展拉张时间限定及大地构造演化提供约束。
1. 区域地质背景和岩石学特征
努和特A型花岗岩体位于内蒙古西乌旗东北部哈日根台努和特一带,区域构造属于贺根山缝合带,南部为梅劳特乌拉蛇绿岩带,为贺根山缝合带蛇绿岩和俯冲岛弧型-碰撞型和后造山型岩浆岩典型发育区(图 1)[13,17,19,25-31]。努和特A型花岗岩的岩性为正长花岗岩,岩体呈北东向岩基状产出,出露面积约82km2。岩体侵入于晚石炭世梅劳特乌拉蛇绿岩带、中二叠统哲斯组和晚石炭世英云闪长岩中,与围岩侵入接触界线清晰。岩体外接触带的中二叠统哲斯组等围岩普遍角岩化、硅化,局部矽卡岩化,内接触带岩石粒度变细,未见明显的混染现象。岩体中发育大小不一、浑圆状的暗色闪长质包体。岩体内分布有大小不一的哲斯组顶垂体,岩体层节理发育,反映其剥蚀程度较浅。岩体内发育含水晶和稀有金属的花岗伟晶岩脉和石英脉,局部形成小型水晶矿床和稀有金属矿床(六一二矿)及矿(化)点。
努和特A型花岗岩岩性主要为粗中粒黑云母正长花岗岩和粗中粒似斑状黑云母正长花岗岩,岩体边部有少量细粒黑云母正长花岗岩,粗中粒黑云母正长花岗岩与粗中粒似斑状黑云母正长花岗岩之间有少量中细粒似斑状黑云母正长花岗岩。由老到新侵位顺序为细粒黑云母正长花岗岩-粗中粒黑云母正长花岗岩-中细粒似斑状黑云母正长花岗岩-粗中粒似斑状黑云母正长花岗岩,其间为渐变接触关系。
粗中粒黑云母正长花岗岩,粗中粒自形-半自形粒状结构和条纹结构(图 2),块状构造,矿物成分主要为钾长石(45%~50%)、斜长石(15%~20%)和石英(30%~35%),少量角闪石和黑云母(2%~4%),粒径以2~7mm为主。钾长石呈自形-半自形板状,粒径为3~7mm, 主要为条纹长石和正长石,少量微斜长石。斜长石呈半自形板状分布,大小为2~6mm, 聚片双晶发育。石英呈他形粒状,粒径大小为3~ 6mm, 多充填于斜长石和钾长石颗粒间。黑云母呈鳞片状-叶片状,粒径大小为2~4mm, 多见轻微绿泥石化、绿帘石化等。
粗中粒似斑状黑云母正长花岗岩,似斑状结构和条纹结构(图 2),基质为粗中粒结构,块状构造,由似斑晶和基质组成。似斑晶主要为钾长石,大小为7~15mm, 含量约10%。基质为钾长石(35% ~ 45%)、斜长石(约15%)、石英(约30%)和少量黑云母(约7%),粒径大小为2~6mm。钾长石呈自形-半自形板状,多为条纹长石和正长石,少量为微斜长石。斜长石呈自形-半自形板状,多发育聚片双晶。石英呈他形粒状,多充填于长石之间。黑云母呈鳞片状-叶片状,可见绿泥石化、绿帘石化等。
2. 锆石U-Pb年代学
本次研究对努和特正长花岗岩体采集了2件锆石U-Pb同位素年龄样品,分别为粗中粒黑云母正长花岗岩(P17TW03)和粗中粒似斑状黑云母正长花岗岩(P17TW11),采样位置见图 1,采样点坐标分别为北纬44°57′36.9″、东经118°27′26.1″和北纬44° 55′46.2″、东经118°23′04.6″。
2.1 测试方法
努和特正长花岗岩体同位素年龄样品锆石的分选由河北省区域地质矿产调查研究所实验室完成,经重液浮选和电磁分离分选后,在双目镜下挑选出晶形完好、透明度高、无包裹体和无裂纹的锆石颗粒作为测定对象。挑选好的锆石与标样一起固定在环氧树脂中抛光制靶,进行阴极发光(图 3、图 4)、透射光和单偏光照相。锆石阴极发光(CL)图像分析在北京锆年领航科技有限公司高分辨热场发射能谱阴极发光室进行,锆石原位LA-ICP-MS U-Th-Pb同位素年龄分析在中国地质调查局天津地质调查中心实验测试室LA-ICP-MS仪器上进行,对测试数据进行了普通铅校正[32],年龄计算和谐和图绘制采用Isoplot程序(3.0版)。
2.2 测试结果
努和特粗中粒黑云母正长花岗岩(P17TW03)样品,共选取27粒锆石进行测定。锆石阴极发光图像显示,锆石结构均一,呈自形-半自形柱状,长宽比为2:1~3:1,具清晰的振荡环带和明暗相间的条带结构,为岩浆成因锆石(图 3)[33]。27粒锆石测点的Th/U值为0.062~0.757,具有岩浆成因锆石特征[33-34]。该样品27粒锆石的测点位于振荡环带发育部位,测定数据点均落在谐和线上或其附近,206Pb/238U年龄值为112~137Ma, 获得的206Pb/238U年龄加权平均值为130.4±1.4Ma(MSWD=19)(图 5;表 1),代表粗中粒黑云母正长花岗岩的成岩年龄。
表 1 努和特粗中粒黑云母正长花岗岩(P17TW03)LA-ICP-MS锆石U-Th-Pb测试结果Table 1. LA-ICP-MS U-Th-Pb dating results of zircons from the Nuhete coarse-medium biotite syenogranite点号 元素含量/10-6 Th/U 同位素原子比率 表面年龄/Ma Pb U Th 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U ±% 1 153 7577 1551 0.205 0.051 1.9 0.148 2.0 0.02109 0.96 135 ±1 2 23 1175 314 0.267 0.049 3.3 0.138 3.4 0.02039 0.89 130 ±1 3 3 123 38 0.306 0.167 16 0.467 15 0.02027 3.2 129 ±4 4 40 1949 450 0.231 0.066 2.8 0.186 2.8 0.02048 0.93 131 ±1 5 19 934 224 0.240 0.059 5.1 0.166 5.4 0.02042 1.1 130 ±1 6 133 6745 914 0.136 0.050 1.8 0.143 1.9 0.02082 0.88 133 ±1 7 122 6039 4569 0.757 0.122 1.9 0.293 1.9 0.01745 0.87 112 ±1 8 92 4698 609 0.130 0.054 2.1 0.152 2.2 0.02052 1.2 131 ±2 9 7 284 97 0.342 0.137 8.4 0.402 9.7 0.02122 1.9 135 ±3 10 200 10071 1223 0.121 0.050 1.8 0.145 1.9 0.02108 0.89 134 ±1 11 78 3030 574 0.189 0.165 2.5 0.467 2.9 0.02048 0.96 131 ±1 12 120 5978 1396 0.234 0.056 1.9 0.159 1.9 0.02048 0.9 131 ±1 13 21 1063 287 0.270 0.051 3.6 0.145 3.7 0.02068 0.85 132 ±1 14 25 1247 154 0.123 0.053 5.6 0.153 5.4 0.02090 1.2 133 ±2 15 43 1995 953 0.478 0.105 2.1 0.291 2.2 0.02003 0.92 128 ±1 16 141 7543 1393 0.185 0.051 1.9 0.138 1.9 0.01957 0.83 125 ±1 17 59 3087 580 0.188 0.056 2.5 0.154 2.6 0.01993 0.94 127 ±1 18 5 250 33 0.132 0.054 25 0.147 24 0.01967 2.1 126 ±3 19 21 1098 68 0.062 0.051 3.3 0.142 3.3 0.02022 0.88 129 ±1 20 22 1055 412 0.390 0.066 5.0 0.181 5.0 0.01981 0.90 126 ±1 21 38 1938 513 0.265 0.053 2.5 0.147 2.5 0.01996 0.84 127 ±1 22 200 10351 1155 0.112 0.051 1.8 0.144 1.9 0.02055 0.88 131 ±1 23 145 7431 1250 0.168 0.052 1.9 0.147 1.9 0.02046 0.83 131 ±1 24 72 3623 651 0.180 0.058 2.1 0.162 2.1 0.02047 0.95 131 ±1 25 182 9561 1172 0.123 0.054 1.8 0.148 2.8 0.01998 0.84 128 ±1 26 53 2636 471 0.179 0.051 2.4 0.148 5.4 0.02111 1.0 135 ±1 27 14 603 146 0.243 0.083 7.7 0.246 1.9 0.02140 0.98 137 ±1 注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质矿产研究所完成 努和特粗中粒似斑状黑云母正长花岗岩(P17TW11)样品,共选取25粒锆石进行测定,阴极发光图像显示,锆石呈自形-半自形柱状,具清晰的振荡环带和明暗相间的条带结构,为岩浆成因锆石(图 4)。25粒锆石测点的Th/U值为0.062~0.378,具有岩浆成因锆石特征。25粒锆石的测定数据点均偏离谐和线,206Pb/238U年龄测试结果为124~ 136Ma。U-Pb年龄谐和图中,由测定数据点拟合的不一致线与谐和线的下交点年龄为130.4±1.2Ma(MSWD=2.1)(图 6;表 2),代表了粗中粒似斑状黑云母正长花岗岩的成岩年龄。
表 2 努和特粗中粒似斑状黑云母正长花岗岩(P17TW11)LA-ICP-MS锆石U-Th-Pb测试结果Table 2. LA-ICP-MS U-Th-Pb dating results of zircons from the Nuhete coarse-medium grained porphyritoid biotite syenogranite点号 元素含量/10-6 Th/U 同位素原子比率 表面年龄/Ma Pb U Th 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U 1 177 8674 1314 0.152 0.064 2.2 0.179 2.0 0.02044 0.89 130 ±1 2 79 3992 644 0.161 0.054 2.1 0.151 2.1 0.02019 0.97 129 ±1 3 127 5814 1454 0.250 0.063 2.3 0.184 2.4 0.02126 0.80 136 ±1 4 160 7638 1703 0.223 0.067 1.8 0.189 1.9 0.02031 0.85 130 ±1 5 95 4501 1233 0.274 0.071 2.5 0.195 2.3 0.02005 0.92 128 ±1 6 47 2002 557 0.278 0.106 5.0 0.297 6.3 0.02035 1.4 130 ±2 7 70 3446 769 0.223 0.054 2.0 0.151 2.0 0.02034 0.83 130 ±1 8 135 5839 1379 0.236 0.107 7.3 0.290 9.5 0.01961 1.8 125 ±2 9 7 334 126 0.378 0.055 20 0.161 20 0.02113 1.4 135 ±2 10 62 2728 750 0.275 0.096 3.4 0.265 3.8 0.02009 0.93 128 ±1 11 114 5153 1557 0.302 0.081 1.9 0.226 1.9 0.02013 0.82 129 ±1 12 147 6239 1969 0.316 0.100 2.3 0.277 2.6 0.02007 0.87 128 ±1 13 37 1875 344 0.184 0.049 2.4 0.137 2.5 0.02040 0.84 130 ±1 14 64 3111 683 0.220 0.055 2.0 0.154 2.1 0.02043 0.80 130 ±1 15 95 4632 966 0.208 0.058 2.0 0.162 2.2 0.02026 0.89 129 ±1 16 81 3978 732 0.184 0.052 1.9 0.147 1.9 0.02054 0.83 131 ±1 17 116 5253 1466 0.279 0.081 1.9 0.228 1.9 0.02047 0.87 131 ±1 18 149 7176 1980 0.276 0.067 1.8 0.181 1.9 0.01953 0.80 125 ±1 19 118 6054 377 0.062 0.058 1.9 0.165 1.8 0.02043 0.86 130 ±1 20 158 7465 1743 0.233 0.068 1.7 0.191 1.8 0.02042 0.82 130 ±1 21 74 3338 678 0.203 0.101 2.6 0.272 2.9 0.01947 0.88 124 ±1 22 119 5501 1050 0.191 0.078 1.8 0.218 1.9 0.02033 0.85 130 ±1 23 131 6314 1122 0.178 0.062 2.0 0.176 2.2 0.02047 0.85 131 ±1 24 113 5288 1066 0.202 0.078 2.1 0.216 2.2 0.02018 0.80 129 ±1 25 98 4872 834 0.171 0.055 2.0 0.156 2.0 0.02041 0.81 130 ±1 注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质矿产研究所完成 根据努和特A型花岗岩体侵入于晚石炭世梅劳特乌拉蛇绿岩带、中二叠统哲斯组和晚石炭世英云闪长岩中,以及各正长花岗岩体之间的接触关系,该岩体不同部位获得的130.4 ± 1.2Ma和130.4±1.4Ma两组LA-ICP-MS锆石U-Pb年龄,代表了努和特A型花岗岩体的侵位年龄,揭示西乌旗努和特A型花岗岩的形成时代为早白垩世,为确定贺根山缝合带西乌旗梅劳特乌拉蛇绿岩带中存在早白垩世A型花岗岩提供了年代学证据与约束。
3. 地球化学特征
西乌旗努和特A型花岗岩的主量、微量和稀土元素分析测试均在河北省区域地质矿产调查研究所实验室完成。主量元素分析采用Panalytical公司PW440型X荧光光谱仪(XRF)测定,分析误差低于5%,微量和稀土元素采用Thermo Fisher公司X-Series p型电感耦合等离子质谱仪(ICP-MS)测定,检测限优于5×10-9,相对标准偏差优于5%。努和特A型花岗岩的主量、微量和稀土元素测试分析结果见表 3。
表 3 努和特A型花岗岩的主量、微量和稀土元素分析结果Table 3. Major elements, trace elements and REE analyses of the Nuhete A-type granite样品号(岩性) S01(czξγβK1) S02(czξγβK1) S03(czξγβK1) S07(czπξγβK1) S10(czπξγβK1) S11(czπξγβK1) SiO2 75.94 75.39 76.18 75.51 74.4 72.92 TiO2 0.12 0.09 0.07 0.11 0.19 0.26 Al2O3 12.93 13.55 13.25 13.34 13.54 13.94 Fe2O3 0.39 0.39 0.28 0.24 0.53 0.59 FeO 0.89 0.65 0.36 0.69 1.03 1.37 MnO 0.049 0.067 0.027 0.032 0.045 0.051 MgO 0.25 0.17 0.09 0.16 0.27 0.37 CaO 0.88 0.76 0.73 0.83 0.98 1.24 Na2O 3.91 4.06 3.54 3.51 3.59 3.61 K2O 4.1 4.46 4.9 4.88 4.67 5.03 P2O5 0.029 0.026 0.017 0.101 0.101 0.078 烧失量 0.44 0.33 0.49 0.53 0.56 0.44 总计 99.93 99.943 99.93 99.933 99.91 99.899 Ba 285.5 255.8 172.2 222.2 332.1 545.3 Rb 139.2 158.4 111.8 213.1 184.7 179 Sr 82.5 68.8 63 77.7 107.1 178.7 Zr 99.2 84.1 90.6 93.2 146.4 197.1 Nb 10.1 10.46 5.43 12.73 15.52 16.58 Th 23.02 12.49 16.65 24.78 23.54 32.62 Ga 19.59 19.16 19.85 20.55 18.67 21.73 Pb 24.1 26.1 21.5 33.4 28.8 29.1 Zn 61.5 60.1 54.3 55.1 65.2 76.2 Cu 2.5 2.2 3.8 2.5 2.7 3 Ni 4.9 1.5 2.3 1.6 2.1 3 V 11.8 9.8 8.5 11.4 14.5 17.1 Cr 3.9 3.4 3.3 3.6 3.8 4.7 Hf 4.32 3.6 4.31 4.02 5.87 6.8 Sc 3.35 3.14 3.01 4.07 4.67 5.4 Ta 1.65 1.61 0.67 2.16 2.62 1.88 Co 1.1 0.8 0.8 0.5 1 2.8 Li 32.08 43.98 11.03 19.5 46.9 27.44 U 4.23 1.98 2.19 4.28 2.09 2.77 Y 18.69 19.99 14.07 30.61 29.15 28.5 Rb/Sr 1.69 2.30 1.78 2.74 1.72 1.0 K/Rb 244.51 233.74 263.83 190.1 209.1 233.27 Ga/Al 2.86 2.67 2.83 2.91 2.61 2.95 La 15.73 14.23 12.94 15.89 25.12 52.16 Ce 29.39 30.94 27.32 34.47 52.77 103.7 Pr 3.75 3.42 3.45 4.34 6.48 11.95 Nd 13.72 12.91 13.36 16.74 23.84 43.21 Sm 3.04 3.14 2.98 4.3 5.27 7.8 Eu 0.43 0.43 0.5 0.35 0.53 0.72 Gd 2.9 3.09 2.63 3.95 4.78 6.54 Tb 0.55 0.62 0.46 0.84 0.91 1 Dy 3.53 4.1 2.84 5.74 5.77 5.54 Ho 0.66 0.76 0.51 1.11 1.08 1.04 Er 1.89 2.15 1.44 3.39 3.17 2.92 Tm 0.32 0.37 0.24 0.64 0.55 0.47 Yb 1.94 2.15 1.52 4.08 3.41 2.89 Lu 0.39 0.43 0.35 0.63 0.61 0.59 ΣREE 78.24 78.74 70.54 96.47 134.29 240.53 δEu 0.43 0.42 0.54 0.25 0.32 0.3 (La/Yb)N 5.47 4.46 5.74 2.63 4.97 12.17 注:主量元素含量单位为%,稀土、微量元素含量为10-6;czξγβK1—粗中粒黑云母正长花岗岩,czπξγβK1—粗中粒似斑状黑云母正长花岗岩 如表 3所示,该A型花岗岩主量元素富硅(SiO2为72.92% ~76.18%,平均值75.06%)、富钾(K2O为4.1% ~5.03%,平均值4.67%)、富碱(Na2O + K2O为8.01% ~8.64%,平均值8.38%)、贫CaO(0.73% ~1.24%,平均值0.90%)、MgO(0.09%~0.37%,平均值0.22%)、MnO(0.027% ~0.067%)、P2O5(0.017% ~0.101%,平均值0.06%)、TiO2(0.07%~0.26%,平均值0.14 %)等特征;其Al2O3含量为12.93%~13.94%,平均值13.43%,A/CNK值大于1.0,属于弱过铝质A型花岗岩。
在A/CNK-A/NK图解(图 7)中,该A型花岗岩样品点均位于过铝质岩石区域;在SiO2-K2O分类图解(图 8)中,样品点均落在高钾钙碱性系列,揭示该正长花岗岩较富钾。
图 7 努和特A型花岗岩铝饱和指数(A/CNK-A/NK)图解[35]IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆造陆抬升有关的花岗岩类;POG—后造山花岗岩类;OP—与大洋花岗岩类有关的花岗岩类Figure 7. Shand's indexes of the Nuhete A-type granite图 8 努和特A型花岗岩SiO2-K2O分类图解[36]Figure 8. SiO2-K2O classification diagram of the Nuhete A-type granite努和特A型花岗岩表现出较高的(Na2O+ K2O)/CaO(6.97~11.56,平均值9.56)、K2O/MgO(13.59~54.44,平均值26.41)、TFeO/MgO(4.96~6.8,平均值5.67)和Ga/Al值(2.61~2.95,平均值2.81),以及较高的微量元素Rb/Nb、Y/Nb和Sc/Nb值。
努和特A型花岗岩的稀土元素总量(∑REE)为70.54×10-6~240.53×10-6,平均值为116.47×10-6(表 3)。球粒陨石标准化的稀土元素配分型式为“海鸥式”(图 9),具有明显的负Eu异常,δEu为0.25~0.54,平均值为0.38。该岩石的稀土元素曲线总体为平缓右倾,轻稀土元素略显富集,曲线平缓右倾,重稀土元素曲线较平坦。该岩石明显的负Eu异常,可能与斜长石在源区中的残留有关,或者与斜长石和钾长石的分离结晶有关。
图 9 努和特A型花岗岩稀土元素球粒陨石标准化配分模式[37]Figure 9. Chondrite-normalized REE patterns of the Nuhete A-type granite努和特A型花岗岩微量元素相对富集Rb、Th、K、Nb、Ta、Hf、Y、Ga和Zr, 明显亏损Ba、Sr、P和Ti。在原始地幔标准化的微量元素蛛网图上,具明显的Ba、Sr、P、Eu、Ti负异常,Rb、Th、Ta、Zr、Hf等略微富集(图 10),可能与岩浆分离结晶作用和成因有关。
图 10 努和特A型花岗岩微量元素原始地幔标准化蛛网图[38]Figure 10. Primitive mantle-normalized trace element spider diagram of the Nuhete A-type granite4. 讨论
4.1 岩石属性和成因
努和特正长花岗岩富硅-钾-碱,贫Al2O3、MgO、CaO、P2O5、TiO2、Sr、Ba、Eu、Ti和P,具有较高的(Na2O+ K2O)/CaO、TFeO/MgO、K2O/MgO和Ga/Al值,相对富集Rb、Th、K、Ta、Hf和Y,稀土元素配分曲线为“海鸥式”,具明显负Eu异常,其地球化学属性与内蒙古中东部地区A型花岗岩富硅-碱、贫钙-镁、贫Ba-Sr-Ti-P、较高的10000Ga/Al值、明显负Eu异常、“海鸥式”稀土元素配分曲线等地球化学特征相一致[11-13,17-19,24,30-31,39-42]。该正长花岗岩的地球化学特征明显不同于I、S和M型花岗岩(图 11、图 12),可与典型A型花岗岩相对比,岩石类型归属于铝质A型花岗岩[3-10,14-19]。
图 11 努和特A型花岗岩K2O-Na2O图解[2]Figure 11. K2O-Na2O plot of the Nuhete A-type granite该岩石的10000Ga/Al值为2.61~2.95,大于世界A型花岗岩10000Ga/Al值的下限值2.6,明显高于世界M、I和S型花岗岩的10000Ga/Al值1.87、2.1和2.28(图 12)[3]。在A型花岗岩与I、S和M型花岗岩判别图解中,该正长花岗岩样品均位于K2O-Na2O和10000×Ga/Al-(K2O+Na2O)、(K2O+Na2O)/CaO、K2O/MgO和TFeO/MgO判别图解中的A型花岗岩区内,明显区别于I、S和M型花岗岩(图 11、图 12)[2-3],可与内蒙古中东部地区A型花岗岩对比[11-13,17-19,24,30-31,41-42]。
随着A型花岗岩成因研究的不断深入,越来越多的地质工作者认为,低压高温下新增生中基性地壳部分熔融可能为其成因[3,8,13,16-19,41,43]。努和特铝质A型花岗岩平坦略为右倾的稀土元素配分模式(图 9),可能指示源区无石榴子石残留。微量元素Sr和Ba的强烈亏损,表明源区有长石残留,而Sr和Eu的强烈亏损(图 10)则揭示,源区残留相中主要含有斜长石,反映源区为无石榴子石残留而富集斜长石的浅部低压区(小于10kbar)[44];微量元素Ti和P的强烈亏损(表 3;图 10)可能主要与钛铁矿、榍石和磷灰石的分离结晶作用有关。而对于浅部新增生中基性地壳低压熔融所需深部高热异常的认识,普遍认为与造山带造山后的板片断离、“去根”、重力垮塌等作用诱发软流圈地幔物质上涌而产生的幔源玄武质岩浆底侵有关[12-13,16-19,24,41,45-46]。在内蒙古中东部地区,几乎所有中生代铝质A型花岗岩具有正εNd(t)、年轻的Nd模式年龄等特征,表明与板片断离作用有关的幔源岩浆底侵作用对内蒙古中东部地区中生代铝质A型花岗岩浆的形成具有重要作用[7,12,16-19]。因此,贺根山缝合带造山后板片断离作用诱发软流圈地幔物质上涌,产生幔源玄武质岩浆底侵作用,以及伸展拉张减压作用造成新增生中基性地壳低压高温部分熔融,其后岩浆分离结晶与演化,可能构成了西乌旗努和特A型花岗岩的成因机制。
4.2 形成时代
内蒙古中部地区白垩纪A型花岗岩形成年龄数据较多,但对侵入于贺根山缝合带蛇绿岩中的早白垩世后造山A型花岗岩体形成年龄数据的报道,本文尚属首次。程天赦等[31]在西乌旗阿鲁包格山A型花岗岩中获得了132.19±0.77Ma的LA-ICP-MS锆石U-Pb年龄,为目前报道的西乌旗地区白垩纪A型花岗
岩的形成年龄。在西乌旗外围区域则获得了大量早白垩世A型花岗岩的年龄数据。Liu等[40]在西乌旗南部林西地区获得的龙头山A型花岗岩SIMS锆石U-Pb年龄为117.3±3.9Ma。周振华等[41]在克什克腾旗黄岗锡铁矿区A型花岗岩中获得的LA-ICP-MS锆石U-Pb年龄为136.7±1.1Ma和136.8±0.57Ma。解洪晶等[42]在华北克拉通北缘白乃庙构造带道郎呼都格获得的A型花岗岩SHRIMP锆石U-Pb年龄为139.6±1.7Ma。本次对侵入于晚石炭世梅劳特乌拉蛇绿岩带中的西乌旗努和特A型花岗岩进行了LA-ICP-MS锆石U-Pb定年,获得130.4 ± 1.2Ma和130.4±1.4Ma年龄,与内蒙古中部地区早白垩世A型花岗岩形成年龄相对应[31,40-41],反映贺根山缝合带梅劳特乌拉蛇绿岩带内存在早白垩世A型花岗岩体。
4.3 构造环境与意义
在微量元素Nb-Y-Ce、Nb-Y-3Ga、Y/Nb-Rb/Nb和Y/Nb-Sc/Nb构造判别图解上,努和特A型花岗岩样品均落入A2型花岗岩区(图 13、图 14),并可与区内和邻区,乃至整个中亚造山带东部地区中生代A2型花岗岩相对比[11-12,17-19,24,31],反映了造山带后造山伸展拉张构造环境形成的后造山花岗岩特征。
图 13 努和特A型花岗岩A1和A2型花岗岩类Y-Nb-Ce(a)和Y-Nb-3Ga(b)三角形判别图解[5]A1—非造山花岗岩;A2—造山后花岗岩Figure 13. Y-Nb-Ce (a) and Y-Nb-3Ga (b) triangular plots for distinguishing between A1 and A2 granitoids from the Nuhete A-type granite图 14 努和特A型花岗岩Y/Nb-Rb/Nb和Y/Nb-Sc/Nb图解[5]A1—非造山花岗岩;A2—造山后花岗岩Figure 14. Y/Nb-Rb/Nb and Y/Nb-Sc/Nb plots for distinguishing between A1 and A2 granitoids from the Nuhete A-type granite在铝饱和指数、SiO2-Al2O3、SiO2-TFeO/(TFeO+MgO)、(Y+Nb)-Rb和(Yb+Ta)-Rb构造环境判别图解(图 7、图 15、图 16)上,努和特A型花岗岩样品点均落入后造山(POG)花岗岩区,反映了造山带后造山阶段形成的后造山花岗岩特征,与区内、邻区及整个中亚造山带东部地区中生代A2型花岗岩吻合。在Y/Nb-Yb/Ta和Y/Nb-Ce/Nb图解(图 17)上,本次研究的A型花岗岩样品落在洋岛玄武岩(OIB)与岛弧玄武岩(IAB)之间的区域,指示造山带后造山伸展拉张环境下,幔源玄武质岩浆底侵作用诱发新增生中基性地壳物质低压高温部分熔融岩浆作用的特征。
图 15 努和特A型花岗岩SiO2-Al2O3(a)和SiO2-TFeO/(TFeO+MgO) (b)构造环境判别图解[35]IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;POG—后造山花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩类Figure 15. SiO2-Al2O3(a) and SiO2-TFeO/(TFeO+MgO)(b) tectonic discriminant diagrams of the Nuhete A-type granite图 16 努和特A型花岗岩(Y+Nb)-Rb(a)和(Y+Ta)-Rb(b)构造环境判别图解[47]VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—大洋中脊花岗岩;syn-COLG—同碰撞花岗岩Figure 16. (Y+Nb)-Rb(a) and (Y+Ta)-Rb(b) tectonic discriminant diagrams of the Nuhete A-type granite图 17 努和特A型花岗岩Y/Nb-Yb/Ta(a)和Y/Nb-Ce/Nb(b)图解[5]OIB—洋岛玄武岩;IAB—岛弧玄武岩Figure 17. Y/Nb-Yb/Ta(a) and Y/Nb-Ce/Nb(b) plots of the Nuhete A-type granite随着贺根山缝合带和整个中亚造山带东段内蒙中部地区蛇绿岩(带)、俯冲岛弧型-碰撞型-后造山型花岗岩类等岩石学、地球化学、锆石U-Pb年代学、古生物学等研究的不断深入,越来越多的地质资料揭示,贺根山缝合带和整个中亚造山带东段古生代洋盆在二叠纪晚期已经关闭,华北板块与西伯利亚板块最终碰撞造山缝合的时间为二叠纪末期,最晚至早三叠世[17-19,48-52]。对于贺根山缝合带和整个中亚造山带东段进入后造山伸展拉张阶段和后造山A2型花岗岩等时限的研究在争论中不断深化。石玉若等[17]认为,贺根山缝合带始于三叠纪的大规模造山后伸展作用形成了苏尼特左旗三叠纪A2型花岗岩。Jian等[52]提出,二叠纪末—三叠纪初为中亚造山带后造山板片断离伸展拉张阶段。孙德有等[53]和Miao等[26]认为,中亚造山带东段后造山岩浆作用起始于中晚三叠世。Wu等[11]研究了发育于中国东北地区的晚三叠世—早侏罗世造山后A2型花岗岩。薛富红等[19]提出,晚侏罗世后造山伸展拉张阶段产生了苏尼特左旗达来地区造山后A2型花岗岩。程天赦等[31]认为,早白垩世后造山伸展拉张环境形成西乌旗阿鲁包格山后造山A2型花岗岩。刘红涛等[12]系统地研究了华北北缘中生代碱质A型花岗岩,认为160Ma以前的中生代早中期为后造山伸展拉张阶段初期,150~ 110Ma为后造山伸展拉张阶段的晚期强烈伸展拉张时期,之后演化为板内非造山阶段。
目前,越来越多的地质工作者认为,内蒙古中东部大兴安岭侏罗纪—白垩纪大规模岩浆活动的产物主要为A型花岗岩类,但对其成因与构造背景,一直存在与中亚造山带东段兴蒙造山带的后造山伸展拉张阶段发展演化有关、与东侧太平洋板块俯冲有关和与板内伸展环境下的底侵作用有关等不同观点与认识[11,19,24,39,41-42,45]。本文报道的西乌旗努和特后造山A2型花岗岩,分布于贺根山缝合带典型发育区,其直接侵位于晚石炭世梅劳特乌拉蛇绿岩带和中二叠统哲斯组中,新获得的LA-ICP-MS锆石U-Pb年龄为130.4±1.2Ma和130.4 ±1.4Ma, 表明其侵位于早白垩世,形成年龄与贺根山缝合带和内蒙古中东部大多数后造山A花岗岩的年龄一致,与华北北缘150~110Ma期间后造山伸展拉张阶段的晚期强烈伸展拉张时期相吻合[12],揭示贺根山缝合带在早白垩世为后造山伸展拉张构造演化阶段。
5. 结论
(1)努和特正长花岗岩侵位于早石炭世梅劳特乌拉蛇绿岩带和中二叠统哲斯组中,LA-ICP-MS锆石U-Pb年龄为130.4±1.2Ma和130.4±1.4Ma, 形成于早白垩世,为贺根山缝合带西乌旗地区存在早白垩世铝质A型花岗岩提供了年代学证据与约束。
(2)努和特正长花岗岩富硅(SiO272.92% ~ 76.18%)、富钾(K2O4.1%~5.03%)、富碱(Na2O+K2O8.01%~8.64%)、贫Al2O3、CaO、MgO、TiO2、P2O、Sr、Ba、Eu、Ti和P,具有较高的Ga/Al(2.61~2.95)、(Na2O + K2O)/CaO、K2O/MgO、TFeO/MgO、Rb/Nb、Y/Nb、Sc/Nb值,稀土元素配分曲线为海鸥式分布,δEu为0.25~0.54,负Eu异常明显,地球化学特征明显不同于I、S和M型花岗岩,为铝质A型花岗岩。
(3)努和特正长花岗岩具有典型的后造山A2型花岗岩特征,反映了造山带后造山伸展拉张环境,为贺根山缝合带早白垩世后造山伸展拉张构造环境提供了岩石学证据与约束。新增生中基性地壳物质的低压高温部分熔融岩浆作用及其后的分离结晶作用可能为其主要成因,记录了贺根山缝合带早白垩世后,造山板片断离幔源岩浆底侵作用演化过程的信息。
致谢: 在野外调查中得到中国地质调查局天津地质调查中心谷永昌教授级高级工程师,辛后田、刘永顺高级工程师等的热情指导和帮助,在此一并表示衷心的感谢。 -
图 7 努和特A型花岗岩铝饱和指数(A/CNK-A/NK)图解[35]
IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆造陆抬升有关的花岗岩类;POG—后造山花岗岩类;OP—与大洋花岗岩类有关的花岗岩类
Figure 7. Shand's indexes of the Nuhete A-type granite
图 8 努和特A型花岗岩SiO2-K2O分类图解[36]
Figure 8. SiO2-K2O classification diagram of the Nuhete A-type granite
图 9 努和特A型花岗岩稀土元素球粒陨石标准化配分模式[37]
Figure 9. Chondrite-normalized REE patterns of the Nuhete A-type granite
图 10 努和特A型花岗岩微量元素原始地幔标准化蛛网图[38]
Figure 10. Primitive mantle-normalized trace element spider diagram of the Nuhete A-type granite
图 11 努和特A型花岗岩K2O-Na2O图解[2]
Figure 11. K2O-Na2O plot of the Nuhete A-type granite
图 13 努和特A型花岗岩A1和A2型花岗岩类Y-Nb-Ce(a)和Y-Nb-3Ga(b)三角形判别图解[5]
A1—非造山花岗岩;A2—造山后花岗岩
Figure 13. Y-Nb-Ce (a) and Y-Nb-3Ga (b) triangular plots for distinguishing between A1 and A2 granitoids from the Nuhete A-type granite
图 14 努和特A型花岗岩Y/Nb-Rb/Nb和Y/Nb-Sc/Nb图解[5]
A1—非造山花岗岩;A2—造山后花岗岩
Figure 14. Y/Nb-Rb/Nb and Y/Nb-Sc/Nb plots for distinguishing between A1 and A2 granitoids from the Nuhete A-type granite
图 15 努和特A型花岗岩SiO2-Al2O3(a)和SiO2-TFeO/(TFeO+MgO) (b)构造环境判别图解[35]
IAG—岛弧花岗岩类;CAG—大陆弧花岗岩类;CCG—大陆碰撞花岗岩类;POG—后造山花岗岩类;RRG—与裂谷有关的花岗岩类;CEUG—与大陆的造陆抬升有关的花岗岩类
Figure 15. SiO2-Al2O3(a) and SiO2-TFeO/(TFeO+MgO)(b) tectonic discriminant diagrams of the Nuhete A-type granite
图 16 努和特A型花岗岩(Y+Nb)-Rb(a)和(Y+Ta)-Rb(b)构造环境判别图解[47]
VAG—火山弧花岗岩;WPG—板内花岗岩;ORG—大洋中脊花岗岩;syn-COLG—同碰撞花岗岩
Figure 16. (Y+Nb)-Rb(a) and (Y+Ta)-Rb(b) tectonic discriminant diagrams of the Nuhete A-type granite
图 17 努和特A型花岗岩Y/Nb-Yb/Ta(a)和Y/Nb-Ce/Nb(b)图解[5]
OIB—洋岛玄武岩;IAB—岛弧玄武岩
Figure 17. Y/Nb-Yb/Ta(a) and Y/Nb-Ce/Nb(b) plots of the Nuhete A-type granite
表 1 努和特粗中粒黑云母正长花岗岩(P17TW03)LA-ICP-MS锆石U-Th-Pb测试结果
Table 1 LA-ICP-MS U-Th-Pb dating results of zircons from the Nuhete coarse-medium biotite syenogranite
点号 元素含量/10-6 Th/U 同位素原子比率 表面年龄/Ma Pb U Th 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U ±% 1 153 7577 1551 0.205 0.051 1.9 0.148 2.0 0.02109 0.96 135 ±1 2 23 1175 314 0.267 0.049 3.3 0.138 3.4 0.02039 0.89 130 ±1 3 3 123 38 0.306 0.167 16 0.467 15 0.02027 3.2 129 ±4 4 40 1949 450 0.231 0.066 2.8 0.186 2.8 0.02048 0.93 131 ±1 5 19 934 224 0.240 0.059 5.1 0.166 5.4 0.02042 1.1 130 ±1 6 133 6745 914 0.136 0.050 1.8 0.143 1.9 0.02082 0.88 133 ±1 7 122 6039 4569 0.757 0.122 1.9 0.293 1.9 0.01745 0.87 112 ±1 8 92 4698 609 0.130 0.054 2.1 0.152 2.2 0.02052 1.2 131 ±2 9 7 284 97 0.342 0.137 8.4 0.402 9.7 0.02122 1.9 135 ±3 10 200 10071 1223 0.121 0.050 1.8 0.145 1.9 0.02108 0.89 134 ±1 11 78 3030 574 0.189 0.165 2.5 0.467 2.9 0.02048 0.96 131 ±1 12 120 5978 1396 0.234 0.056 1.9 0.159 1.9 0.02048 0.9 131 ±1 13 21 1063 287 0.270 0.051 3.6 0.145 3.7 0.02068 0.85 132 ±1 14 25 1247 154 0.123 0.053 5.6 0.153 5.4 0.02090 1.2 133 ±2 15 43 1995 953 0.478 0.105 2.1 0.291 2.2 0.02003 0.92 128 ±1 16 141 7543 1393 0.185 0.051 1.9 0.138 1.9 0.01957 0.83 125 ±1 17 59 3087 580 0.188 0.056 2.5 0.154 2.6 0.01993 0.94 127 ±1 18 5 250 33 0.132 0.054 25 0.147 24 0.01967 2.1 126 ±3 19 21 1098 68 0.062 0.051 3.3 0.142 3.3 0.02022 0.88 129 ±1 20 22 1055 412 0.390 0.066 5.0 0.181 5.0 0.01981 0.90 126 ±1 21 38 1938 513 0.265 0.053 2.5 0.147 2.5 0.01996 0.84 127 ±1 22 200 10351 1155 0.112 0.051 1.8 0.144 1.9 0.02055 0.88 131 ±1 23 145 7431 1250 0.168 0.052 1.9 0.147 1.9 0.02046 0.83 131 ±1 24 72 3623 651 0.180 0.058 2.1 0.162 2.1 0.02047 0.95 131 ±1 25 182 9561 1172 0.123 0.054 1.8 0.148 2.8 0.01998 0.84 128 ±1 26 53 2636 471 0.179 0.051 2.4 0.148 5.4 0.02111 1.0 135 ±1 27 14 603 146 0.243 0.083 7.7 0.246 1.9 0.02140 0.98 137 ±1 注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质矿产研究所完成 表 2 努和特粗中粒似斑状黑云母正长花岗岩(P17TW11)LA-ICP-MS锆石U-Th-Pb测试结果
Table 2 LA-ICP-MS U-Th-Pb dating results of zircons from the Nuhete coarse-medium grained porphyritoid biotite syenogranite
点号 元素含量/10-6 Th/U 同位素原子比率 表面年龄/Ma Pb U Th 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U 1 177 8674 1314 0.152 0.064 2.2 0.179 2.0 0.02044 0.89 130 ±1 2 79 3992 644 0.161 0.054 2.1 0.151 2.1 0.02019 0.97 129 ±1 3 127 5814 1454 0.250 0.063 2.3 0.184 2.4 0.02126 0.80 136 ±1 4 160 7638 1703 0.223 0.067 1.8 0.189 1.9 0.02031 0.85 130 ±1 5 95 4501 1233 0.274 0.071 2.5 0.195 2.3 0.02005 0.92 128 ±1 6 47 2002 557 0.278 0.106 5.0 0.297 6.3 0.02035 1.4 130 ±2 7 70 3446 769 0.223 0.054 2.0 0.151 2.0 0.02034 0.83 130 ±1 8 135 5839 1379 0.236 0.107 7.3 0.290 9.5 0.01961 1.8 125 ±2 9 7 334 126 0.378 0.055 20 0.161 20 0.02113 1.4 135 ±2 10 62 2728 750 0.275 0.096 3.4 0.265 3.8 0.02009 0.93 128 ±1 11 114 5153 1557 0.302 0.081 1.9 0.226 1.9 0.02013 0.82 129 ±1 12 147 6239 1969 0.316 0.100 2.3 0.277 2.6 0.02007 0.87 128 ±1 13 37 1875 344 0.184 0.049 2.4 0.137 2.5 0.02040 0.84 130 ±1 14 64 3111 683 0.220 0.055 2.0 0.154 2.1 0.02043 0.80 130 ±1 15 95 4632 966 0.208 0.058 2.0 0.162 2.2 0.02026 0.89 129 ±1 16 81 3978 732 0.184 0.052 1.9 0.147 1.9 0.02054 0.83 131 ±1 17 116 5253 1466 0.279 0.081 1.9 0.228 1.9 0.02047 0.87 131 ±1 18 149 7176 1980 0.276 0.067 1.8 0.181 1.9 0.01953 0.80 125 ±1 19 118 6054 377 0.062 0.058 1.9 0.165 1.8 0.02043 0.86 130 ±1 20 158 7465 1743 0.233 0.068 1.7 0.191 1.8 0.02042 0.82 130 ±1 21 74 3338 678 0.203 0.101 2.6 0.272 2.9 0.01947 0.88 124 ±1 22 119 5501 1050 0.191 0.078 1.8 0.218 1.9 0.02033 0.85 130 ±1 23 131 6314 1122 0.178 0.062 2.0 0.176 2.2 0.02047 0.85 131 ±1 24 113 5288 1066 0.202 0.078 2.1 0.216 2.2 0.02018 0.80 129 ±1 25 98 4872 834 0.171 0.055 2.0 0.156 2.0 0.02041 0.81 130 ±1 注:误差为1σ;Pb*指示放射成因铅。实验测试在天津地质矿产研究所完成 表 3 努和特A型花岗岩的主量、微量和稀土元素分析结果
Table 3 Major elements, trace elements and REE analyses of the Nuhete A-type granite
样品号(岩性) S01(czξγβK1) S02(czξγβK1) S03(czξγβK1) S07(czπξγβK1) S10(czπξγβK1) S11(czπξγβK1) SiO2 75.94 75.39 76.18 75.51 74.4 72.92 TiO2 0.12 0.09 0.07 0.11 0.19 0.26 Al2O3 12.93 13.55 13.25 13.34 13.54 13.94 Fe2O3 0.39 0.39 0.28 0.24 0.53 0.59 FeO 0.89 0.65 0.36 0.69 1.03 1.37 MnO 0.049 0.067 0.027 0.032 0.045 0.051 MgO 0.25 0.17 0.09 0.16 0.27 0.37 CaO 0.88 0.76 0.73 0.83 0.98 1.24 Na2O 3.91 4.06 3.54 3.51 3.59 3.61 K2O 4.1 4.46 4.9 4.88 4.67 5.03 P2O5 0.029 0.026 0.017 0.101 0.101 0.078 烧失量 0.44 0.33 0.49 0.53 0.56 0.44 总计 99.93 99.943 99.93 99.933 99.91 99.899 Ba 285.5 255.8 172.2 222.2 332.1 545.3 Rb 139.2 158.4 111.8 213.1 184.7 179 Sr 82.5 68.8 63 77.7 107.1 178.7 Zr 99.2 84.1 90.6 93.2 146.4 197.1 Nb 10.1 10.46 5.43 12.73 15.52 16.58 Th 23.02 12.49 16.65 24.78 23.54 32.62 Ga 19.59 19.16 19.85 20.55 18.67 21.73 Pb 24.1 26.1 21.5 33.4 28.8 29.1 Zn 61.5 60.1 54.3 55.1 65.2 76.2 Cu 2.5 2.2 3.8 2.5 2.7 3 Ni 4.9 1.5 2.3 1.6 2.1 3 V 11.8 9.8 8.5 11.4 14.5 17.1 Cr 3.9 3.4 3.3 3.6 3.8 4.7 Hf 4.32 3.6 4.31 4.02 5.87 6.8 Sc 3.35 3.14 3.01 4.07 4.67 5.4 Ta 1.65 1.61 0.67 2.16 2.62 1.88 Co 1.1 0.8 0.8 0.5 1 2.8 Li 32.08 43.98 11.03 19.5 46.9 27.44 U 4.23 1.98 2.19 4.28 2.09 2.77 Y 18.69 19.99 14.07 30.61 29.15 28.5 Rb/Sr 1.69 2.30 1.78 2.74 1.72 1.0 K/Rb 244.51 233.74 263.83 190.1 209.1 233.27 Ga/Al 2.86 2.67 2.83 2.91 2.61 2.95 La 15.73 14.23 12.94 15.89 25.12 52.16 Ce 29.39 30.94 27.32 34.47 52.77 103.7 Pr 3.75 3.42 3.45 4.34 6.48 11.95 Nd 13.72 12.91 13.36 16.74 23.84 43.21 Sm 3.04 3.14 2.98 4.3 5.27 7.8 Eu 0.43 0.43 0.5 0.35 0.53 0.72 Gd 2.9 3.09 2.63 3.95 4.78 6.54 Tb 0.55 0.62 0.46 0.84 0.91 1 Dy 3.53 4.1 2.84 5.74 5.77 5.54 Ho 0.66 0.76 0.51 1.11 1.08 1.04 Er 1.89 2.15 1.44 3.39 3.17 2.92 Tm 0.32 0.37 0.24 0.64 0.55 0.47 Yb 1.94 2.15 1.52 4.08 3.41 2.89 Lu 0.39 0.43 0.35 0.63 0.61 0.59 ΣREE 78.24 78.74 70.54 96.47 134.29 240.53 δEu 0.43 0.42 0.54 0.25 0.32 0.3 (La/Yb)N 5.47 4.46 5.74 2.63 4.97 12.17 注:主量元素含量单位为%,稀土、微量元素含量为10-6;czξγβK1—粗中粒黑云母正长花岗岩,czπξγβK1—粗中粒似斑状黑云母正长花岗岩 -
Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am., Abstracts, 1979, 11:468.
Collins W J, Beams S D, White A J R, et al.Nature and origin of Atype granites with particular reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80:189-200. doi: 10.1007/BF00374895
Whalen J B, Currie K, Chappel B W. A-type granite:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95:407-419. doi: 10.1007/BF00402202
Eby G N. The A-type granitoids:a review of their occurrence and chemical characteristics and speculation on their petrogenesis[J]. Lith-os, 1990, 26:115-134. doi: 10.1016/0024-4937(90)90043-Z
Eby G N. Chemical subdivision of the A-type granitoids:Petroge-netic and tectonic implications[J]. Geology, 1992, 20:641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Pitcher W S. The Nature and Origin of Granite[M]. Blackie:Aca-demic and Professional, 1993:1-316.
洪大卫, 王式洸, 韩宝福, 等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑), 1995, 25(4):418-426. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia[J]. J. Petrol., 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371
许保良, 阎国翰, 张臣. A型花岗岩的岩石学亚类及其物质来源[J].地学前缘, 1998, 5(3):113-124. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY803.015.htm 邱检生, 王德滋, 蟹泽聪史, 等.福建沿海铝质A型花岗岩的地球化学及岩石成因[J].地球化学, 2000, 29(4):313-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200004000.htm Wu F Y, Sun D Y, Li H M, et al. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chem. Geol., 2002, 187:143-173. doi: 10.1016/S0009-2541(02)00018-9
刘红涛, 翟明国, 刘建明, 等.华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J].岩石学报, 2002, 18(4):433-448. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001316.htm 张晓晖, 张宏福, 汤艳杰, 等.内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2769-2780. doi: 10.3969/j.issn.1000-0569.2006.11.015 Bonin B. A-type granites and related rocks:Evolution of a con-cept, problems and prospects[J]. Lithos, 2007, 97:1-29. doi: 10.1016/j.lithos.2006.12.007
吴锁平, 王梅英, 戚开静. A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 26(1):57-66. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200701008.htm 张旗, 冉白皋, 李承东. A型花岗岩的实质是什么?[J].岩石矿物学杂志, 2012, 31(4):621-626. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201302014.htm 石玉若, 刘敦一, 张旗, 等.内蒙古中部苏尼特左旗地区三叠纪A型花岗岩锆石SHRIMP U-Pb年龄及其区域构造意义[J].地质通报, 2007, 26(2):183-189. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20070231&flag=1 石玉若, 刘翠, 邓晋福, 等.内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J].岩石学报, 2014, 30(11):3155-3171. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411005.htm 薛富红, 张晓晖, 邓江夏, 等.内蒙古中部达来地区晚侏罗世A型花岗岩:地球化学特征、岩石成因与地质意义[J].岩石学报, 2015, 31(6):1774-1788. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201506020.htm Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and isoto-pic (O, Nd, Pb and Sr) constraints on A-type granite:Petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians[J]. J. Petrol., 1996, 37:1463-1489. doi: 10.1093/petrology/37.6.1463
Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic envi ronments[J]. Lithos, 1999, 46:605-626. doi: 10.1016/S0024-4937(98)00085-1
Coleman D S, Frost T P, Glazner A F. Evidence from the La-marck granodiorite for rapid Late Cretaceous crust formation in California[J]. Science, 1992, 258(5090):1924-1926. doi: 10.1126/science.258.5090.1924
Bonin B, Azzouni S A, Bussy F, et al. Alkali calcic and alkaline post-orogenic (PO) granite magmatism:Petrologic constraints and geodynamic settings[J]. Lithos, 1998, 45(1/4):45-70.
陈志广, 张连昌, 吴华英, 等.内蒙古西拉木伦成矿带碾子沟钼矿区A型花岗岩地球化学和构造背景[J].岩石学报, 2008, 24(4):879-889. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804027.htm 梁日暄.内蒙古中段蛇绿岩特征及地质意义[J].中国区域地质, 1994, (1):37-45. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD401.005.htm Miao L, Shi Y, Guo F, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tec-tonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(4):404-415.
刘建峰, 迟效国, 张兴洲.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 83(3):365-376. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200903006.htm 李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗迪彦庙蛇绿岩的识别[J].岩石学报, 2012, 28(4):1282-1290. 李英杰, 王金芳, 李红阳, 等.内蒙古西乌旗梅劳特乌拉蛇绿岩的识别[J].岩石学报, 2015, 31(5):1461-1470. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505020.htm 吴荣泽, 张树栋, 来林.内蒙古乌兰五台地区三叠纪铝质A型花岗岩年代学及地球化学特征[J].地球科学与环境学报, 2015, 37(6):47-58. http://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201506008.htm 程天赦, 杨文静, 王登红.内蒙古西乌旗阿鲁包格山A型花岗岩锆石U-Pb年龄、地球化学特征及地质意义[J].大地构造与成矿学, 2014, 38(3):718-728. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201403023.htm Andersen T. Correction of commen lead U-Pb analyses that do not report 204Pb[J]. Chem. Geol., 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
Claesson S, Vetrin V, Bayanova T, et al. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia:A record of geological evolution from the Archaean to the Palaeozoic[J]. Lith-os, 2000, 51:95-108. doi: 10.1016/S0024-4937(99)00076-6
Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Tex-tures[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1):469-500.
Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Bulletin of the Geological Society of America, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu Area, NorthernTurkey[J]. Con-tributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745
Boynton W V. Geochemistry of the rare earth elements:meteorite studies/Henderson P. Rare earth element geochemistry[M]. Elsevi-er, 1984:63-114.
Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society of London, Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
林强, 葛文春, 吴福元, 等.大兴安岭中生代花岗岩类的地球化学[J].岩石学报, 2004, 20(3):403-412. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403004.htm Liu W, Siebel W, Li X J, et al.Petrogenesis of the Linxi granit-oids, northern Inner Mongolia of China:Constraints on basaltic un-derplating[J]. Chem.Geol., 2005, 219(1/4):5-35.
周振华, 吕林素, 杨永军, 等.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J].岩石学报, 2010, 26(12):3521-3537. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201012007.htm 解洪晶, 武广, 朱明田, 等.内蒙古道郎呼都格地区A型花岗岩年代学、地球化学及地质意义[J].岩石学报, 2012, 28(02):483-494. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202012.htm Creaser R A, Price R C, Wormald R J. A-type granites revisited:Assessment of a residual-source model[J]. Geology, 1991, 19:163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recy-cling[J]. J. Petrol., 1995, 36:891-931. doi: 10.1093/petrology/36.4.891
吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDK199001002.htm Fan W M, Guo F, Wang Y J, et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China[J]. Journal of Volcanology and Geo-thermal Research, 2003, 121:115-135. doi: 10.1016/S0377-0273(02)00415-8
Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic sig-nificance of supra-subduction zone ophiolites[C]//Kokelaar B P, Howells M F. Marginal Basin Geology. Geological Society of Lon-don Special Publication, 1984, 16:77-94.
Sengor A M C, Natal`in B A, Burtman V S. Evolution of the Al-taid tectonic collage and Paleozoic crustal growth in Eurasis[J]. Na-ture, 1993, 364:299-307.
陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm 王惠, 王玉净, 陈志勇, 等.内蒙古巴彦敖包二叠纪放射虫化石的发现[J].地层学杂志, 2005, 29(4):368-372. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200504009.htm Xiao W J, Windley B F, Huang B C, et al. End-Permian to midTriassic termination of the accretionary processes of the southern Altaids; implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. Int. J. Earth Sci., 2009, 98:1189-1217. doi: 10.1007/s00531-008-0407-z
Jian P, Liu D Y, Kroner A, et al. Evolution of a Permian intraoce-anic arc-trench system in the Solonker suture zone, Central Asian orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118:169-190. doi: 10.1016/j.lithos.2010.04.014
孙德有, 吴福元, 张艳斌, 等.西拉木伦河-长春-延吉板块缝合带的最后闭合时间:来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版), 2004, 34:174-181. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402003.htm -
期刊类型引用(7)
1. 刘永彪,李省晔,杨镇熙,赵吉昌,胡小春,王喆. 甘肃北山破城山东一带铜金矿地球化学勘查及找矿方向. 黄金科学技术. 2024(06): 990-1001 . 百度学术
2. 孙凯,刘晓阳,何胜飞,龚鹏辉,许康康,任军平,张航,卢宜冠,邱磊. 坦桑尼亚水系沉积物地球化学特征及金资源前景. 地质通报. 2023(08): 1258-1275 . 本站查看
3. 李欢,黄勇,张沁瑞,贾三满,徐国志,冶北北,韩冰. 北京平原区土壤地球化学特征及影响因素分析. 物探与化探. 2021(02): 502-516 . 百度学术
4. 袁和,许云鹏. 综合找矿方法在辽宁阜蒙县东五家子金矿勘查中的应用. 地质与勘探. 2021(02): 339-350 . 百度学术
5. 齐文博,师兵,王嘉炜,杨碧莹,柳坤峰. 青海省都兰县查哈西里地区地球化学异常特征及成矿远景评述. 地质与资源. 2021(04): 431-442 . 百度学术
6. 写熹,魏国辉,郭泳杰,王克友,杜玉雕. 化探综合异常的圈定——以安徽绩溪青罗山地区1∶1万土壤地球化学测量为例. 矿产与地质. 2021(04): 763-769 . 百度学术
7. 周俊朋,吴鹏,韩润生,郭忠林,王雷,龚红胜. 云南会泽铅锌矿床外围高家阱勘查区构造样式与构造地球化学找矿. 地质通报. 2019(11): 1899-1911 . 本站查看
其他类型引用(2)