Lithosphere structure of Duobaoshan ore concentration area, Heilongjiang: Results of deep seismic reflection and magnetotelluric detection in Sunwu-Jinsong corridor belt
-
摘要:
探测造山带岩石圈精细结构,是探讨造山与成矿作用最有效的手段。2019年,在黑龙江省西北部孙吴−劲松廊带域,中国地质科学院完成了一条横跨黑河−贺根山缝合带北段和多宝山矿集区北西—南东向185 km长的深地震反射剖面,以及5条总计174点的大地电磁测深(宽频、音频)剖面。结果显示,多宝山矿集区的莫霍面深度在33 km(TWT 11 s)左右,呈现断续可追踪形态,其东侧中、下地壳识别出一套向西倾斜并延伸至上地幔的反射体,其倾角约为25°,推断为嫩江洋俯冲遗迹。在多宝山矿集区的西侧识别出整体向东倾斜的壳幔反射特征,表明蒙古−鄂霍茨克构造域影响范围已至黑河−贺根山缝合带。多宝山矿集区上地壳围限于卧都河—罕达汽之间的“V”形构造带中,中下地壳垂向上发育一系列长10 km左右的强反射层,解释为残留的岩浆通道。多宝山矿集区下地壳的高导体可延伸至地幔,与其上高导异常C4呈蘑菇云状展布,并与矿床的位置在空间上存在一致性,指示了幔源物质的侵入。近地表速度结构整体速度变化在1900~6100 m/s之间,高速体界面起伏较大且埋深较浅,是寻找隐伏金矿的有利区域,铜山铜矿和多宝山铜矿的斑岩岩体虽被隐伏断裂阻隔,但在深部相连,地下2000 m以内仍有很好的资源潜力。本项调查研究将浅层矿床分布与岩石圈结构联系起来,为深入研究与古老地壳缝合带与复合造山作用相联系的多宝山矿集区的地质背景提供了新视野。
Abstract:Detecting the fine structure of lithosphere in orogenic belt is the most effective means to explore orogeny and mineralisation. In 2019, the Chinese Academy of Geological Sciences completed a 185−km−long deep seismic reflection profile from northwest to southeast, and five magnetotelluric sounding (broadband and audio) profiles with a total of 174 points in the Sungwu−Jinsong corridor belt in northwestern Heilongjiang Province. The results show that the depth of the Moho in the Duobaoshan ore concentration area is about 33 km (Two way traveltime 11s), showing an intermittent and traceable pattern. A set of subduction relict are identified in the middle and lower crust on the east side of the area, which shows that it is a reflection body that inclinates to the west and extends to the upper mantle, with a dip angle of 25 degrees, and is inferred to be the subduction relict of the Nenjiang Ocean. The characteristics of crust−mantle reflection are identified in the west side of the Duobaoshan ore concentration area, which is generally inclined to the east. It is indicated that the influence of the Mongolia−Okhotsk structure has reached the Heihe−Hegenshan suture. The upper crust of the Duobaoshan ore concentration area is confined to the "V" tectonic belt between Woduhe−Handaqi, and a series of strong reflection layers around 10 km in length are developed vertically in the middle and lower crust, which is interpreted as a residual magma channel. The high conductor in the lower crust of the Duobaoshan ore concentration area can extend to the mantle, and its high−conductivity anomaly C4 on it is distributed in the form of a mushroom cloud, and is spatially consistent with the location of the ore deposits, which indicates the intrusion of mantle−sourced materials. The overall velocity of the near−surface velocity structure of the Duobaoshan ore concentration area varies from 1900 m/s to 6100 m/s, and the high velocity body interface has a large undulation and a shallow depth, which is a favourable area for searching for concealed gold mines. Although the porphyry bodies of the Tongshan copper mine and the Duobaoshan copper mine are blocked by hidden faults, they are connected at deep depth, and there is still good resource potential within 2000 m underground. This study links the distribution of shallow deposits with the lithospheric structure, and provides a new vision for further study of the geological background of the Duobaoshan ore concentration area connected with the ancient crustal suture and the composite orogenic belt.
-
中亚造山带作为世界上最大的显生宙增生造山带(Chen et al., 2000),也是世界上重要的矿产资源集中分布区,包括大量与增生作用密切相关的斑岩铜矿(申萍,2015)。自西向东由哈萨克斯坦,经西准噶尔(Ji et al., 2018)、东准噶尔、南蒙古,到内蒙古北部,再到中国东北北部,在中亚造山带南部形成一条规模宏大的斑岩铜矿带,这些斑岩铜(钼、金)矿形成时代主要为早中古生代(申萍,2015;高俊等,2019)。中国境内的东准噶尔地区,位于该巨型成矿带的中段,也发现了一系列的斑岩铜矿,特别是琼河坝地区(郭丽爽等,2009;屈迅等,2009;王登红等,2009;杜世俊等,2010;张永等,2010;王磊等,2018;王斯林等,2018),如蒙西铜矿、琼河坝铜矿、桑南铜矿、铜华岭铜矿、和尔赛铜矿等,已成为一个重要的矿集区。这些斑岩铜矿与整个中亚造山带南部斑岩铜矿带一样,形成时代也主要集中在晚志留世—早泥盆世(郭丽爽等,2009;杜世俊等,2010),因此斑岩铜矿勘查也围绕着该时期的侵入岩和含火山岩地层展开。尽管部分学者认为北疆地区在二叠纪仍存在俯冲,但是多数学者认为整个大洋的消失应该在晚石炭世之前。不同于青藏高原的后碰撞斑岩成矿,北疆的造山后斑岩成矿显然不是重点。然而,随着勘查的进一步深入,在坝西地区新近发现一处斑岩铜矿(王斯林等,2017,2018;Xiao et al., 2018;张铭鸿等,2021),其赋矿斑岩侵入中泥盆统,成岩成矿时代应该晚于中泥盆世,前人获得矿区石英闪长岩的年龄为早石炭世(Xiao et al., 2018),与琼河坝主体的成矿时代不一致。本文对该矿区的两类赋矿围岩开展了年代学和地球化学研究,探讨其岩石成因,为北疆地区晚古生代的斑岩勘查提供重要信息。
1. 地质背景
东准噶尔地区位于北疆(新疆北部阿尔泰、准噶尔和天山)准噶尔盆地东部,夹持于阿尔泰和东天山之间,被认为是图瓦−蒙古山弯构造的最南缘(Xiao et al., 2012)。主要为泥盆纪—二叠纪的火山−沉积地层,分布少量侏罗系,新生界及第四系广泛分布。关于该地区的构造环境,一直存在争论(童英等,2010;Long et al., 2012),有观点认为是在古生代东准噶尔洋向北俯冲导致的一系列洋内增生(童英等,2010;Long et al., 2012; Han et al., 2018),也有观点认为,晚古生代晚期已处于后碰撞环境(张海祥等,2004,2008;Han et al., 2018;孟秋熠,2020)。坝西铜矿位于东准噶尔东南部琼河坝矿集区,距伊吾县北东约160 km,构造上属于谢米斯台−野马泉−琼河坝古生代岛弧带的一部分,是环准噶尔北部斑岩铜矿带的重要组成部分(图1–a)。该地区出露的地层主要有中—上奥陶统荒草坡群(O2-3h)含化石的火山碎屑岩;中泥盆统北塔山组(D2b)海相中基性火山岩及中酸性火山碎屑岩夹碳酸盐岩地层和库鲁木迪组(D2k)砂岩、灰质粉砂岩、生物灰岩夹少量火山岩;下石炭统黑山头组(C1h)滨海、浅海相碎屑岩和中性火山岩;上二叠统红雁池组陆相中—基性火山熔岩。区内岩浆活动较强烈,中酸性侵入岩广泛分布,主要形成于古生代。
图 1 东准噶尔地质简图(a)、区域地质图(b)及矿区地质简图(c)(年龄数据据张铭鸿等,2021)Figure 1. Geotectonic position(a), regional geological (b) and mine geological (c) maps of the Baxi copper deposit2. 矿区地质及成矿特征
坝西铜矿位于绿石沟铜矿、灰西沟铜矿和宝山铁矿北部(图1–b),可分为南、北2个矿区,主体在南部。区内地层为中泥盆统北塔山组(侯可军等,2013),主要分布于矿区中部及西北角,为一套中性浅海相火山熔岩及火山凝灰岩,岩性主要为安山质晶屑凝灰岩、安山质角砾晶屑岩屑凝灰岩、沉凝灰岩和安山岩,普遍具角岩化、青磐岩化(绿帘石化、绿泥石化和碳酸盐化)蚀变。
矿区侵入岩发育,外围主要为花岗闪长岩,包括南、北2个侵入体,中部则以石英闪长岩和石英二长闪长岩为主,其中,石英二长闪长岩分布面积较小(图1–c),同时发育辉绿岩脉和闪长玢岩脉。南部矿区3类侵入岩在接触带附近相互穿插,还可以见到过渡类型,尤其是石英闪长岩和石英二长闪长岩之间,矿物组成略有变化,粒度变化并不规律。3类岩石均侵入中泥盆统北塔山组中。
石英闪长岩为细—中粒结构,局部可见斜长石粗斑晶,呈似斑状结构(图2–a)。主要矿物组成:斜长石(55%~60%)普遍自形,主要为板状—板柱状,多呈等粒结构,但有时粒径也相差达2~4倍,使岩石呈现不等粒—似斑状结构(图2–a),双晶和环带结构普遍存在;钾长石(10%~12%)主要呈半自形,多数等粒,与斜长石呈相嵌结构;石英(15%)完全呈他形,且粒度明显小于长石,分布于长石粒间;角闪石(3%)多蚀变,为板片状,与黑云母密切伴生,分布于长石粒间;黑云母(10%)分布广泛,多呈长条状分布于长石粒间,有时也呈片状零星分布(图版Ⅰ–a)。
花岗闪长岩为中粒结构,浅肉红色,暗色矿物普遍较少,局部可见角闪石聚集,岩石颜色较深(图2–b)。主要矿物组成为石英(15%~20%)、斜长石(50%~55%)、钾长石20%~25%,暗色矿物主要为角闪石(5%~8%)(图版Ⅰ–b)。
矿区构造以断裂为主,按走向大致可分为NW向和EW向2组,其中NW向断裂形成较早,规模较大,活动较强烈,常伴随有一定的热液活动和蚀变,发育串珠状石英脉,见孔雀石化、褐铁矿化。EW向断裂形成较晚,常切割NW向断裂带,其中的岩石也较破碎,有泥化、次生石英岩化、孔雀石化、褐铁矿化。
坝西铜矿体主要产于石英闪长岩(图2–c)中,在花岗闪长岩(图2–d)和石英二长闪长岩中也有分布,多呈细脉状、浸染状、细脉−浸染状。矿化元素主要是Cu,其次是Mo,矿化只发生在蚀变岩石中。黄铜矿较多分布于角闪石和黑云母蚀变强烈部位,黄铜矿常单独呈短小细脉分布于蚀变岩中,有时也和绢云母或石英构成细脉,个别还有含黄铜矿的绿泥石细脉。
矿化岩石的蚀变作用非常普遍,主要蚀变有长石的高岭土化、角闪石等暗色矿物的绿泥石化、绿帘石化、绢云母化、硅化、电气石化、沸石化和碳酸盐化。矿化蚀变总体表现为以矿体为中心,从内向外依次为钾化(黑云母化)−硅化、绢英岩化带(绢云母+绿泥石)−泥化带(沸石化+高岭土化+高岭石化+碳酸盐化)−青磐岩化带,显示出典型的斑岩铜矿特征。石英闪长岩中的角闪石等暗色矿物普遍蚀变,与磁铁矿和硫化物密切伴生(图版Ⅰ–a),磁铁矿和黄铁矿的产出与黑云母蚀变关系密切(图版Ⅰ–b,c)。在石英闪长岩中暗色矿物多被绢云母交代(图版Ⅰ–d),在强粘土化的石英闪长岩中可见铜矿化与绢云母化关系密切(图版Ⅰ–e),在花岗闪长岩中可见电气石呈放射状分布在绢云母化−粘土化的长石边部,并产生少量黄铜矿(图版Ⅰ–f)。
3. 样品与测试方法
3.1 样品特征
本次选择与成矿相关的石英闪长岩和花岗闪长岩进行锆石U−Pb测年和地球化学分析。这2类岩石的地球化学分析样品分别来自于钻孔岩心和野外露头。石英闪长岩锆石U−Pb测年样品(WSS-2)采自矿区西南含矿岩体中部(图1–c)。岩石呈浅黄色,细—中粒结构到似斑状结构。斜长石和钾长石所占比例为3∶1,斜长石普遍自形,晶体粒径明显大于钾长石,钾长石多为他形;石英(15%~25%)呈他形不等粒结构;角闪石和黑云母(10%)并存,但前者稍占优势。副矿物有榍石、磷灰石、锆石、磁铁矿等。
花岗闪长岩锆石U−Pb测年样品(C-2)采自矿区西南含矿岩体南端(图1–c)。岩石呈灰白色,具半自形粒状结构,块状构造。主要矿物有斜长石(50%),呈自形板柱状,环带结构发育;钾长石(5%),多呈半自形—他形;石英(15%~20%),呈他形粒状;黑云母(<5%)和角闪石(15%~25%)均发生了蚀变(图2–c,d)。副矿物有榍石、磷灰石、锆石、磁铁矿等。
3.2 测试方法
3.2.1 锆石U−Pb测年
锆石单矿物分离及透射光、反射光和阴极发光照相在河北省区域地质调查院完成。首先,将原岩样品粉碎,经常规重选和电磁选后,在双目镜下挑选锆石。然后,将完整的典型锆石颗粒置于DEVCON环氧树脂中,待固结后抛磨,使锆石内部充分暴露,进行锆石显微(反射光和透射光)照相和阴极发光(CL)照相。
石英闪长岩(图3–a)与花岗闪长岩(图3–b)样品的锆石均呈自形粒状和柱状,无色透明,CL图像显示大部分锆石晶形较完整,少量较破碎,极少量为浑圆椭球状。其中,石英闪长岩的锆石长50~150 μm,部分具有非常明显的振荡环带韵律结构,部分具有扇状分带结构;花岗闪长岩的锆石长50~200 μm,大部分锆石内部结构均匀,振荡环带韵律结构非常明显,部分具有扇状分带结构。这2类岩石中的部分锆石具有暗色包裹体或继承核,本次选取了晶形完好、无核无包裹体的锆石进行测试分析。
锆石U−Pb同位素分析在北京燕都中实测试技术有限公司实验室完成。激光剥蚀系统为New Wave UP213(黄岗等,2016),ICP-MS为布鲁克M90。激光剥蚀的斑束为30 μm,激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度。每个时间分辨分析数据包括约15 s的空白信号和50 s的样品信号。U−Pb同位素定年采用锆石标准91500作外标进行同位素分馏校正,每分析5~10个样品点,分析2次91500。数据处理采用中国地质大学刘勇胜(2014)编写的ICPMSDataCal程序和Ludwig(2012)的Isoplot程序进行分析和作图,采用208Pb对普通铅进行校正。利用NIST612作为外标计算锆石样品的Pb、U、Th含量。具体操作方法可见参考文献(孟秋熠,2020)。
3.2.2 地球化学分析
样品的主量和微量元素分析在国家地质实验测试中心完成。首先取0.2 g样品粉末进行Lithium metaborate/tetrabortate 融合和硝酸稀释溶解,将样品/助溶剂的融合物于马弗炉上在1050℃的温度下加热15 min。提取熔融物,倒入100 mL由去离子水和ACS级纯度硝酸配置的5%浓度的HNO3中。将溶液摇晃2 h使其充分溶解,取其一部分置于聚丙分析管内。通过电感耦合等离子光谱分析(ICP-AES)进行主量元素和Ba、SC、Cu、Zn、Ni含量分析。在ICP-MS上进行其他微量及稀土元素含量分析。对于贵金属的分析,称取0.5 g样品,置于3 mL高温的(95℃)王水中进行溶解,通过ICP-MS进行分析。所有的分析以OS-18为标准样,精度均优于±3%。
4. 测试结果
4.1 锆石U−Pb年龄
锆石U−Pb同位素分析测试结果列于表1。其中,石英闪长岩所有测试结果都落在谐和线附近,呈集中分布(图4–a),206Pb/238U年龄加权平均值为336.7±2.4 Ma(MSWD=0.22,n=18),代表石英闪长岩的形成年龄。花岗闪长岩共进行了20个测点分析,1个样品因高含量204Pb而未获得结果,19个测点集中分布,落在谐和线附近,206Pb/238U年龄为335~342 Ma,206Pb/238U年龄加权平均值为337.3±4.1 Ma(MSWD=0.13,n=19,图4−b),代表花岗闪长岩的形成年龄。
表 1 坝西铜矿含矿花岗闪长岩(C-2)和石英闪长岩(WSS-2) LA−ICP−MS锆石U−Th−Pb同位素分析结果Table 1. LA−ICP−MS zircon U−Th−Pb data of granodiorite (C-2) and quartz diorite (WSS-2) in the Baxi copper deposit样号 含量/10−6 Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232U 1σ 206Pb /238U 年龄/Ma 1σ Pb Th U C-2-1 6.50 45.80 111.60 0.41 0.06 0.00 0.39 0.03 0.05 0.00 0.01 0.00 334.0 6.3 C-2-2 5.90 38.30 99.80 0.38 0.06 0.00 0.42 0.03 0.05 0.00 0.01 0.00 334.9 5.0 C-2-3 5.20 37.40 85.80 0.43 0.06 0.01 0.41 0.05 0.05 0.00 0.01 0.00 340.9 11.0 C-2-4 5.40 34.20 93.30 0.36 0.06 0.00 0.40 0.02 0.05 0.00 0.01 0.00 334.6 5.3 C-2-5 3.70 24.20 65.10 0.37 0.06 0.01 0.41 0.06 0.05 0.00 0.01 0.00 341.5 18.9 C-2-7 4.60 33.20 80.40 0.41 0.06 0.01 0.41 0.10 0.05 0.00 0.01 0.00 331.1 18.1 C-2-8 6.10 52.10 100.40 0.51 0.06 0.01 0.41 0.04 0.05 0.00 0.01 0.00 340.7 7.8 C-2-9 5.40 44.60 89.20 0.50 0.06 0.01 0.40 0.06 0.05 0.00 0.01 0.00 335.4 18.1 C-2-10 8.40 67.20 136.60 0.49 0.05 0.00 0.41 0.04 0.05 0.00 0.01 0.00 343.6 7.7 C-2-11 4.70 28.30 79.60 0.35 0.06 0.01 0.42 0.04 0.05 0.00 0.01 0.00 338.1 19.5 C-2-12 6.50 45.90 111.20 0.41 0.06 0.01 0.40 0.07 0.05 0.00 0.01 0.00 338.4 13.3 C-2-13 4.00 27.90 66.60 0.42 0.06 0.01 0.42 0.09 0.05 0.00 0.01 0.00 342.4 17.2 C-2-14 5.00 36.60 85.40 0.42 0.05 0.01 0.41 0.06 0.05 0.00 0.01 0.00 342.2 19.2 C-2-15 6.90 57.40 112.70 0.50 0.06 0.01 0.40 0.07 0.05 0.00 0.01 0.00 335.0 15.7 C-2-16 4.30 34.70 75.30 0.46 0.05 0.01 0.40 0.05 0.05 0.00 0.01 0.00 333.1 23.4 C-2-17 4.40 29.30 80.40 0.36 0.05 0.01 0.41 0.09 0.05 0.00 0.00 0.00 334.4 30.2 C-2-18 8.90 63.80 151.30 0.42 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.7 6.0 C-2-19 5.30 43.70 89.70 0.48 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 339.4 6.1 C-2-20 18.90 215.40 302.20 0.71 0.05 0.01 0.39 0.03 0.05 0.00 0.01 0.00 332.2 13.4 WSS-2-1 9.50 107.50 146.70 0.73 0.06 0.01 0.39 0.07 0.05 0.00 0.01 0.00 335.5 13.9 WSS-2-2 18.80 187.30 290.70 0.64 0.06 0.00 0.41 0.02 0.05 0.00 0.01 0.00 339.7 4.8 WSS-2-3 22.00 241.70 332.80 0.72 0.05 0.00 0.40 0.01 0.05 0.00 0.01 0.00 337.4 4.1 WSS-2-4 17.40 206.70 265.60 0.77 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 332.5 4.1 WSS-2-5 13.70 152.50 208.80 0.73 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 334.7 3.9 WSS-2-6 28.30 322.80 423.20 0.76 0.05 0.00 0.40 0.03 0.05 0.00 0.01 0.00 339.5 6.1 WSS-2-7 14.60 151.90 223.90 0.67 0.06 0.00 0.42 0.02 0.05 0.00 0.01 0.00 339.3 4.2 WSS-2-8 14.60 149.80 224.30 0.66 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.2 4.1 WSS-2-9 16.30 184.80 245.40 0.75 0.06 0.00 0.40 0.02 0.05 0.00 0.01 0.00 334.7 5.7 WSS-2-10 18.30 201.90 270.50 0.74 0.06 0.01 0.41 0.04 0.05 0.00 0.01 0.00 342.7 8.2 WSS-2-11 14.80 142.20 226.20 0.62 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 334.9 5.0 WSS-2-13 17.00 186.90 253.90 0.73 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 336.5 4.2 WSS-2-14 10.40 115.20 156.80 0.73 0.05 0.00 0.39 0.02 0.05 0.00 0.01 0.00 333.6 5.5 WSS-2-15 14.70 165.10 217.70 0.75 0.05 0.00 0.39 0.05 0.05 0.00 0.01 0.00 331.8 14.0 WSS-2-17 8.80 75.50 134.80 0.56 0.06 0.00 0.41 0.03 0.05 0.00 0.01 0.00 337.0 5.5 WSS-2-18 14.40 123.40 217.80 0.56 0.05 0.00 0.40 0.02 0.05 0.00 0.01 0.00 338.7 5.1 WSS-2-19 17.10 209.40 243.60 0.85 0.05 0.01 0.39 0.04 0.05 0.00 0.00 0.00 335.0 7.7 WSS-2-20 11.90 118.90 178.30 0.66 0.06 0.00 0.42 0.02 0.05 0.00 0.00 0.00 335.7 5.8 表 2 坝西铜矿赋矿岩石主量、微量和稀土元素分析结果Table 2. Major, trace and rare elements compositions of the ore-bearing rocks from the Baxi copper deposit元素 WSS-3 BX-GSY1 BX-GSY2 C-2 BX-GSY3 BX-GSY4 BX-GSY5 D008-2 石英闪长岩 石英闪长岩 黑云母辉石石英闪长岩 花岗闪长岩 花岗闪长岩 花岗闪长岩 黑云母花岗闪长岩 黑云母花岗闪长岩 SiO2 60.3 60 56.87 62.97 63.61 63.66 63.97 61.33 TiO2 0.55 0.58 0.79 0.59 0.51 0.46 0.46 0.61 Al2O3 17.85 17.7 17.22 15.95 16.12 17.52 17.37 16.19 Fe2O3 2.42 6.34 8.26 2.35 5.5 4.19 4.29 3.09 FeO 2.87 2.94 3.99 3.41 2.68 2.46 2.01 3.2 MnO 0.12 0.14 0.15 0.16 0.08 0.13 0.12 0.08 MgO 2.43 2.48 3.43 2.23 2.18 1.52 1.48 2.67 CaO 5.87 5.46 6.64 4.99 4.47 4.28 4.13 4.87 Na2O 4.36 4.37 3.4 3.4 3.58 4.62 4.73 3.54 K2O 0.84 1.31 1.41 2 2.3 1.72 1.8 2.16 P2O5 0.18 0.18 0.2 0.14 0.13 0.17 0.17 0.15 H2O + 1.08 0.11 0 1.09 0.11 0.1 0.12 1.23 烧失量 1.28 0.79 0.87 0.89 0.66 1.92 1.04 1.1 总计 100.15 102.4 103.23 100.17 101.93 102.75 101.69 100.22 La 11.9 13.6 12 12.7 14.2 15.8 14 12.8 Ce 25 30 29.3 28.5 32.9 34.3 32.2 27.9 Pr 3.42 3.6 3.6 4.26 3.9 4.1 3.8 4.2 Nd 12.8 14.8 16.2 16 15.7 16.7 15.4 15.6 Sm 3.14 3.2 4 4.36 3.5 3.5 3.4 4.49 Eu 1.07 1 1 1.02 0.86 1.1 1 0.99 Gd 3.18 2.7 3.5 4.57 3 3 2.8 4.61 Tb 0.48 0.47 0.68 0.77 0.56 0.51 0.5 0.75 Dy 2.98 2.9 4.1 4.53 3.4 3 3 4.72 Ho 0.53 0.63 0.9 0.79 0.74 0.64 0.64 0.82 Er 1.95 1.7 2.5 3.05 2.1 1.8 1.8 3.02 Tm 0.28 0.28 0.41 0.47 0.37 0.31 0.31 0.45 Yb 2 1.9 2.6 2.96 2.2 2.1 2 3.18 Lu 0.24 0.29 0.4 0.37 0.35 0.31 0.32 0.38 Y 18.2 16 22.7 29 19.3 17.4 16.4 28.7 Rb 16.5 44.7 41.3 Ba 477 786 701 Nb 3.84 4.29 3.86 Ta 0.21 0.25 0.22 Zr 93.3 99.7 152 Hf 2.63 3.33 4.41 Th 2.23 3.69 3.62 V 141 139 170 Cr 12.5 8.73 11 Co 15 16.3 12.9 Ni 9.66 7.2 8.89 U 0.88 1.24 1.37 ∑REE 68.97 77.07 81.19 84.35 83.78 87.17 81.17 83.91 δEu 1.02 1.03 0.8 0.69 0.79 1.01 0.96 0.66 DI 57.56 55.8 45.48 61.91 62.23 66.03 67.51 60.69 A/CNK 0.95 0.96 0.9 0.95 0.98 1.02 1.01 0.95 A/NK 2.21 2.06 2.42 2.05 1.92 1.85 1.78 1.98 注:主量元素含量单位为%;稀土和微量元素含量单位为10−6 4.2 岩石地球化学特征
岩石化学成分测试结果见表2。花岗闪长岩SiO2含量为62.97%~63.97%,K2O+Na2O含量为5.40%~6.53%,里特曼指数σ为1.43~2.04,在SiO2−K2O图解(图5–a)中大部分样品点落入钙碱性系列;Al2O3含量为15.95%~17.52%,CaO含量为4.13%~6.64%,属准铝质或弱过铝质(A/CNK=0.95%~1.02,A/NK=1.85~2.05)(图5–b);具有低的MgO含量(1.48%~3.43%)和P2O5含量(0.13%~0.20%)。石英闪长岩中的硅(SiO2=56.87%~61.33%)和碱含量(K2O+Na2O=4.81%~5.98%)相对花岗闪长岩均较低,而铝含量较高(Al2O3=16.19%~17.85%),主体也属钙碱性系列(图5–a),但全部属于准铝质(A/CNK=0.90~0.97,A/NK=1.98~2.42),Xiao et al.(2018)、张铭鸿等(2021)获得石英闪长岩相对宽泛的分析结果,部分落在过铝质区(图5–b)。
图 5 坝西铜矿花岗闪长岩和石英闪长岩SiO2−K2O图解(a)和A/CNK−A/NK图解(b)(空心圆石英闪长岩数据为本文数据;实心圆石英闪长岩数据据Xiao et al., 2018; 张铭鸿等,2021)Figure 5. Diagrams of SiO2-K2O (a) and A/CNK-A/NK (b) for granodiorite and quartz diorite from the Baxi copper deposit含矿石英闪长岩和花岗闪长岩的稀土元素含量均不高,总量(∑REE)介于68.97×10−6~87.17×10−6之间,变化范围较小,轻稀土元素(LREE)含量为57.33×10−6~75.50×10−6,重稀土元素(HREE)含量为10.87×10−6~19.88×10−6。在球粒陨石标准化稀土元素配分曲线中,样品差异不大,呈右倾型(图6–a)。岩石LREE/HREE值介于3.51~6.47之间,显示轻稀土元素富集、重稀土元素含量亏损。δEu值为0.66~1.03,仅3个样品δEu>1,δEu平均值为0.85,总体上表现为Eu负异常;(La/Yb)N值为2.89~5.40,平均4.07,轻稀土元素相对富集,轻、重稀土元素分馏较明显;(La/Sm)N值介于1.63~2.84之间。在微量元素原始地幔蛛网图(图6–b)上,大离子亲石元素U、La、Hf及K、Rb、Ba等较富集,Th、Nb、Ta、Ti高场强元素相对亏损。这与前人获得的石英闪长岩稀土和微量元素特征总体一致(图6–b)。
图 6 坝西铜矿花岗闪长岩和石英闪长岩稀土元素配分模式图(a)及微量元素蛛网图(b)(标准化值据Sun et al., 1989;空心圆石英闪长岩数据为本文数据;实心圆石英闪长岩数据据Xiao et al., 2018; 张铭鸿等,2021)Figure 6. Chondrite normalized REE patterns (a) and primitive-mantle normalized trace element spidergrams (b) for granodiorite and quartz diorite from the Baxi copper deposit .5. 讨 论
5.1 成岩成矿时代
本次对坝西斑岩铜矿赋矿围岩中的石英闪长岩和花岗闪长岩锆石U−Pb测年结果显示,石英闪长岩锆石U−Pb年龄为336.6±2.4 Ma,与前人测年结果(345.7 Ma,Xiao et al., 2018)基本一致,属早石炭世侵位的产物;花岗闪长岩锆石U−Pb年龄为337.3±4.1 Ma,与本文石英闪长岩测年结果一致(337 Ma)。该结果与两者在野外呈相互穿插关系相一致,且与矿区辉钼矿Re-Os测年结果(338.9±4.6 Ma,另文发表)一致,符合斑岩铜矿成岩成矿时代一致性的特点。
东准噶尔及邻区的岩浆事件主要发生在早中古生代(志留纪—泥盆纪)和晚古生代中晚期(喻亨祥等,1998;李锦轶等,1990,2000;杨富全等,2001;李雷,2012;赵建新等,2017;Gao et al., 2018),是中亚成矿域内大规模斑岩矿产的聚集区之一(Gao et al., 2018a, b;Gu et al., 1996;熊小林等,2005;Windley et al., 2007; 杨志明等,2009)。早石炭世岩浆活动较弱。之前的勘查与研究显示,东准噶尔成矿期主要为早中古生代(志留纪—泥盆纪)。琼河坝地区除北山金矿形成于晚古生代外(346 Ma),其他矿产均形成于志留纪—泥盆纪,如蒙西铜矿、琼河坝铜矿、桑南铜矿、铜华岭铜矿及和尔赛铜矿,且形成时代较集中(420~390 Ma)(王登红等,2009;屈迅等,2009;张永等,2010;Ji et al., 2018; 王斯林等,2018;王磊等,2018;高俊等,2019)。本次研究表明,除早古生代的峰期成矿事件外,东准噶尔地区还存在一期北山金矿、坝西铜矿这样的晚古生代成矿事件,对后期的矿产勘查具有重要的指示意义。
5.2 成因及对矿产勘查的启示
坝西铜矿石英闪长岩和花岗闪长岩主量元素含量相近,低硅、低钾,属于钙碱性系列花岗岩类,钙、铝含量中等,显示出准铝质或弱过铝质花岗岩的特点,与典型I型花岗岩类一致。在Harker图解上,赋矿围岩显示出2个不同的演化序列,各自成较好的线性关系,暗示这2类岩石并不是同一种岩浆分异的产物,可能是岩浆混合的产物,同时,无论花岗闪长岩还是石英闪长岩均可见暗色微粒包体,暗示了岩浆混合作用的存在。赵建新等(2017)获得石英闪长岩的锆石Hf同位素分析结果(εHf(t)=+13.66~+15.56),与本区同期花岗岩类同位素特征一致,显示年轻幔源物质是其主要的物质来源。
矿区2类岩石的稀土元素总量均较低,且相对富集轻稀土元素,负Eu异常较弱,表明斜长石分离结晶作用不明显,分异指数较低也指示了这一点。在微量元素蛛网图中,岩石相对富集大离子亲石元素,亏损Nb、Ta、Ti等高场强元素,暗示有明显的榍石的分离结晶。综合看,虽然这些赋矿花岗岩类显示出弧花岗岩的特征,如相对高的Y(16.0×10−6~28.7×10−6)和Yb(1.90×10−6~3.18×10−6)含量,以及低的Sr/Y和(La/Yb)N值,但它们具有埃达克岩的地球化学特征,如高硅(SiO2>56%)、低镁(MgO<3%)、高锶(Sr>400×10−6),表明它们可能与典型的弧花岗岩有所区别。
值得注意的是,东准噶尔地区大量发育的早古生代弧岩浆作用,在早石炭世(360~330 Ma)似乎出现一个岩浆“宁静期”(肖文交等,2006),随后(330~270 Ma)发育大规模的碱性(A型)花岗岩(图7)(侯增谦等,2006;张招崇等,2010),并且发育时间从北到南是同步的,不具有时空迁移性(卢鹏等,2021),揭示了区域性造山后伸展背景。东准噶尔地区石炭纪沉积相由滨海、浅海相向浅海相—陆相转变,北疆地区全区性的晚石炭世不整合也为此提供了证据,表明早石炭世应是从泥盆纪的俯冲挤压环境向晚石炭世后造山伸展环境转变的重要时期,只是缺乏碰撞相关的证据,实际上整个中亚造山带构造演化晚期均缺失碰撞的直接证据,但早石炭世是一个重要的构造体制转换期。形成于早石炭世晚期的坝西岩体应是这种构造体制转换期的产物,并不是直接与俯冲作用有关,而是早期的弧物质发生部分熔融,为这些石英闪长岩和花岗岩闪长岩岩浆提供了重要物质来源,因此这些岩石均显示出弧花岗岩的特征,但又与之不同。同时,这些早期的弧物质也是成矿物质的重要来源,或者说早期的俯冲促成了成矿物质的初步富集,在构造转换阶段的初期进一步富集成矿。像坝西铜矿这种出现于岩浆活动“宁静期”之后,岩浆作用渐强的关键时期的斑岩铜矿,虽然不一定是后碰撞成矿,但其与冈底斯大规模后碰撞斑岩在成岩成矿物质来源、演化特征方面具有很多的相似之处(侯增谦等,2006;张招崇等,2010;Xiao et al., 2012),需要注意这种早期俯冲阶段的成矿物质富集,在后期再富集(活化)成矿的(斑岩)矿产,不仅对琼河坝地区的找矿工作有重要的指示意义,也有助于深化整个北疆乃至中亚造山带南缘的构造转换阶段—后碰撞斑岩铜矿形成机制的认识。
6. 结 论
(1)新疆东准噶尔坝西斑岩铜矿赋矿围岩形成于早石炭世晚期,石英闪长岩和花岗闪长岩锆石U−Pb年龄分别为336.6±2.4 Ma和337.3±4.1 Ma,二者形成时代基本一致,表明在琼河坝地区除早古生代的成岩成矿事件外,还存在一期晚古生代的成岩成矿事件。
(2)坝西岩体形成于从早古生代的俯冲增生到晚石炭世—早二叠世后造山伸展的构造体制转换期,早期的弧物质为这些岩浆作用和成矿作用提供了重要物质来源,岩浆混合作用是岩体形成的重要机制。
致谢:本文在实验测试过程中得到中国地质科学院矿产资源研究所杨岳清老师的帮助,新疆维吾尔自治区地质矿产勘查开发局第六地质大队在野外调查、资料收集等方面提供了帮助,审稿老师认真审阅本文并提出了建设性意见,在此表示衷心的感谢。
-
图 1 研究区位置图
a—亚洲构造框图(据Zhou et al., 2014修改);b—孙吴-劲松廊带域深部探测剖面位置图(深反射测线上标注的数字为CMP号)
Figure 1. Location map of the survey area
图 2 孙吴-劲松深地震反射剖面处理结果(横轴坐标的CMP点位参照图1)
Figure 2. Processing results of Sunwu-Jinsong deep seismic reflection profile
图 3 孙吴-劲松大地电磁测深剖面L100线电性结构(上方横轴标注的CMP点位参照图1)
Figure 3. Electrical structure of L100 in Sunwu-Jinsong magnetotelluric sounding profile
图 6 孙吴-劲松深地震反射剖面构造解释图(横轴标注的CMP点位参照图1)
I—岩浆通道;Moho—莫霍面;LM—倾斜地幔反射
Figure 6. Structural interpretation map of Sunwu-Jinsong deep seismic reflection profile
表 1 深地震反射数据处理技术流程及参数
Table 1 Technical flow and parameters of deep seismic reflection data processing
输入SEG-D数据并输出SEG-Y数据 定义二维观测系统,CMP间距为25 m 道编辑 ,剔除异常道 处理长度,20 s
带通滤波,6~10~44~50 Hz(浅层)、2~4~24~30 Hz(深层)单炮数据全偏移距初至波拾取 层析静校正,替换速度为4500 m/s,基准面高程为750 m 球面扩散补偿、几何扩散补偿和地表一致性振幅校正 叠前多域(f-x域和f-k)噪音衰减 地表一致性预测反褶积,算子长度200 ms 速度分析,间隔40 CMP 剩余静校正,大校正量剩余静校正、自动剩余静校正,5次 高阶动校正,手工切除 叠前时间偏移,克希霍夫偏移,偏移孔径10000 m、偏移角度45° 叠后显示,自动增益 -
Adetunji A Q, Launay G, Ferguson I J, et al. 2023. Crustal conductivity footprint of the orogenic gold district in the Red Lake greenstone belt, Western Superior craton, Canada[J]. Geology, 51(4): 377−382. doi: 10.1130/G50660.1
Brown L D, Zhao W. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profling[J]. Science, 274(5293): 1688−1690. doi: 10.1126/science.274.5293.1688
Cai W Y, Wang K Y, Li J, et al. 2021. Geology, geochronology and geochemistry of large Duobaoshan Cu−Mo−Au orefield in NE China: Magma genesis and regional tectonic implications[J]. Geoscience Frontiers, 12(1): 265−292. doi: 10.1016/j.gsf.2020.04.013
Cai X L, Zhu J S, Cao J M, et al. 2007. 3D structure and dynamic types of the lithospheric crust in continental China and its adjacent regions[J]. Geology in China, 34(4): 543−557(in Chinese with English abstract).
Calvert A J, Sawyer E W, Davis W J, et al. 1995. Archaean subduction inferred form seismic images of a mantle suture in the Superior Province[J]. Nature, 375(6533): 670−674. doi: 10.1038/375670a0
Clutier A, Gautier S, Tiberi C. 2021. Hybrid local and teleseismic P−wave tomography in North Tanzania: Role of inherited structures and magmatism on continental rifting[J]. Geophysical Journal International, 224(3): 1588−1606.
Cook F A, Philippe Erdmer. 2005. An 1800 km cross section of the lithosphere through the northwestern North American plate: Lessons from 4.0 billion years of Earth's history[J]. Canadian Journal of Earth Sciences, 42(6): 1295−1311. doi: 10.1139/e04-106
Cook F A. 1999. Frozen subduction in Canada's Northwest territories: Lithoprobe deep lithospheric reflection profiling of the western Canadian Shield[J]. Tectonics, 18(1): 1−24.
Dong S W, Li T D, Gao R, et al. 2013. Progress of SinoProbe – Deep Exploration in China 2008—2012[J]. Acta Geoscientica Sinica, (1): 7−23(in Chinese with English abstract).
Du Q, Ma X Y, Han C M, et al. 2008. Discussion on the genesis of porphyry copper deposit[M]. Beijing: Geological Publishing House: 1-91(in Chinese).
Du Y J. 2012. The metallogenic characteristics and prospecting direction of Duobaoshan Cu−Au metallogenic belt, Heilongjiang Province[D]. Master's thesis of Jilin University(in Chinese with English abstract).
Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 87(1): 173−194. doi: 10.1111/j.1365-246X.1986.tb04552.x
Feng Z Q, Liu Y J, Jin W, et al. 2019. Spatiotemporal distribution of ophiolites in the northern Great Xing'an Range and its relationship with the geotectonic evolution of NE China[J]. Geoscience Frontiers, 26(2): 120−136(in Chinese with English abstract).
Pang X J, Fu J Y, Qian C, et al. 2024. The discovery of Carboniferous high−Mg diorites and adakites in the Jalaid Banner area, the central Great Xing'an Range and their implications for the subduction of the Nenjiang ocean[J]. Geological Bulletin of China, 43(8): 1430−1445(in Chinese with English abstract).
Gao J, Klemd R, Zhu M, et al. 2017. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: A review[J]. Journal of Asian Earth Sciences, 165: 7−36.
Gao J, Zhu M T, Wang X S, et al. 2019. Large−scale porphyry−type mineralization in the Central Asian metallogenic domain: Tectonic background, fluid feature and metallogenic deep dynamic mechanism[J]. Acta Geologica Sinica, 93(1): 24−71(in Chinese with English abstract).
Gao R, Lu Z W, Liu J K, et al. 2010. A result of interpreting from deep seismic reflection profile: Revealing fine structure of the crust and tracing deep process of the mineralization in Luzong deposit area[J]. Acta Petrologica Sinica, 26(9): 2543−2552(in Chinese with English abstract).
Gao R, Wang H Y, Zhang Z J, et al. 2011. “Cutting” the crust and the upper mantle and revealing the deep structure of the continent with the resource effect: An introduction to the project SinoProbe−02 of experimentation, deep probing techniques and integration and a discussion on key science problems[J]. Acta Geoscientica Sinica, 32(C1): 34−48(in Chinese with English abstract).
Ge W C, Wu F Y, Zhou C Y, et al. 2007. Porphyry Cu−Mo deposits in the eastern Xing’an−Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications[J]. Chinese Science Bulletin, (24): 3416−3427.
Guo F, Fan W M , Li C W, et al. 2009. Early Paleozoic subduction of the Paleo−Asian Ocean: Geochronological and geochemical evidence from the Dashizhai basalts, Inner Mongolia[J]. Science in China(Series D: Earth Sciences), 52(7): 940−951.
Hao Y J. 2015. Mineralization and Metallogenic Regularity of Duobaoshan Ore Concentration Area in Heilongjiang Province, Northeast China[D]. Ph. D. Doctoral dissertation, Jilin University(in Chinese with English abstract).
Hao Y J, Ren Y S, Duan M X, et al. 2015. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China[J]. Journal of Asian Earth Sciences, 97: 442−458. doi: 10.1016/j.jseaes.2014.08.007
Hao Y J, Ren Y S, Duan M X, et al. 2016. Mineralization time and tectonic setting of the Zhengguang Au deposit in the Duobaoshan ore field, Heilongjiang Province, NE China[J]. Arabian Journal of Geosciences, 9(15): 655. doi: 10.1007/s12517-016-2666-5
Hou H S, Gao R, Lu Z W, et al. 2010. Reflection seismic first−arrival wave tomography of Longqiao iron deposit and concealed deposit forecast in Luzong iron−polymetallic ore concentrated area.[J]. Acta Petrologica Sinica, 26(9): 2623−2629(in Chinese with English abstract).
Hou H S, Wang H Y, Gao R, et al. 2015. Fine crustal structure and deformation beneath the Great Xing'an Ranges, CAOB: Revealed by deep seismic reflection profile[J]. Journal of Asian Earth Sciences, 113: 491−500. doi: 10.1016/j.jseaes.2015.01.030
Huang J Q, Zeng M X, Gong S Y. 1954. On major tectonic forms of China[M]. Beijing: Beijing Geological Publishing House(in Chinese with English abstract).
Jiang Y, Jiang S, Li S, et al. 2020. Paleozoic to Mesozoic micro−block tectonics in the eastern Central Asian Orogenic Belt: Insights from magnetic and gravity anomalies[J]. Gondwana Research, 102: 229−251.
Koptev A, Burov E, Calais E, et al. 2016. Contrasted continental rifting via plume−craton interaction: Applications to Central East African Rift[J]. Geoscience Frontiers, 7(2): 221−236. doi: 10.1016/j.gsf.2015.11.002
Li C L. 2018. Gold metallogeny and prospecting in the Nenjiang−Heihe tectonic mélange zone, Heilongjiang Province[D]. Doctoral Dissertation of China University of Geosciences (Beijing)(in Chinese with English abstract).
Li D R, Lv F L, Liu S Y, et al. 2011. Geological features and prospecting orientation of the Sankuanggou Cu−Mo−Au deposit in Nenjiang County, Heilongjiang Province[J]. Geology in China, 38(2): 415−426(in Chinese with English abstract).
Li J Y. 1998. Some new ideas on Tectonics of NE China and its neighboring areas[J]. Geological Review, 44(4): 339−347(in Chinese with English abstract).
Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo−Asian Ocean and subduction of the Paleo−Pacific Plate[J]. Journal of Asian Earth Sciences, 26: 207−224. doi: 10.1016/j.jseaes.2005.09.001
Li J Y, Qu J F, Zhang J, et al. 2013. New Developments on the Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region[J]. Geologcal Bulletin of China, 32(2): 207−219(in Chinese with English abstract).
Li J Y, Liu J F, Qu J F, et al. 2019. Paleozoic Tectonic Units of Northeast China: Continental Blocks or Orogenic Belts?[J]. Earth Science, 44: 3157−3177(in Chinese with English abstract).
Li T D, Liu Y, Ding X Z, et al. 2022. Ten advances in regional geological research of China in recent years[J]. Acta Geologica Sinica, 96(5): 1544−1581(in Chinese with English abstract).
Li Y, Xu W L, Tang J, et al. 2018. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing’an Massif of NE China: Implications for the evolution and spatial extent of the Mongol−Okhotsk tectonic regime[J]. Lithos, 304: 57−73.
Li Y, Xu W L, Wang F, et al. 2018. Early–Middle Ordovician volcanism along the eastern margin of the Xing’an Massif, Northeast China: constraints on the suture location between the Xing’an and Songnen–Zhangguangcai Range massifs[J]. International Geology Review, 60(16): 2046−2062. doi: 10.1080/00206814.2017.1402378
Liang H D, Gao R, Hou H S, et al. 2015. Lithospheric electrical structure of the Great Xing’an Range[J]. Journal of Asian Earth Sciences, 113: 501−507(in Chinese with English abstract). doi: 10.1016/j.jseaes.2015.01.026
Liang H D, Jin S, Wei W B, et al. 2017. Deep electrical structures of the esatern margin of the Songnen massif and the western margin of the Jiamusi massif[J]. Chinese Journal of Geophysics, 60(4): 1511−1520(in Chinese with English abstract).
Liu C, Yang B J, Wang Z G, et al. 2011. The deep structure of the western boundary belt of the Songliao basin: the geoelectric evidence[J]. Chinese Journal of Geophysics, 54(2): 401−406(in Chinese with English abstract).
Liu D Y, Jian P, Zhang Q, et al. 2003. SHRIMP dating of adakites in the Tulingkai ophiolite, Inner Mongolia: Evidence for the Early Paleozoic Subdtiction[J]. Acta Geologica Sinica, (3): 317−327, 435−437(in Chinese with English abstract).
Liu G X, Zhang X Z, Yang B J, et al. 2006. Electrical structures of the lithosphere along the Jiamusi massif and its eastern edge[J]. Chinese Journal of Geophysics, (2): 598−603(in Chinese with English abstract).
Liu Y, Zhang J, Yin C, et al. 2019. GEM3D: A 3D inversion code for geophysical electromagnetic data based on unstructured tetrahedron grid[C]//International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. 416−419.
Liu Y J, Zhang X Z, Jin W, et al. 2010. Late Paleozoic tectonic evolution in Northeast China[J]. Geology in China, 37(4): 943−951(in Chinese with English abstract).
Liu Y J, Li W M, Feng Z Q, et al. 2017. A review of the Paleozoic tectonics in the eastern part of central Asian orogenic belt[J]. Gondwana Research, 43: 123−148. doi: 10.1016/j.gr.2016.03.013
Liu Y J, Feng Z Q, Jiang L W, et al. 2019. Ophiolite in the eastern Central Asian Orogenic Belt, NE China[J]. Acta Petrologica Sinica, 35(10): 3017−3047(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.05
Liu Y J, Li W M, Ma Y, et al. 2021. An orocline in the eastern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 221(1): 103808.
Lu Z X, Jiang D L, Bai Y, et al. 2005. Exploration and research on the structure of the crust and upper mantlein Northeast China[J]. Journal of Disaster Prevention and Reduction, (1): 1−8(in Chinese with English abstract).
Luan J P, Yu J J, Yu J L, et al. 2019. Early Neoproterozoic magmatism and the associated metamorphism in the Songnen Massif, NE China: Petrogenesis and tectonic implications[J]. Precambrian Research, 328: 250−268. doi: 10.1016/j.precamres.2019.04.004
Ma Y F, Liu Y J, Qin T, et al. 2020. Late Devonian to early Carboniferous magmatism in the western Songliao–Xilinhot block, Northeast China: Implications for eastward subduction of the Nenjiang oceanic lithosphere[J]. Geological Journal, 55(3): 2208−2231. doi: 10.1002/gj.3739
Meng F W, Liu Y H, Han J T, et al. 2022. Paleozoic suture and Mesozoic tectonic evolution of the lithosphere between the northern section of the Xing'an Block and the Songnen Block: Evidence from three−dimensional magnetotelluric detection[J]. Tectonophysics, 823: 229210. doi: 10.1016/j.tecto.2022.229210
Na F C, Fu J Y, Wang Y, et al. 2014. LA-ICP-MS zircon U-Pb age of the chlorite-muscovite tectonic schist in Hadayang, Morin Dawa Banner, Inner Mongolia, and its tectonic significance[J]. Geol. Bullet. China., 33: 1326−1332 (in Chinese with English abstract).
Na F C, Song W M, Liu Y C, et al. 2018. Chronological study and tectonic significance of Precambrian metamorphic rocks in Zhalantun area of Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1607−1619(in Chinese with English abstract).
Pan J T, Wu Q J, Li Y H, et al. 2014. Ambient noise tomography in northeast China[J]. Chinese Journal of Geophysics, 57(3): 812−821(in Chinese with English abstract).
Pan Z D, Hou H S, Zhou J B, et al. 2021. Crustal structure and paleozoic metallogenic tectonic setting of the Duobaoshan ore district, NE China[J]. Ore Geology Reviews, 137: 104290. doi: 10.1016/j.oregeorev.2021.104290
Pirajno F. 2016. A classification of mineral systems, overviews of plate tectonic margins and examples of ore deposits associated with convergent margins(Review)[J]. Gondwana Research, 33: 44−62. doi: 10.1016/j.gr.2015.08.013
Qian C, Lu L, Qin T, et al. 2018. The early Late−Paleozoic granitic magmatism in the Zalantun region, northern Great Xing'an Range, NE China: Constraints on the timing of amalgamation of Erguna−Xing'an and Songnen blocks[J]. Acta Geologica Sinica, 92(11): 2190−2214(in Chinese with English abstract).
Qiang Z Y, Wu Q J. 2015. Upper mantle anisotropy beneath the north of the northeast China and its dynamic significance[J]. Chinese Journal of Geophysics, 58(10): 3540−3552(in Chinese with English abstract).
Qin K Z, Zhai M G, Li G M, et al. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China[J]. Acta Petrologica Sinica, 33(2): 305−325(in Chinese with English abstract).
Qin K Z, Zhao J X, Fan H R, et al. 2021. On the ore−forming depth and possible maximum vertical extension of the major type ore deposits[J]. Earth Science Frontiers, 28(3): 271−294(in Chinese with English abstract).
Quan J Y. 2013. Tectonic properties of Eastern Songnen Masiff from Late Neoproterozoic to Early Paleozoic[D]. Master's thesis, Jilin University(in Chinese with English abstract).
Ren J S, Niu B G, Liu Z G. 1999. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, (3): 85−93(in Chinese with English abstract).
Sato H, Hirata N, Koketsu K, et al. 2006. Seismic reflection profiling in the Kanto and Kinki metropolitan areas, Japan[J]. Bulletin of Earthquake Research Institute, 81: 233−238.
Shi L, Zheng C, Yao W, et al. 2015. Geochronological framework and tectonic setting of the granitic magmatism in the Chaihe–Moguqi region, central Great Xing’an Range, China[J]. Journal of Asian Earth Sciences, 113: 443−453.
Simancas J F, Carbonell R, González Lodeiro F, et al. 2003. Crustal structure of the transpressional Variscan orogen of SW Iberia: SW Iberia deep seismic reflection profile (IBERSEIS)[J]. Tectonics, 22(6): 1062.
Snyder D B, Goleby B R. 2016. Seismic reflection patterns associated with continental convergent margins through time[J]. Tectonophysics, 692: 3−13. doi: 10.1016/j.tecto.2016.04.027
Sun D Y, Wu F Y, Lin L Q. 2001. Emplacement age of the post−orogenic A−type granites in Northwestern Lesser Xing'an Ranges, and its relationship to the eastward extension of Suo−lushan−Hegenshan−Zhalaite collisional suture zone[J]. Chinese Science Bulletin, (5): 427−432.
Sun D Y, Wu F Y, Zhang Y B, et al. 2004. The final closing time of the west Lamulun River−Changchun−Yanji plate suture zone Evidence from the Dayushan granitic pluton, Jilin Province[J]. Journal of Jilin University(Earth Science Edition), (2): 174−181(in Chinese with English abstract).
Tan C Y, Wang G H, Li Y S. 2010. New progress and significance on the mineral exploration in Duobaoshan mineralization area, Heilongjiang, China[J]. Geological Bulletin of China, 29(2/3): 436−445(in Chinese with English abstract).
Tang K D, Wang Y, He G Q, et al. 1995. Continental−margin structure of Northeast China and its adjacent areas[J]. Acta Geologica Sinica, 69(1): 16−30(in Chinese with English abstract).
Tang K D, Su Y Z. 1966. New data about the Paleozoic Formations and their significance in the Northeastern Minor Khingan[J]. Acta Geologica Sinica, (1): 14−28(in Chinese with English abstract).
Velden A J, Van Staal C R, Cook F A. 2004. Crustal structure, fossil subduction, and the tectonic evolution of the Newfoundland Appalachians: Evidence from a reprocessed seismic reflection survey[J]. Geological Society of America Bulletin, 116(11/12): 1485−1498. doi: 10.1130/B25518.1
Wang F, Xu W L, Gao F H, et al. 2014. Precambrian terrane within the Songnen−Zhangguangcai Range Massif, NE China: evidence from U–Pb ages of detrital zircons from the Dongfengshan and Tadong group[J]. Gondwana Research, 26(1): 402−413. doi: 10.1016/j.gr.2013.06.017
Wang T, Zheng Y D. 2002. Mesozoic progressive transition from overthrusting to extension in the Sino−Mongolian border region and crustal−scale tangential shear[J]. Geological Bulletin of China, (Z1): 232−237(in Chinese with English abstract).
Wang T, Zhang L, Guo L, et al. 2014. The progress of the preliminary compilation of map of Mesozoic Granitoid of Asia and the research on related key issues[J]. Acta Geoscientica Sinica, 35(6): 655−672(in Chinese with English abstract).
Wang X, Wang L, Liu J, et al. 2007. Metallogeny and reformation of the Duobaoshansuperlarge porphyry copper deposit in Heilongjiang[J]. Scientia Geologica Sinica, 42(1): 124−133.
Wang Y, Fu J Y, Yang F, et al. 2015. Contraction and Extension in Nenjiang−Heihe Tectonic Belt: Evidence from the Late Paleozoic Granitoid Geochemistry[J]. Journal of Jilin University(Earth Science Edition), 45(2): 374−388(in Chinese with English abstract).
Wang Y, Qian C, Zhong H, et al. 2024. Tectonic framework, evolution and potential petroleum resources of the structural belt in the western margin of Songliao basin[J]. Geological Bulletin of China, 43(7): 1073−1089(in Chinese with English abstract).
Warner M, Morgan J, Barton P, et al. 1996. Seismic reflections from the mantle represent relict subduction zones within the continental lithosphere[J]. Geology, 24(1): 39−42. doi: 10.1130/0091-7613(1996)024<0039:SRFTMR>2.3.CO;2
White D J, Musacchio G, Helmstaedt H H, et al. 2003. Images of a lower−crustal oceanic slab: Direct evidence for tectonic accretion in the Archean western Superior province[J]. Geology, 31(11): 997−1000. doi: 10.1130/G20014.1
Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022
Wu F Y, Sun D Y, Ge W C, et al. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1−30. doi: 10.1016/j.jseaes.2010.11.014
Wu G, Chen Y C, Sun F Y, et al. 2015. Geochronology, geochemistry, and Sr–Nd–Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance[J]. Journal of Asian Earth Sciences, 97: 229−250. doi: 10.1016/j.jseaes.2014.07.031
Wu X W, Zhang C, Zhang Y J, et al. 2018. 2.7 Ga monzogranite on the Songnen Massif and its geological implications[J]. Acta Geologica Sinica, 92: 1265−1266. doi: 10.1111/1755-6724.13609
Xiao W, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 8.
Xu B, Jacques Charvet, Zhang F Q. 2001. Primary study on petrology and geochrononology of Blueschists inSunitezuoqi, Northern Inner Mongolia[J]. Chinese Journal of Geology(Scientia Geologica Sinica), (4): 424−434(in Chinese with English abstract).
Xu B, Zhao P, Bao Q Z, et al. 2014. Preliminary study on the pre−Mesozoic tectonic unit division of the Xing−Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 30(7): 1841−1857(in Chinese with English abstract).
Xu B, Zhao P, Wang Y, et al. 2015. The pre−Devonian tectonic framework of Xing’an–Mongolia orogenic belt (XMOB) in north China[J]. Journal of Asian Earth Sciences, 97: 183−196. doi: 10.1016/j.jseaes.2014.07.020
Xu W L, Sun C Y, Tang J, et al. 2019. Basement nature and tectonic evolution of the Xing'an−Mongolian Orogenic Belt[J]. Earth Science, 44(5): 1620−1646(in Chinese with English abstract).
Yang B J, Mu S M, Jin X, et al. 1996. Synthesized study on the geophysics of Manzhouli−Suifenhe Geoscience transect, China[J]. Chinese Journal of Geophysics, (6): 772−782(in Chinese with English abstract).
Yang F S, Li C L, Li W L, et al. 2020. Discovery and Geotectonic Significance of Basement Debris in Duobaoshan Ore−Gathering Area, Heilongjiang Province[J]. Advances in Geosciences, 10(12): 1212−1225(in Chinese with English abstract). doi: 10.12677/AG.2020.1012118
Yang X P, Zhong H, Yang Y J, et al. 2022. Research progress on the subduction−accretion complex: Reconstruction of the tectonic framework of the Great Xing'an Range[J]. Earth Science Frontiers, 29(2): 94−114(in Chinese with English abstract).
Ye M, Zhang S H, Wu F Y, et al. 1994. The classification of the Paleozoic tectonic units in the area crossed by M−S GGT[J]. Journal of Jilin University(Earth Science Edition), (3): 241−245(in Chinese with English abstract).
Yu Q S, Zhang F X, Zeng Z F, et al. 2015. Research on geophysical field in northern part of Da Hinggan mountains[J]. World Geology, 34(1): 187−193(in Chinese with English abstract).
Zeng Q D, Liu J M, Chu S X, et al. 2014. Re–Os and U–Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, northeast China, and its geological significance[J]. Journal of Asian Earth Sciences, 79: 895−909. doi: 10.1016/j.jseaes.2013.02.007
Zhang F Q, Chen H L, Dong C W, et al. 2008. Evidence for the existence of Precambrian Basement under the northern Songliao basin[J]. Geology in China, (3): 421−428(in Chinese with English abstract).
Zhang F X, Wu Q J, Li Y H, et al. 2014. The P wave velocity structure of the upper mantle beneath the Central and Southern Mongolia area[J]. Chinese Journal of Geophysics, 57(9): 2790−2801(in Chinese with English abstract).
Zhang M S, Peng X D, Sun X M. 1998. The Paleozoic tectonic geographical pattern of Northeast China[J]. Land & Resources, (2): 12−17(in Chinese with English abstract).
Zhang X Z, Yang B J, Wu F Y, et al. 2006. The lithosphere structure in the Hingmong−Jihei(Hinggan−Mongolia−Jilin−Heilongjiang) region, northeastern China[J]. Geology in China, (4): 816−823(in Chinese with English abstract).
Zhang X Z, Zhou J B, Chi X G, et al. 2008. Late Paleozoic tectonic−sedimentation and petroleum resources in northeastern China[J]. Journal of Jilin University(Earth Science Edition), (5): 719−725(in Chinese with English abstract).
Zhang X Z, Zeng Z, Gao R, et al. 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen massifs in the northeastern China[J]. Chinese Journal of Geophysics, 58(12): 4415−4424(in Chinese with English abstract).
Zhao L F, Li X Y, Li C L, et al. 2022. Recognition of concealed porphyry body and deep prospecting practice in Duobaoshan ore concentration area based on gravity, magnetic and electromagnetic surveys[J]. Mineral Deposits, 41(6): 1217−1231(in Chinese with English abstract).
Zhao Y Y, Wang J P, Zhao G J, et al. 2011. Metallogenic regularity and prospecting direction of Duobaoshan ore field, Heilongjiang Province, China[J]. Journal of Jilin University(Earth Science Edition), 41(6): 1676−1688(in Chinese with English abstract).
Zhao Z, Chi X G, Liu J F, et al. 2010. Late Palozoic arc−related magnatisn in Yakeshi regin, Inner Mongolia Chronological and geochemical evidence[J]. Aca Petrobgica Sinica, 26(11): 3245−3258(in Chinese with English abstract).
Zhao Z H, Zheng W Z, Qu H, et al. 2012. Cu−Au mineralization and metallogenic regularity of Duobaoshan area, Heilongjiang Province[J]. Mineral Deposits, 31(3): 601−614(in Chinese with English abstract).
Zheng J, Ge W C, M Santosh, et al. 2023. Lithospheric dripping in a soft collision zone: Insights from late Paleozoic magmatism suites of the eastern Central Asian Orogenic Belt[J]. Geoscience Frontiers, 14(1): 101−117.
Zhou J B, Wilde S A, Zhang X Z, et al. 2011. Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing'an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications[J]. Tectonophysics, 499: 105−117. doi: 10.1016/j.tecto.2010.12.009
Zhou J B, Zeng W S, Cao J L, et al. 2012. The Tectonic Framework and Evolution of the NE China: From ~500 Ma to ~180 Ma[J]. Journal of Jilin University(Earth Science Edition), 42(5): 1298−1316(in Chinese with English abstract).
Zhou J B, Wang B, Zeng WS, et al. 2014. Detrital zircon U−Pb dating of the Zhalantun Metamorphic Complex and its tectonic implications, Great Xing'an, NE China, Acta Petrologica Sinica[J]. Acta Petrologica Sinica, 30(7): 1879−1888(in Chinese with English abstract).
Zhou X M, Ren S M, Zhang X Z, et al. 2013. Deep Structural Study on Gravity−Magneto−Electricity Profile of Alar−Handagai in Hailar Basin and Its Geological Significance[J]. Journal of Jilin University(Earth Science Edition), 43(5): 1630−1638(in Chinese with English abstract).
董树文, 李廷栋, 高锐, 等. 2013. 我国深部探测技术与实验研究与国际同步[J]. 地球学报, 34(1): 7−23. doi: 10.3975/cagsb.2013.01.02 杜琦, 马晓阳, 韩成满, 等. 2008. 斑岩铜矿成因探讨[M]. 北京: 地质出版社: 1-91. 杜英杰. 2012. 黑龙江省多宝山Cu−Au成矿带成矿特征及找矿方向[D]. 吉林大学硕士学位论文. 冯志强, 刘永江, 金巍, 等. 2019. 东北大兴安岭北段蛇绿岩的时空分布及与区域构造演化关系的研究[J]. 地学前缘, 26(2): 120−136. 高俊, 朱明田, 王信水, 等. 2019. 中亚成矿域斑岩大规模成矿特征: 大地构造背景、流体作用与成矿深部动力学机制[J]. 地质学报, 93(1): 24−71. doi: 10.3969/j.issn.0001-5717.2019.01.004 高锐, 卢占武, 刘金凯, 等. 2010. 庐−枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构, 追踪成矿深部过程[J]. 岩石学报, 26(9): 2543−2552. 高锐, 王海燕, 张忠杰, 等. 2011. 切开地壳上地幔, 揭露大陆深部结构与资源环境效应—深部探测技术实验与集成(SinoProbe−02)项目简介与关键科学问题[J]. 地球学报, 32(C1): 34−48. 郝宇杰. 2015. 黑龙江省多宝山矿集区成矿作用与成矿规律研究[D]. 吉林大学博士学位论文. 侯贺晟, 高锐, 卢占武, 等. 2010. 庐枞铁多金属矿集区龙桥铁矿反射地震初至波层析成像与隐伏矿床预测[J]. 岩石学报, 26(9): 2623−2629. 黄汲清, 曾莫休, 龚素玉. 1954. 中国主要地质构造单位[M]. 北京: 地质出版社. 黄汲清, 姜春发. 1962. 从多旋回构造运动观点初步探讨地壳发展规律[J]. 地质学报, (2): 105−152. 金昌抖. 1976. 黑龙江省多宝山−卧都河幅铜矿区域成矿特征及其找矿方向[Z]. 黑龙江省地质科研所. 李成禄. 2018. 黑龙江省嫩江−黑河构造混杂岩带金矿成矿作用及找矿预测[D]. 中国地质大学(北京)博士学位论文. 李春昱, 王荃. 1983. 中国北方板块构造文集(第一集)[M]. 北京: 地质出版社: 3−17. 李德荣, 吕福林, 刘素颖, 等. 2011. 黑龙江省嫩江县三矿沟矿区地质特征及找矿方向[J]. 中国地质, 38(2): 415−426. doi: 10.3969/j.issn.1000-3657.2011.02.016 李锦轶. 1986. 内蒙古东部中朝板块与西伯利亚板块之间古缝合带的初步研究[J]. 科学通报, (14): 1093−1096. 李锦轶. 1998. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, (4): 339−347. doi: 10.3321/j.issn:0371-5736.1998.04.002 李锦轶, 曲军峰, 张进, 等. 2013. 中国北方造山区显生宙地质历史重建与成矿地质背景研究进展[J]. 地质通报, 32(2): 207−219. doi: 10.3969/j.issn.1671-2552.2013.02.001 李锦轶, 刘建峰, 曲军峰, 等. 2019. 中国东北地区古生代构造单元: 地块还是造山带?[J]. 地球科学, 44: 3157−3177. 李廷栋, 刘勇, 丁孝忠, 等. 2022. 中国区域地质研究的十大进展[J]. 地质学报, 96(5): 1544−1581. doi: 10.3969/j.issn.0001-5717.2022.05.004 梁宏达, 高锐, 侯贺晟, 等. 2016. 大兴安岭与两侧盆地结合地带深部电性结构与岩石圈尺度构造关系[J]. 地球物理学报, 59(5): 1696−1704. doi: 10.6038/cjg20160514 刘财, 杨宝俊, 王兆国, 等. 2011. 松辽盆地西边界带深部构造: 地电学证据[J]. 地球物理学报, 54(2): 401−406. doi: 10.3969/j.issn.0001-5733.2011.02.016 刘敦一, 简平, 张旗, 等. 2003. 内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年: 早古生代洋壳消减的证据[J]. 地质学报, (3): 317−327, 435−437. doi: 10.3321/j.issn:0001-5717.2003.03.004 刘永江, 张兴洲, 金巍, 等. 2010. 东北地区晚古生代区域构造演化[J]. 中国地质, 37(4): 943−951. doi: 10.3969/j.issn.1000-3657.2010.04.010 刘永江, 冯志强, 蒋立伟, 等. 2019. 中国东北地区蛇绿岩[J]. 岩石学报, 35(10): 3017−3047. 卢造勋, 姜德禄, 白云, 等. 2005. 东北地区地壳上地幔结构的探测与研究[J]. 东北地震研究, (1): 1−8. 吕庆田, 侯增谦, 赵金花, 等. 2003. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学(D辑), (5): 442−449. doi: 10.3321/j.issn:1006-9267.2003.05.006 那福超, 付俊彧, 汪岩, 等. 2014. 内蒙古莫力达瓦旗哈达阳绿泥石白云母构造片岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 33(9): 1326−1332. 那福超, 宋维民, 刘英才, 等. 2018. 大兴安岭扎兰屯地区前寒武纪变质岩系年龄及其构造意义[J]. 地质通报, 37(9): 1607−1619. 庞雪娇, 付俊彧, 钱程, 等. 2024. 大兴安岭中段内蒙古扎赉特旗地区石炭纪高镁闪长岩、埃达克岩的发现及其对嫩江洋俯冲作用的指示[J]. 地质通报, 43(8): 1430−1445. doi: 10.12097/gbc.2023.09.019 钱程, 陆露, 秦涛等. 2018. 大兴安岭北段扎兰屯地区晚古生代早期花岗质岩浆作用——对额尔古纳−兴安地块和松嫩地块拼合时限的制约[J]. 地质学报, 92(11): 2190−2214. doi: 10.3969/j.issn.0001-5717.2018.11.002 秦克章, 翟明国, 李光明, 等. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系[J]. 岩石学报, 33(2): 305−325. 秦克章, 赵俊兴, 范宏瑞, 等. 2021. 试论主要类型矿床的形成深度与最大延深垂幅[J]. 地学前缘, 28(3): 271−294. 权京玉. 2013. 松嫩地块东部新元古代—早古生代构造属性研究[D]. 吉林大学硕士学位论文. 任纪舜, 牛宝贵, 刘志刚. 1999. 软碰撞、叠覆造山和多旋回缝合作用[J]. 地学前缘, (3): 85−93. doi: 10.3321/j.issn:1005-2321.1999.03.008 邵济安, 牟保磊, 何国琦, 等. 1997. 华北北部在古亚洲域与古太平洋域构造叠加过程中的地质作用[J]. 中国科学(D辑), 27(5): 390−394. 孙德有, 吴福元, 张艳斌, 等. 2004. 西拉木伦河−长春−延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版), (2): 174−181. 谭成印, 王根厚, 李永胜. 2010. 黑龙江多宝山成矿区找矿新进展及其地质意义[J]. 地质通报, 29(2/3): 436−445. doi: 10.3969/j.issn.1671-2552.2010.02.031 唐克东, 王莹, 何国琦, 等. 1995. 中国东北及邻区大陆边缘构造[J]. 地质学报, 69(1): 16−30. 唐克东, 苏养正. 1966. 小兴安岭西北部古生代地层的新资料及其意义[J]. 地质学报, (1): 14−28. 王涛, 张磊, 郭磊, 等. 2014. 亚洲中生代花岗岩图初步编制及若干研究进展[J]. 地球学报, 35(6): 655−672. 王喜臣, 王训练, 王琳, 等. 2007. 黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J]. 地质科学, 42(1): 124−133. doi: 10.3321/j.issn:0563-5020.2007.01.011 汪岩, 付俊彧, 杨帆, 等. 2015. 嫩江黑河构造带收缩与伸展源自晚古生代花岗岩类的地球化学证据[J]. 吉林大学学报(地球科学版), 45(2): 374−388. 肖文交, 宋东方, Brian F. W, 等. 2019. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 49(10): 1512−1545. 徐备, 赵盼, 鲍庆中, 等. 2014. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报, 30(7): 1841−1857. 许文良, 孙晨阳, 唐杰, 等. 2019. 兴蒙造山带的基底属性与构造演化过程[J]. 地球科学, 44(5): 1620−1646. 杨宝俊, 穆石敏, 金旭, 等. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报, (6): 772−782. doi: 10.3321/j.issn:0001-5733.1996.06.007 杨福深, 李成禄, 李文龙, 等. 2020. 黑龙江省多宝山矿集区基底残块的发现及大地构造意义[J]. 地球科学前沿, 10(12): 1212−1225. 杨晓平, 钟辉, 杨雅军, 等. 2022. 大兴安岭地区古生代构造格架重建: 来自俯冲增生杂岩研究进展[J]. 地学前缘, 29(2): 94−114. 叶茂, 张世红, 吴福元. 1994. 中国满洲里—绥芬河地学断面域古生代构造单元及其地质演化[J]. 长春地质学院学报, (3): 241−245. 章凤奇, 陈汉林, 董传万, 等. 2008. 松辽盆地北部存在前寒武纪基底的证据[J]. 中国地质, (3): 421−428. doi: 10.3969/j.issn.1000-3657.2008.03.006 张梅生, 彭向东, 孙晓猛. 1998. 中国东北区古生代构造古地理格局[J]. 辽宁地质, (2): 12−17. 张兴洲, 杨宝俊, 吴福元, 等. 2006. 中国兴蒙—吉黑地区岩石圈结构基本特征[J]. 中国地质, (4): 816−823. doi: 10.3969/j.issn.1000-3657.2006.04.011 张兴洲, 周建波, 迟效国, 等. 2008. 东北地区晚古生代构造−沉积特征与油气资源[J]. 吉林大学学报(地球科学版), (5): 719−725. 张兴洲, 曾振, 高锐, 等. 2015. 佳木斯地块与松嫩地块俯冲碰撞的深反射地震剖面证据[J]. 地球物理学报, 58(12): 4415−4424. doi: 10.6038/cjg20151207 赵理芳, 李希元, 李成立, 等. 2022. 基于重, 磁, 电法的多宝山矿集区隐伏斑岩体识别与深部找矿实践[J]. 矿床地质, 41(6): 1217−1231. 赵元艺, 王江朋, 赵广江, 等. 2011. 黑龙江多宝山矿集区成矿规律与找矿方向[J]. 吉林大学学报(地球科学版), 41(6): 1676−1688. 赵芝, 迟效国, 刘建峰, 等. 2010. 内蒙古牙克石地区晚古生代弧岩浆岩: 年代学及地球化学证据[J]. 岩石学报, 26(11): 3245−3258. 赵忠海, 郑卫政, 曲晖, 等. 2012. 黑龙江多宝山地区铜金成矿作用及成矿规律[J]. 矿床地质, 31(3): 601−614. doi: 10.3969/j.issn.0258-7106.2012.03.017 周建波, 曾维顺, 曹嘉麟, 等. 2012. 中国东北地区的构造格局与演化: 从500 Ma到180 Ma[J]. 吉林大学学报(地球科学版), 42(5): 1298−1316. 周建波, 王斌, 曾维顺, 等. 2014. 大兴安岭地区扎兰屯变质杂岩的碎屑锆石U−Pb年龄及其大地构造意义[J]. 岩石学报, 30(7): 1879−1888.