Deep electrical structure and dynamic mechanism of the Helanshan tectonic belt
-
摘要:
贺兰山构造带是华北克拉通西部中生代以来的典型陆内构造变形区域。对野外采集的大地电磁数据进行分析与反演,获取贺兰山构造带的深部电性结构。结果揭示,贺兰山构造带上地壳发育逆冲推覆构造,中下地壳存在完整且厚实的地壳根。大地电磁测深剖面显示,贺兰山构造带西北部的河套盆地深部存在向NW方向上涌的低电阻率通道,东南部的银川地堑与鄂尔多斯盆地存在地幔物质上涌的特征。贺兰山构造带晚侏罗世WNW—ESE向挤压的褶皱冲断带与白垩纪以来的构造隆升过程和西太平洋板块俯冲作用相关,记录了早期深部地幔物质向NW方向上涌的现象。在新生代西太平洋板块持续俯冲与回撤过程中,以及青藏高原向东北缘扩展的联合控制下,贺兰山构造带的邻区深部地幔物质向地壳上涌,导致鄂尔多斯盆地深部岩石圈发生减薄,地幔物质与地壳发生交代作用,在刚性的贺兰山块体限制下,形成现今的盆山构造格局。
Abstract:Helanshan tectonic belt is a typical intracontinental contractional deformation area of the western North China Craton since the Mesozoic. Based on the analysis and inversion of magnetotelluric data collected in the field, the deep electrical structure of the Helanshan tectonic belt was obtained. The results reveal that the Helanshan tectonic belt develops the thrust−nappe structure in the upper crust, and there are intact and thick crustal roots in the middle and lower crust. The magnetotelluric sounding profile shows that there is a low resistivity channel upwelling to the NW of the Helanshan tectonic belt, and there are mantle material upwelling characteristics in the Yinchuan Garben and Ordos Bain in the southeast. The Helanshan tectonic belt of the Late Jurassic WNW—ESE compressive fold−thrust belt and the Cretaceous tectonic uplift process are related to the subduction of the Western Pacific Plate, which records the early upwelling of deep mantle material in the NW direction. Controlling by the Cenozoic Western Pacific Plate subduction and rollback and the Tibetan Plateau growth northward, the adjacent area of the Helanshan tectonic belt deep mantle material upwelling into the crust. Then, the Ordos Basin deep lithosphere thinned, forming the present basin and mountain tectonic pattern.
-
吉塘变质杂岩系分布于澜沧江西南,沿他念他翁山链呈北西—南东向长条状展布,西起巴青县老巴青乡,经类乌齐、吉塘,东至左贡县(图 1),构成北澜沧江北侧他念他翁山脉主体,东部以前称为北澜沧江变质岩系,交通要道位于吉塘镇,也称为吉塘变质岩系、吉塘群、吉塘变质核杂岩,在类乌齐一带又称类乌齐群[1]。在时代归属上有多种划分方案,20世纪50年代初李璞等在三江地区开展地质调查,将山露于吉塘—类乌齐地区的变质岩命名为“吉塘变质岩、“泄巴变质岩和“类乌齐变质岩”,认为其时代为前寒武纪[2-3]。四川地质局第三区域地质测量大队①将其划分为古生界变质岩系,西藏地勘局第一地质大队②将其划分为变质岩系酉西杂岩群,形成时代为古生代。周云生等[4]将其称为北澜沧江变质岩带,划分为下部酉西杂岩群,上部卡贡群,时代为晚古生代。《“三江”区域地质图》称为吉塘群,其时代划归前石炭纪[5]。艾长兴等[6]称其为吉塘群,时代为泥盆系;雍永源等[7]称其为北澜沧江变质岩带,划分为上部酉西群,下部吉塘群,酉西群为早古生代,吉塘群归属前寒武纪。王根厚[1]称为吉塘变质杂岩系,划分为酉西岩组和吉塘岩组构造片岩,时代置于前石炭纪。
本文沿用雍永源等[7]的北澜沧江变质岩带,划分为上部酉西群、下部吉塘群。西藏自治区地热地质大队③对吉塘群中具片麻状、条纹(条痕)状、眼球状、混合岩化现象的岩石进行锆石U-Pb定年研究,表明其形成于印支期,原岩为(碎裂岩化、糜棱岩化)中—酸性花岗岩,与吉塘复式花岗岩形成时代一致,将其归于吉塘复式花岗岩。本文所指吉塘群岩性组合为片麻岩、斜长角闪岩、片岩等。
近年随着锆石U-Pb同位素定年技术广泛应用,众多研究者从吉塘群片麻岩中不断得出众多年龄。李才等[8]在类乌齐地区吉塘群花岗片麻岩得到锆石U-Pb年龄为254~227 Ma。沙绍礼等[9]利用锆石U-Pb和白云母Ar-Ar法分别得到240±12 Ma和226±2 Ma的年龄,认为吉塘变质杂岩体形成于中生代,很可能不存在变质基底。陶琰等[10]对吉塘镇吉塘群出露的花岗岩采用U-Pb定年,获得其年龄为249~220 Ma,花岗岩岩浆源岩为具有变质杂砂岩成分的古元古代吉塘群片麻岩,由此认为吉塘变质杂岩体中生代的锆石年龄很可能代表古特提斯洋俯冲岩浆事件的年龄,并不代表变质基底的形成时代。
目前关于吉塘群的形成时代认识不统一,报道的形成时代从元古宙—中生代,跨度很大。本文以察雅县吉塘镇多穷沟出露的吉塘群为研究对象,对黑云二长片麻岩进行LA-ICP-MS锆石年龄研究,同时与类乌齐地区吉塘群对比,在此基础上限定吉塘群形成时代的下限,讨论成岩后期变质事件,研究结果有助于解析藏东吉塘群变质结晶基底的形成时代及后期的变质演化过程。
1. 地质背景与岩石特征
研究区地处羌北-昌都地块、双湖-查吾拉-澜沧江结合带及羌塘-左贡地块交汇部位,大地构造位置独特(图 1-a)。地层分区为羌塘-三江地层大区之北澜沧江构造地层分区(图 2-a), 构造运动十分发育,吉塘镇吉塘群位于桑多-吉塘逆冲推覆断裂之间,地层呈北西—南东向展布,与区域构造迹线一致(图 2-b)。吉塘群主要出露岩性为灰色、浅灰色、灰白色黑云二长片麻岩片麻岩、黑云斜长片麻岩、斜长角闪岩、二云片岩,以残留体或捕虏体形式产于印支期吉塘复式花岗岩中,受印支期岩浆改造程度较高。
图 2 藏东吉塘地区地层分区简图(a)和吉塘镇吉塘岩群地质图(b)T3—上三叠统沉积岩地层;C1kg—下石炭统卡贡组;Pt3Jbmg—吉塘岩群黑云二长片麻岩;Pt3Jabl—吉塘岩群斜长角闪岩残留体;Pt3Jplg—吉塘岩群黑云斜长片麻岩残留体;Pt3Jbmg+mis—吉塘岩群黑云二长片麻岩、二云片岩残留体;cs—酉西岩群变质砾岩;PzYqs+mis—酉西岩群石英片岩、二云片岩;sls—酉西岩群钠长片岩;hos—酉西岩群角闪片岩;ggT3—上三叠统片麻状花岗岩;ηγT3—晚三叠世二长花岗岩;γσοT3—晚三叠世英云闪长岩;ξγT3—晚三叠世正长花岗岩;γσT3—晚三叠世花岗闪长岩;γσπT3—晚三叠世花岗闪长斑岩;1—逆断层;2—性质不明断层;3—侵入接触界线;4—混合岩化作用;5—样品采集位置及编号Figure 2. Simplified map showing stratigraphic division in Jitang area(a)and simplified geological map of Jitang Group in Jitang town(b), eastern Tibet2. 测试方法
锆石分选、微量元素分析及U-Pb同位素定年均在武汉上谱分析科技有限责任公司完成。原岩样品经过粉碎、淘洗后去除轻矿物部分,重砂部分经电磁选后得到含有少量杂质的锆石样品,最后在双目镜下挑选出锆石晶体。选择晶形较好、无裂隙的锆石颗粒粘贴在环氧树脂表面,制成锆石样品靶,打磨样品靶,使锆石的中心部位暴露出来进行抛光。对锆石进行反射光、透射光显微照相和阴极发光(CL)图像分析,根据反射光、透射光及锆石CL图像,选择代表性的锆石颗粒和区域进行U-Pb测年。
锆石微量元素及U-Pb同位素定年利用LA-ICP-MS分析完成,激光剥蚀系统为GeolasPro,ICP-MS为Agilent 7700e,激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,分析精度优于2%,在等离子体中心气流中加入少量氮气,以提高仪器灵敏度、降低检出限和改善分析精密度[11]。另外,激光剥蚀系统配置了信号平滑装置,即使激光脉冲频率低达1 Hz,采用该装置后能获得光滑分析信号[12];时间分辨分析数据包括20~30 s空白信号和50 s样品信号;对分析数据离线处理采用ICP-MS DataCal[13-14]软件完成;详细的仪器操作条件和数据处理方法见Liu等[14-15]。
锆石微量元素含量利用USGS参考玻璃Nist610作为外标,Si为内标的方法进行定量计算;U-Pb同位素定年中采用标准锆石91500为外标进行同位素分馏校正,每分析5个样品点分析测试1次91500;对于与分析时间有关的U-Th-Pb同位素比值漂移,利用91500的变化采用线性内插的方式进行校正,标准锆石91500的U-Th-Pb同位素比值推荐值据Wiedenbeck等[16]。样品锆石的U-Pb年龄谐和图绘制和年龄加权平均值计算均采用Isoplot/Ex_ver3[17]完成。
3. 锆石特征及U-Pb定年结果
从黑云二长片麻岩样品D7769中分选出较多的锆石颗粒,多呈圆状、次圆状、碎片状、短柱状等,外部形态显示磨蚀程度不等。大多数锆石为40~180 μm,长宽比介于1.2~3.3之间。阴极发光图像按锆石形态可分为2类,一类锆石具有明显的核-边结构,核部较宽,有明显的岩浆结晶环带,是残留核(图 3,点5、54、11等),边部较窄,隐约可见环带结构,为变质边(图 3,点3、4、7等);另一类为无核-边结构,隐约可见岩浆环带结构的板状锆石,未受到变质作用影响(图 3,点39、50)。本次研究从中随机挑选105颗锆石进行U-Pb年龄测定,测试时避开了裂隙和包体。
样品LA-ICP-MS原位U-Pb年龄测试结果见表 1,各测点Th和U含量及Th/U值差异较大,U含量为10×10-6~1752×10-6,Th含量为4×10-6~2135×10-6,Th/U值为0.02~2.87。锆石原位U-Pb测年结果显示,年龄跨度较大,排除谐和度较差及受热液混杂影响的18、20、56、74、77、85、86、102、103测点后,获得96个有效分析点,谐和度较高(图 4-a),锆石谐和年龄变化范围为2818~203 Ma,年龄结果大于1000 Ma时采用207Pb/206Pb年龄,其余采用206Pb/238U年龄。
表 1 吉塘岩群黑云二长片麻岩LA-ICP-MS锆石U-Th-Pb分析结果Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the biotite monzogneiss in the Jitang Group测点号 元素含量10-6 Th/U 同位素比值 年龄/Ma 谐和
度/%采用年
龄/MaTh U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ D7769-01 237 429 0.55 0.0553 0.0017 0.5254 0.0160 0.0683 0.0006 433 70.4 429 10.7 426 3.9 99 426 D7769-02 78.5 562 0.14 0.0541 0.0011 0.3668 0.0126 0.0489 0.0013 372 48.1 317 9.3 308 7.7 96 308 D7769-03 18.1 265 0.07 0.0509 0.0024 0.2264 0.0109 0.0320 0.0004 239 109.2 207 9.0 203 2.5 98 203 D7769-04 10.8 489 0.02 0.0526 0.0015 0.2918 0.0111 0.0399 0.0008 309 58.3 260 8.8 252 5.1 96 252 D7769-05 72.3 143 0.51 0.0720 0.0017 1.3352 0.0325 0.1343 0.0011 985 17.6 861 14.1 812 6.5 94 812 D7769-06 69.3 521 0.13 0.0728 0.0013 1.5615 0.0353 0.1554 0.0023 1007 37.8 955 14.0 931 13.0 97 931 D7769-07 163 968 0.17 0.0498 0.0014 0.2473 0.0073 0.0357 0.0004 187 66.7 224 5.9 226 2.4 99 226 D7769-08 106 220 0.48 0.0975 0.0016 3.6266 0.0632 0.2692 0.0022 1577 31.5 1555 13.9 1537 11.4 98 1577 D7769-09 262 1388 0.19 0.0495 0.0013 0.2270 0.0060 0.0330 0.0003 172 63.0 208 4.9 210 1.6 99 210 D7769-10 7.85 426 0.02 0.0554 0.0014 0.3327 0.0103 0.0432 0.0007 428 53.7 292 7.9 273 4.3 93 273 D7769-11 156 388 0.40 0.0742 0.0013 1.7650 0.0356 0.1720 0.0021 1048 35.2 1033 13.1 1023 11.8 99 1048 D7769-12 69.6 628 0.11 0.0573 0.0017 0.4574 0.0171 0.0573 0.0012 502 63.0 382 11.9 359 7.2 93 359 D7769-13 325 873 0.37 0.0547 0.0015 0.4543 0.0144 0.0602 0.0011 398 58.3 380 10.1 377 6.9 99 377 D7769-14 449 673 0.67 0.0601 0.0011 0.7638 0.0192 0.0917 0.0016 609 43.5 576 11.1 566 9.5 98 566 D7769-15 211 685 0.31 0.0511 0.0016 0.2506 0.0080 0.0355 0.0004 256 74.1 227 6.5 225 2.5 99 225 D7769-16 39.3 209 0.19 0.0638 0.0015 0.9704 0.0269 0.1100 0.0017 744 50.0 689 13.9 673 9.9 97 673 D7769-17 286 486 0.59 0.0711 0.0011 1.5282 0.0252 0.1554 0.0012 961 33.3 942 10.1 931 6.5 98 931 D7769-18 69.4 494 0.14 0.0516 0.0021 0.2854 0.0169 0.0393 0.0014 265 99.1 255 13.4 248 8.7 97 248 D7769-19 17.2 48.4 0.35 0.0711 0.0024 1.3701 0.0450 0.1399 0.0014 961 63.9 876 19.3 844 8.2 96 844 D7769-20 287 510 0.56 0.0702 0.0012 0.9926 0.0187 0.1022 0.0008 1000 36.0 700 9.6 627 4.6 89 627 D7769-21 320 1752 0.18 0.0783 0.0010 1.7517 0.0243 0.1616 0.0012 1155 26.2 1028 9.0 966 6.5 93 966 D7769-22 156 391 0.40 0.0729 0.0011 1.5791 0.0254 0.1565 0.0011 1011 26.9 962 10.0 937 6.3 97 937 D7769-23 113 412 0.27 0.0693 0.0012 1.1428 0.0403 0.1182 0.0035 909 37.0 774 19.1 720 20.4 92 720 D7769-24 166 240 0.69 0.0726 0.0014 1.7374 0.0341 0.1727 0.0013 1011 40.7 1022 12.7 1027 7.2 99 1011 D7769-25 69.4 167 0.42 0.0701 0.0017 1.4609 0.0497 0.1487 0.0033 931 54.6 914 20.5 894 18.7 97 894 D7769-26 209 220 0.95 0.0709 0.0014 1.5404 0.0303 0.1571 0.0011 954 36.1 947 12.1 941 5.9 99 941 D7769-27 27.8 35.6 0.78 0.0814 0.0029 1.8069 0.0631 0.1610 0.0016 1231 68.5 1048 22.8 962 9.1 91 962 D7769-28 17.0 306 0.06 0.0549 0.0016 0.3046 0.0089 0.0403 0.0005 409 64.8 270 6.9 255 3.2 94 255 D7769-29 43.6 992 0.04 0.0528 0.0011 0.2955 0.0079 0.0404 0.0006 320 48.1 263 6.2 255 4.0 96 255 D7769-30 101 217 0.47 0.0811 0.0016 1.7554 0.0382 0.1567 0.0020 1233 37.5 1029 14.1 938 11.3 90 938 D7769-31 146 323 0.45 0.0716 0.0014 1.3836 0.0273 0.1400 0.0011 974 6.5 882 11.7 844 6.1 95 844 D7769-32 123 295 0.42 0.1990 0.0028 12.4358 0.2954 0.4512 0.0084 2818 24.2 2638 22.4 2401 37.5 90 2818 D7769-33 329 986 0.33 0.0604 0.0009 0.7903 0.0125 0.0948 0.0006 617 33.3 591 7.1 584 3.5 98 584 D7769-34 302 638 0.47 0.0694 0.0011 1.2213 0.0236 0.1275 0.0016 911 33.0 810 10.8 773 8.9 95 773 D7769-35 3.50 10.4 0.34 0.0708 0.0056 1.3547 0.0974 0.1418 0.0027 950 157.3 870 42.0 855 15.2 98 855 D7769-36 69.1 485 0.14 0.0714 0.0013 1.5198 0.0337 0.1539 0.0016 969 38.9 938 13.6 923 9.0 98 923 D7769-37 245 469 0.52 0.0679 0.0014 1.0308 0.0499 0.1071 0.0041 866 43.7 719 24.9 656 23.8 90 656 D7769-38 902 881 1.02 0.0685 0.0011 1.1177 0.0189 0.1182 0.0009 883 33.3 762 9.1 720 4.9 94 720 D7769-39 551 400 1.38 0.1323 0.0019 5.9745 0.1035 0.3263 0.0035 2129 23.9 1972 15.1 1821 17.1 92 2129 D7769-40 110 637 0.17 0.0770 0.0011 1.8225 0.0285 0.1713 0.0014 1120 25.0 1054 10.3 1019 7.8 96 1120 D7769-41 108 133 0.82 0.1169 0.0020 5.3808 0.0927 0.3329 0.0026 1910 30.4 1882 14.8 1852 12.7 98 1910 D7769-42 201 497 0.40 0.0765 0.0013 1.8877 0.0336 0.1782 0.0014 1109 34.4 1077 11.8 1057 7.9 98 1109 D7769-43 188 322 0.58 0.0687 0.0013 1.4397 0.0321 0.1512 0.0020 900 40.7 906 13.4 908 11.3 99 908 D7769-44 73.2 442 0.17 0.0709 0.0012 1.4831 0.0241 0.1512 0.0009 954 33.3 924 9.9 907 5.1 98 907 D7769-45 99.0 172 0.58 0.0759 0.0013 1.8348 0.0337 0.1748 0.0015 1100 34.1 1058 12.1 1039 8.2 98 1100 D7769-46 235 285 0.82 0.0701 0.0012 1.4392 0.0262 0.1485 0.0013 931 37.0 905 10.9 893 7.3 98 893 D7769-47 349 498 0.70 0.0764 0.0011 1.8723 0.0289 0.1771 0.0013 1106 34.3 1071 10.2 1051 7.2 98 1106 D7769-48 388 545 0.71 0.0716 0.0012 1.4402 0.0254 0.1454 0.0012 974 35.2 906 10.6 875 7.0 96 875 D7769-49 68.2 203 0.34 0.0770 0.0015 1.9403 0.0392 0.1820 0.0015 1122 38.9 1095 13.6 1078 8.3 98 1122 D7769-50 173 300 0.58 0.0713 0.0013 1.2264 0.0242 0.1244 0.0012 965 41.7 813 11.0 756 6.7 92 756 D7769-51 38.0 33.7 1.13 0.0605 0.0032 0.8973 0.0443 0.1097 0.0015 620 114.8 650 23.7 671 9.0 96 671 D7769-52 169 521 0.32 0.0712 0.0012 1.3493 0.0238 0.1372 0.0012 963 35.2 867 10.3 829 6.8 95 829 D7769-53 525 813 0.65 0.0615 0.0011 0.8507 0.0154 0.1001 0.0007 657 38.9 625 8.4 615 3.9 98 615 D7769-54 144 138 1.05 0.0627 0.0018 0.9182 0.0262 0.1063 0.0010 698 65.7 661 13.9 651 6.0 98 651 D7769-55 77.4 179 0.43 0.0679 0.0018 1.2718 0.0353 0.1361 0.0019 866 55.6 833 15.8 823 10.5 98 823 D7769-56 51.7 456 0.11 0.0658 0.0021 0.6411 0.0388 0.0668 0.0028 800 66.7 503 24.0 417 16.8 81 417 D7769-57 378 761 0.50 0.0740 0.0016 1.8320 0.0421 0.1789 0.0014 1043 44.1 1057 15.1 1061 7.9 99 1043 D7769-58 117 235 0.50 0.0683 0.0019 1.3782 0.0376 0.1460 0.0009 880 89.8 880 16.0 878 5.3 99 878 D7769-59 745 872 0.86 0.0679 0.0019 1.0327 0.0313 0.1096 0.0013 878 57.4 720 15.7 670 7.4 92 670 D7769-60 28.9 135 0.21 0.0642 0.0025 1.0702 0.0401 0.1213 0.0011 750 83.3 739 19.7 738 6.1 99 738 D7769-61 231 598 0.39 0.0712 0.0012 1.5191 0.0257 0.1542 0.0011 965 35.2 938 10.4 924 6.2 98 924 D7769-62 92.4 719 0.13 0.0689 0.0011 0.9865 0.0188 0.1034 0.0012 898 33.3 697 9.6 634 7.1 90 634 D7769-63 55.2 561 0.10 0.0570 0.0013 0.3676 0.0087 0.0467 0.0005 500 48.1 318 6.5 294 3.2 92 294 D7769-64 117 179 0.65 0.0736 0.0015 1.7893 0.0377 0.1757 0.0018 1031 40.7 1042 13.7 1044 10.1 99 1031 D7769-65 96.7 1179 0.08 0.0641 0.0009 0.8916 0.0145 0.1003 0.0009 746 29.6 647 7.8 616 5.5 95 616 D7769-66 261 285 0.92 0.1034 0.0016 4.4268 0.0750 0.3090 0.0029 1687 28.2 1717 14.1 1736 14.4 98 1687 D7769-67 166 358 0.46 0.0661 0.0012 1.3818 0.0260 0.1508 0.0016 809 41.7 881 11.1 906 8.7 97 906 D7769-68 103 212 0.49 0.0746 0.0015 1.3879 0.0336 0.1336 0.0016 1057 40.7 884 14.3 808 8.9 91 808 D7769-69 101 140 0.72 0.0714 0.0015 1.4178 0.0333 0.1436 0.0020 969 44.4 896 14.0 865 11.5 96 865 D7769-70 85.4 207 0.41 0.1693 0.0022 11.2806 0.1743 0.4808 0.0048 2551 21.9 2547 14.5 2531 21.1 99 2551 D7769-71 30.9 48.5 0.64 0.0688 0.0023 1.1984 0.0380 0.1272 0.0018 894 63.9 800 17.6 772 10.0 96 772 D7769-72 164 330 0.50 0.0656 0.0013 1.1804 0.0256 0.1298 0.0014 794 40.7 792 11.9 787 7.9 99 787 D7769-73 137 224 0.61 0.0723 0.0014 1.4871 0.0333 0.1484 0.0019 995 40.0 925 13.6 892 10.8 96 892 D7769-74 172 679 0.25 0.2058 0.0028 11.5290 0.2069 0.4040 0.0051 2873 21.9 2567 16.9 2188 23.6 84 2873 D7769-75 251 1393 0.18 0.0720 0.0009 1.3489 0.0244 0.1352 0.0018 987 25.9 867 10.6 818 10.5 94 818 D7769-76 156 194 0.80 0.0774 0.0014 2.0020 0.0384 0.1872 0.0020 1132 37.0 1116 13.0 1106 11.0 99 1132 D7769-77 71.4 220 0.32 0.0993 0.0026 2.3484 0.1437 0.1585 0.0079 1611 50.0 1227 43.6 949 43.8 74 949 D7769-78 119 667 0.18 0.0727 0.0013 1.2233 0.0223 0.1215 0.0010 1006 36.0 811 10.2 739 5.8 90 739 D7769-79 109 130 0.84 0.0770 0.0016 1.9506 0.0419 0.1833 0.0020 1120 41.2 1099 14.5 1085 11.2 98 1120 D7769-80 237 216 1.10 0.0781 0.0016 1.9294 0.0394 0.1785 0.0016 1150 40.7 1091 13.7 1059 8.5 96 1150 D7769-81 210 324 0.65 0.0778 0.0014 1.6667 0.0335 0.1545 0.0016 1143 41.7 996 12.8 926 8.7 92 926 D7769-82 118 186 0.63 0.0724 0.0015 1.6279 0.0339 0.1623 0.0013 996 42.6 981 13.1 969 7.0 98 969 D7769-83 165 243 0.68 0.0756 0.0014 1.4400 0.0271 0.1374 0.0011 1085 34.3 906 11.3 830 6.1 91 830 D7769-84 417 1000 0.42 0.0749 0.0012 1.4251 0.0226 0.1372 0.0010 1066 32.6 899 9.5 829 5.5 91 829 D7769-85 79.4 408 0.19 0.0643 0.0015 0.6266 0.0167 0.0701 0.0009 750 48.1 494 10.4 437 5.5 87 437 D7769-86 148 543 0.27 0.0776 0.0013 1.3782 0.0251 0.1280 0.0014 1137 33.0 880 10.7 777 7.7 87 777 D7769-87 83.1 312 0.27 0.0760 0.0012 1.7573 0.0300 0.1668 0.0016 1094 32.9 1030 11.1 995 9.1 96 995 D7769-88 49.0 98.8 0.50 0.0716 0.0017 1.4495 0.0373 0.1457 0.0018 976 53.9 910 15.5 877 10.0 96 877 D7769-89 153 151 1.01 0.0621 0.0017 0.8529 0.0223 0.0995 0.0010 676 63.9 626 12.2 611 5.7 97 611 D7769-90 448 522 0.86 0.0907 0.0015 2.5088 0.0470 0.1993 0.0022 1440 32.6 1275 13.6 1172 12.0 91 1440 D7769-91 223 409 0.54 0.0801 0.0015 1.9418 0.0413 0.1743 0.0019 1198 37.0 1096 14.3 1036 10.3 94 1198 D7769-92 108 299 0.36 0.0765 0.0013 1.4680 0.0250 0.1385 0.0011 1109 34.4 917 10.3 836 6.5 90 836 D7769-93 146 373 0.39 0.0781 0.0012 1.9649 0.0344 0.1819 0.0022 1150 36.1 1104 11.8 1077 12.0 97 1150 D7769-94 294 513 0.57 0.0711 0.0015 1.1359 0.0326 0.1158 0.0026 961 45.4 771 15.5 707 14.9 91 707 D7769-95 132 277 0.47 0.0746 0.0015 1.6725 0.0341 0.1622 0.0012 1058 40.7 998 13.0 969 6.6 97 969 D7769-96 124 170 0.73 0.0731 0.0015 1.6443 0.0351 0.1630 0.0015 1017 43.1 987 13.5 973 8.2 98 973 D7769-98 2135 743 2.87 0.2801 0.0042 24.4270 0.4092 0.6307 0.0056 3365 23.5 3286 16.5 3152 22.3 95 3365 D7769-100 112 231 0.49 0.0683 0.0019 1.2870 0.0438 0.1361 0.0031 877 89.8 840 19.5 823 17.8 97 823 D7769-101 254 814 0.31 0.0688 0.0013 1.4036 0.0305 0.1470 0.0015 894 39.4 890 12.9 884 8.5 99 884 D7769-102 185 522 0.36 0.0694 0.0016 1.4180 0.0399 0.1477 0.0026 911 52.8 897 16.8 888 14.9 99 888 D7769-103 354 1144 0.31 0.0699 0.0014 1.4330 0.0280 0.1477 0.0012 928 41.8 903 11.7 888 6.7 98 888 D7769-104 142 511 0.28 0.0744 0.0016 1.7229 0.0379 0.1673 0.0013 1051 44.4 1017 14.2 997 7.1 98 997 D7769-105 401 974 0.41 0.0845 0.0015 2.5123 0.0458 0.2142 0.0017 1303 30.6 1276 13.3 1251 8.9 98 1303 D7769-106 165 218 0.76 0.0876 0.0020 2.6309 0.0580 0.2163 0.0019 1373 43.7 1309 16.2 1262 10.3 96 1373 D7769-107 105 188 0.56 0.1078 0.0025 4.4692 0.1049 0.2985 0.0031 1763 42.6 1725 19.5 1684 15.4 97 1763 对96个年龄值进行统计分析,年龄值频率分布图上形成多个组/峰(图 5),U-Pb年龄值可分为2组:第一组437~203 Ma,锆石有效分析点13个,具有明显的核-边结构,年龄值均测试于锆石边部(图 3),为锆石变质增生边,隐约见环带结构,Th含量为7.75×10-6~325×10-6,U含量为265×10-6~1388×10-6,Th/U值除1号点为0.55外均小于0.1,其年龄代表原岩成岩后期遭受变质作用的时间,13个变质年龄集中分布在5个组/峰值(图 5),分别为226~ 203 Ma(n=4),255~252 Ma(n=3),308~273 Ma(n=3),377~359 Ma(n=2),427 Ma(n=1);第二组2818~566 Ma(图 4-c),锆石有效分析点83个,具核-边或板状结构,且具核-边结构的锆石核部具有环带结构,Th含量为3.5×10-6~2134×10-6,U含量为10×10-6~1752×10-6,Th/U值为0.1~2.87,大多数大于0.4,显示出岩浆成因的锆石特征[18],年龄测试点位于锆石核部;板状结构锆石数量少,无变质边,无环带,外形浑圆,年龄测试点位于锆石中心部位(图 3);该段年龄值代表锆石的形成时间,83个年龄值在相对频率分布图上形成多个密集连续的组/峰(图 5),分别为584~566 Ma(n=2),615~611 Ma(n=3),673~634 Ma(n=6),739~707 Ma(n=5),787~756 Ma(n=4),855~808 Ma(n=12),894~865 Ma(n=8),941~906 Ma(n=11),973~962 Ma(n=5),1048~995 Ma(n=6),1150~ 1100 Ma(n=9),>1198 Ma(n=12),最年轻年龄值为566± 9.51 Ma。
4. 讨论
4.1 吉塘地区吉塘群原始沉积时限和原岩
锆石作为副矿物广泛存在于各类岩石中,具有非常高的封闭温度和稳定性,对锆石进行结构分析和原位微区定年可以提供岩石形成、变质时代等重要信息[19-20]。碎屑沉积岩锆石U-Pb定年的基本原理为:随机选取足够量的碎屑锆石进行单颗粒锆石定年,然后对结果进行统计分析,利用最年轻的一组年龄限定最大沉积时间。利用这种方法确定地层时代的准确度有限,难以获得精准的绝对年龄值,但用于限定无化石或火山岩夹层的地层时代范围非常有效;对于副变质岩,碎屑锆石没有受到后期变质事件影响,同位素体系保持封闭,可以采用这种方法限定其原始沉积时代。
黑云二长片麻岩样品第二组锆石U-Pb年龄值为2818~566 Ma,测点锆石具有核-边结构或板状结构,且测点均位于锆石的核部或中心。具核-边结构的锆石核部形态显示,它们是不同磨蚀程度的碎屑锆石,CL图像揭示核部为岩浆成因,后期有变质作用生成的变质边;板状结构锆石外部形态表明,其为磨蚀程度不同的碎屑锆石,成岩后期未遭受变质作用。锆石年龄谐和度高(图 4),碎屑锆石U-Pb同位素体系保持封闭,锆石核部或中心部位未受到后期变质事件的影响,可用第二组年龄限定寄主岩石的原始沉积时代。黑云二长片麻岩的碎屑锆石年龄分布在566~2818 Ma较宽的范围,表明其物源丰富多样,既有太古宙古老物质,也有新元古代物质。这些年龄形成多个群组,年龄分布连续,最年轻锆石年龄为566±9.5 Ma,表明吉塘群最大沉积时限不早于566±9.5 Ma,形成时代为新元古代晚期;该年龄值与陈奇等[21]间接推测的多穷沟吉塘群黑云斜长片麻岩年龄560 Ma相近。
雍永源等[7]认为,吉塘群原岩具有碎屑岩或杂砂岩的特征;陶琰等[10]认为,吉塘群原岩建造中包含火山弧成因的英安岩或英安质火山碎屑岩;陈奇等[21]认为,斜长片麻岩原岩以长英质粘土岩和砂砾岩为主,沉积岩碎屑物质主要来自花岗质岩石、长英质火山岩或类似TTG的源岩;野外地质调查发现,黑云二长片麻岩虽然变质程度较高,且由于受到部分混合岩化和构造改造强烈,原岩组构特征残留很少,但在采样点附近的黑云二长片麻岩中保留了“成分层”(图版Ⅰ-d)。这种“成分层”体现在主要矿物长石、石英、黑云母含量上的不同,部分“成分层”长石矿物减少变成云母片岩。这种“成分层”差异是沉积岩特有的现象。锆石CL图像显示,锆石多呈圆状、次圆状,具有较明显的搬运磨蚀再沉积特征,说明黑云二长片麻岩原岩为碎屑岩;第二段2818~566 Ma的锆石核部具有环带结构,Th/U值均大于0.1,平均0.55,这是岩浆锆石典型的特征,结合岩石矿物成分说明,碎屑物多来源于中—酸性花岗质岩石、长英质火山岩等。
陈奇等[21]对吉塘群黑云斜长片麻岩的锆石U-Pb年代学研究认为,吉塘群变质结晶基底源岩由泛非期和格林威尔造山期构造-岩浆热事件形成,在560 Ma的沉积时代之前,源区可能发生了4次岩浆事件;结合本次第二段2818~566 Ma出现多组或峰,锆石为岩浆锆石,可能代表在566±9.51 Ma沉积时代之前物源区中—酸性岩浆活动频繁,多组/峰年龄值分别对应频繁的岩浆活动时间,表明频繁的岩浆活动为后期吉塘群黑云二长片麻岩原岩沉积提供了丰富的物源。
4.2 类乌齐吉塘群与吉塘地区吉塘群对比
西藏地质调查院对类乌齐地区吉塘群④(报告称类乌齐变质岩套,本文称类乌齐地区吉塘群)在以往基础上进行了解体;西藏地勘局地热地质大队对吉塘地区吉塘群③在以往基础上进行了解体,二者的对比结果见表 2。
表 2 藏东吉塘地区吉塘群与类乌齐地区片麻岩套对比Table 2. Comparison of the Jitang Group in Jitang area and Leiwuqi gneiss suite, eastern Tibet单元名称 单元代号 岩性组合 原岩恢复 特征变质矿物 变质相带 构造环境 形成时代 类乌齐吉塘群④ 宁达片麻岩单元 Nd<gn>T3 浅灰白色花岗质片麻岩、花岗质片糜岩、二长片麻岩、黑云斜长片麻岩、花岗质粗糜棱岩、碎裂花岗岩等 正片麻岩 矽线石/红柱石铁铝榴石/角闪石/黑云母/斜长石 高绿片岩—低角闪岩相 火山弧及同碰撞花岗岩 227±0.6 Ma[8] 加隆片麻岩单元 JL<gn>T1 眼球状、条纹条带状黑云母(角闪)斜长片麻岩、黑云母花岗质片麻岩、黑云斜长(二长)片麻岩、花岗质片糜岩、碎斑岩、碎粒岩等 正片麻岩 同碰撞花岗岩 246.3±1.7 Ma④、248.3±1.5 Ma④、247.3±1.3 Ma④ 加压玛片麻岩单元 JY<gn>P3 浅灰色、灰白色角闪花岗质片糜岩、黑云斜长片麻岩和浅灰色片麻状黑云二长花岗岩等 正片麻岩 同碰撞花岗岩 253±9 Ma④(片麻状花
岗岩)254±8 Ma[8](片
麻状花岗岩)、246.3 ±
0.8[23](片麻状花岗岩)都拉扎片麻岩单元 DL<gn>P1 片麻状碎裂细粒二长花岗岩 正片麻岩 同碰撞花岗岩 281.8±1.9 Ma④ 查秋赛组 AnOcq. 浅灰色-灰色石榴子石黑云斜长片麻岩,灰色-深灰色条纹条带状钙铝榴石二云斜长片麻岩、浅灰绿色(角闪)斜长片麻岩、黑云斜长片麻岩、黑云二长片麻岩,局部夹少量黑云斜长片岩和矽线石云英岩等 碎屑岩夹火山岩建造 主体区间年龄为438.2±3.6~700 Ma,时代置于前奥陶纪⑥ 吉塘地区吉塘群③ 纽多岩体 ηγT2/γο 灰白色碎裂岩化细粒二长花岗岩/灰白色碎裂岩化黑云母 低—高角闪岩相带 同碰撞花岗岩 不早于566±9.5 Ma(黑云
二长片麻岩)吉塘复式花岗岩 γσοT3/ξγT3/γοT3/ηγT3 眼球状、条纹条带状、片麻状黑云母二长花岗岩、浅灰色片麻状黑云二长花岗岩、灰白色二长花岗岩/条纹条痕条带状混合岩化英云闪长岩、浅灰色片麻状英云闪长岩、灰白色英云闪长岩/灰色糜棱岩化花岗岩闪长岩、灰白色碎裂花岗岩闪长岩/灰白色条纹条痕弱混合岩化正长花岗岩、灰白色正长花岗岩等 碎屑岩夹火山岩建造 绿泥石/绢云母/绿帘石/角闪石/铁铝榴石/云母斜长石/碱性长石 被动陆源 吉塘群 Pt3Jabl 斜长片麻岩、二长片麻岩、黑云母(二云)片岩(非正式填图单元) 岛弧玄武岩 Pt3Jabl 斜长角闪岩 基性火山岩 从表 2分析,类乌齐地区吉塘群经解体后可分为两部分,第一部分为形成于印支期的宁达片麻岩单元(227 Ma)、加隆片麻岩单元(246.3 Ma)、加压片麻岩单元(253 Ma)、都拉扎片麻岩单元(281.8 Ma),为同碰撞正片麻岩;吉塘地区吉塘群围岩或附近同样分布印支期花岗岩体,吉塘岩体(225.7~222.8 Ma)、纽多岩体(262~243.6 Ma)形成的大地构造环境为同碰撞—后碰撞。第二部分为查秋赛组,岩石组合为二长(斜长)片麻岩、片岩、云英岩,原岩为碎屑岩夹火山岩,这部分与解体后的吉塘地区吉塘群③岩性一致。
吉塘镇多穷沟地质路线调查发现,印支期岩浆岩具有片麻状构造、条纹(条痕)状构造、眼球状构造及碎裂岩化、糜棱岩化混合岩化(图版Ⅰ-c)等现象,且多发育在岩体与围岩接触带、韧性剪切带及脆-韧性断裂附近,说明吉塘地区在印支期中—酸性岩体形成后,经历了构造-岩浆的改造作用,这与类乌齐地区吉塘群经解体④后的正片麻岩相似。这部分不属于吉塘群的变质基底物质,属于华力西期—印支期岩浆活动的产物,应将类乌齐吉塘群中的正片麻岩部分归属于华力西期—印支期岩浆岩。
4.3 吉塘群变质事件厘定
吉塘群最大沉积时限不早于566±9.51 Ma,其后年龄记录了变质事件发生的时间;锆石U-Pb变质年龄主要为437~203 Ma,测点位于具核-边结构锆石的变质增生边上,在相对频率分布图上出现多个峰值/组(图 5),代表了不同的变质事件。
陶琰等[10]认为,吉塘复式花岗岩岩浆源岩为杂砂岩成分的吉塘群副片麻岩。樊炳良等[22]认为,吉塘复式花岗岩源岩可能为吉塘群。西藏地勘局地热地质大队③在吉塘复式花岗岩中测得各类中—酸性花岗岩形成时间在225.7~213 Ma范围,为印支期岩浆活动的产物,该年龄与变质组/峰226~ 203 Ma(n=4)在误差范围内一致,为吉塘复式花岗岩岩浆活动引起吉塘群变质事件的时间。吉塘群主要以残留体或捕虏体形式分布于吉塘复式花岗岩中,说明印支期岩浆活动对吉塘群改造程度大,在吉塘复式花岗岩锆石U-Pb年龄值中出现大于吉塘群黑云二长片麻岩沉积下限的年龄566±9.51 Ma,可能与本次岩浆活动捕虏吉塘群锆石关系密切,导致吉塘群重融。
李才等[8]于恩达附近的片麻状花岗岩中获得锆石U-Pb年龄为254±8 Ma。王新雨等[24]在纽多岩体南部花岗闪长岩中获得锆石U-Pb年龄为262±1.3 Ma。周新等[25]在纽多细粒花岗岩中获得锆石U-Pb年龄为258.1±1.9 Ma。樊炳良等[26]测得纽多二长花岗岩年龄为243.6±1.4 Ma。这些年龄值与变质年龄组/峰255~252 Ma接近,说明印支期岩浆活动引起吉塘群的又一次变质事件的发生。
变质年龄组/峰273~427 Ma的变质事件目前在吉塘地区尚未报道,但是在类乌齐地区吉塘群中正片麻岩部分相关年龄报道较多。据区域地质调查报告⑤,在吉塘群博日松多岩组二云片麻岩中获取单颗粒锆石U-Pb年龄300±14 Ma;在吉塘群都拉扎片麻岩单元的片麻状碎裂细粒二长花岗岩中获得锆石U-Pb年龄281.8±1.9 Ma。据此认为,308~ 273 Ma(n=3)可能为华力西期岩浆活动对吉塘群产生的变质事件的记录。
雍永源等[7]在多穷沟酉西群片岩中获得Rb-Sr等时线年龄371.5±0.5 Ma,认为是变质年龄。本次变质年龄组/峰377~359 Ma(n=2),所测锆石(图 3,点12、13)具明显的核-边结构,边部具明显的环带,为岩浆活动引起的锆石生长产生的增生边,可能为岩浆活动引起的吉塘群在华力西期的又一次变质事件的记录。
河南省地勘局区域地质调查队⑥在侵入吉塘群觉拉片麻岩的片麻状细粒黑云二长花岗岩中获得Rb-Sr等时线年龄438.2±3.6 Ma。该年龄与本次变质年龄组/峰427 Ma(n=1)在误差范围内一致,可能代表吉塘群在加里东期岩浆活动中同样受到了变质作用。
综上,可分析得出吉塘群原岩成岩后经历了5期岩浆变质事件,变质时期从加里东期不断持续到印支期。其中印支期遭受到2期岩浆变质事件,变质事件年龄峰/组年龄为255~252 Ma、226~203 Ma;华力西期遭受到2期岩浆变质事件,变质事件年龄峰/组年龄为377~359 Ma、308~273 Ma;加里东期遭受到1期岩浆变质事件,变质事件年龄峰/组年龄为427 Ma。其中,印支期岩浆活动对吉塘群改造程度大,可能导致吉塘群重融。
5. 结论
(1) 吉塘群黑云二长片麻岩原岩为副变质岩,碎屑物质多来源于太古宙、新元古代的中—酸性花岗质岩石、长英质火山岩等,吉塘群最大沉积时限不早于566±9.51 Ma,形成时代为新元古代,在此时间之前岩浆活动频繁,为吉塘群沉积提供了丰富的物质来源。
(2) 吉塘地区吉塘群与类乌齐吉塘群在物质组成上具有相似性;类乌齐地区吉塘群中正片麻岩单元形成于华力西期—印支期,不属于吉塘群结晶基底物质,应该从吉塘群中分解,归属于华力西期—印支期岩浆活动产生的岩浆岩部分。
(3) 吉塘群原岩成岩后经历了5期岩浆变质事件,吉塘群沉积后从加里东期—印支期不断遭受到岩浆活动引起的变质,变质事件年龄峰/组为427 Ma、377~359 Ma、308~273 Ma、255~252 Ma、226~203 Ma;其中226~203 Ma岩浆活动对吉塘群改造程度大,可能导致吉塘群重融。
-
图 1 华北克拉通构造域分布(a,据Chen et al., 2022修改)、贺兰山及周缘构造体系图(b,构造体系据Kind et al., 2002; Xiao et al., 2003; Zuza et al., 2016; Li et al., 2021; Zhang et al., 2022修改)和贺兰山构造带地质简图(c,底图据宁夏省地质局, 1974, 1978, 1980a,b,c修改; 构造单元划分据赵红格, 2003; 杨向阳, 2018修改)
JF—吉兰泰断裂;CF—查汗断裂;QGF—青铜峡−固原断裂;EHF—贺兰山东麓断裂;WHF—贺兰山西缘断裂;HF—黄河断裂;BYF—巴彦浩特断裂;RF—汝萁沟断裂;ZYF—正谊关断裂
Figure 1. Distribution of the North China Craton tectonic domain (a), tectonic system map of the Helanshan and its periphery (b) and geological schematic map of the Helanshan tectonic belt (c)
图 8 MT测线构造廊带与浅层反演模型构造解释及前人地球物理资料解释图
a—MT测线构造廊带剖面图;b—TE模式反演模型构造解释图;c—TE + TM模式反演模型构造解释图;d—深地震反射剖面及解释图(剖面位置见图1−c,据刘保金等,2017);e—大地电磁测深剖面及解释图(剖面位置见图1−b,据Li et al., 2022);BYF—巴彦浩特断裂;ZBF—宗别立断裂;RF—汝箕沟断裂;EHF—贺兰山东麓断裂;WHF—贺兰山西缘断裂;HF—黄河断裂;ZYF—正谊关断裂; HLF—贺兰山断裂;UMR—地震反射波组;Moho—莫霍面;CR—反射界面
Figure 8. Structure interpretation diagram of MT line structure corridor and superficial layer inversion model and interpretation of previous geophysical data
-
Bahr K. 1911. Geological noise in magnetotelluric data: a classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 66(1/2): 24−38.
Bai D H, Unsworth M J, Meju M A. 2010. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J]. Nature Geoscience, 3: 358−362. doi: 10.1038/ngeo830
Berdichevsky M N, Dmitriev V L. 2002. Magnetotelluric in the Context of the Theory of Ill−Posed Problems[R]. Society of Exploration Geophysicists, Tulsa.
Bureau of Geology of Ningxia Province. 1974. Geological map of Zhongwei (1: 200 000) [DB]. China Geological Survey (in Chinese).
Bureau of Geology of Ningxia Province. 1978. Geological map of Barenberi (1: 200 000) [DB]. China Geological Survey (in Chinese).
Bureau of Geology of Ningxia Province. 1980a. Geological Map of Shizuishan City (1: 200 000) [DB]. China Geological Survey (in Chinese).
Bureau of Geology of Ningxia Province. 1980b. Geological map of Alxa Left Banner (1: 200 000) [DB]. China Geological Survey (in Chinese).
Bureau of Geology of Ningxia Province. 1980c. Geological Map of Yinchuan City (1: 200 000) [DB]. China Geological Survey (in Chinese).
Cai J, Chen X, Xu X, et al. 2017. Rupture mechanism and seismotectonics of the Ms 6.5 Ludian earthquake inferred from three−dimensional magnetotelluric imaging[J]. Geophysical Research Letters, 44(3): 1275−1285. doi: 10.1002/2016GL071855
Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor[J]. Geophysical Journal International, 158: 457−469. doi: 10.1111/j.1365-246X.2004.02281.x
Chen X H, Shao Z G, Xiong X X, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).
Chen X H, Dong S W, Shi W, et al. 2022. Construction of the Continental Asia in Phanerozoic: A Review[J]. Acta Geologica Sinica−English Edition, 96(1): 26−51. doi: 10.1111/1755-6724.14867
Cheng B, Zhao D, Cheng S, et al. 2016. Seismic tomography and anisotropy of the Helan−Liupan tectonic belt: Insight into lower crustal flow and seismotectonics[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2608−2635. doi: 10.1002/2015JB012692
Cui Y, Li Y, Si X, Yang L, et al. 2019. Tectonic controls on near−surface variations in CH4 and CO2 concentrations along the northwestern margin of the Ordos Block, China[J]. Geofluids, 2019(1): 1−10.
Dai H K, Zheng J P, Xiong Q, et al. 2019. Fertile lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton: Significant effect from the southward subduction of the Paleo−Asian Ocean[J]. GSA Bulletin, 131(1/2): 3−20.
Dan W, Li X H, Guo J H, et al. 2012. Integrated in situ zircon U–Pb age and Hf–O isotopes for the Helanshan khondalites in North China Craton: Juvenile crustal materials deposited in active or passive continental margin?[J]. Gondwana Research, 4: 838−864.
Darby B J, Ritts B D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold−thrust belt, China[J]. Earth and Planetary Science, 205: 13−24. doi: 10.1016/S0012-821X(02)01026-9
Dong H, Wei W B, Ye G F, et al. 2014. Three−dimensional electrical structure of the crust and upper mantle in Ordos Block and adjacent area: Evidence of regional lithospheric modification[J]. Geochemistry Geophysics Geosystems, 15: 2414−2425. doi: 10.1002/2014GC005270
Dong H, Wei W, Jin S, et al. 2020. Shaping the surface deformation of central and south Tibetan Plateau: Insights from magnetotelluric array data[J]. Journal of Geophysical Research: Solid Earth, 125(9): 1−20.
Dong Y P, Li W, Zhang F F, et al. 2021. Formation and evolution of the Helan Mountain in the northern section of the North−South Tectonic Belt[J]. Journal of Northwest University (Natural Science Edition), 51(6): 951−968 (in Chinese with English abstract).
Egbert G D, Booker J R. 1986. Robust estimation of geomagnetic transfer functions[J]. Geophysical Journal International, 87: 173−194. doi: 10.1111/j.1365-246X.1986.tb04552.x
Faure M, Lin W, Chen Y. 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?[J]. Terra Nova, 24(6): 456−466. doi: 10.1111/ter.12002
Feucht D W, Bedrosian P A, Sheehan A F. 2019. Lithospheric signature of late Cenozoic extension in electrical resistivity structure of the Rio Grande rift, New Mexico, USA[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2331−2351. doi: 10.1029/2018JB016242
Gao X, Guo B, Chen J H, et al. 2018. Rebuilding of the lithosphere beneath the western margin of the Ordos: Evidence from multiscale seismic tomography[J]. Chinese Journal of Geophysics, 61(7): 2736−2749 (in Chinese with English abstract).
Han J, Zhao L G, Sun X Y, et al. 2022. Electrical structures of the Yinchuan Basin and adjacent area, western North China Craton, inferred from magnetotelluric imaging[J]. Journal of Asian Earth Sciences, 227: 1−14.
Huang F, He L J, Wu Q J. 2015. Lithospheric thermal structure of the Ordos Basin and its implications to destruction of the North China Craton[J]. Chinese Journal of Geophysics, 58(10): 3671−3686 (in Chinese with English abstract).
Huang J L, Zhao D P. 2006. High−resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 111(9): 1−21.
Huang L T, Shen X Z, Zheng W J, et al. 2020. Moho properties of western Ordos block and surrounding regions constrained by teleseismic receiver functions and its tectonic implication[J]. Chinese Journal of Geophysics, 63(3): 871−885 (in Chinese with English abstract).
Huang, X F, Shi W, Chen P, et al. 2015. Superposed deformation in the Helanshan Structural Belt: Implications for Mesozoic intracontinental deformation of the North China Plate[J]. Journal of Asian Earth Sciences, 114: 140−154. doi: 10.1016/j.jseaes.2015.05.027
Huang X F, Feng S Y, Gao R, et al. 2016. High−resolution crustal structure of the Yinchuan basin revealed by deep seismic reflection profiling: implications for deep processes of basin[J]. Earthquake Science, 29(2): 83−92. doi: 10.1007/s11589-016-0148-1
Hu X Y, Lin W, Yang W, et al. 2020. A review on developments in the electrical structure of craton lithosphere[J]. Science China Earth Sciences, 50(11): 1533−1554 (in Chinese with English abstract).
Jia C Z, Wei G Q, Li B L, et al. 2003. Tectonic evolution of two−epoch foreland basins and its control for natural gas accumulation in China′s mid−western areas[J]. Acta Petrolei Sinica, 24(2): 13−17 (in Chinese with English abstract).
Jones A G. 2013. Imaging and observing the electrical Moho[J]. Tectonophysics. 609: 423−436.
Kind R, Yuan X, Saul J, et al. 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian Plate subduction[J]. Science, 298: 1219−1221. doi: 10.1126/science.1078115
Komabayashi T, Omori S, Maruyama S. 2004. Petrogenetic grid in the system MgO−SiO2−H2O up to 30 GPa, 1600°C: applications to hydrous peridotite subducting into the Earth’s deep interior[J]. Journal of Geophysical Research: Solid Earth, 109(B3): 1−21.
Komiya T, Maruyama S. 2007. A very hydrous mantle under the western Pacific region: Implications for formation of marginal basins and style of Archean plate tectonics[J]. Gondwana Research, 11(1/2): 132−147.
Li B, Zuza A V, Chen X H, et al. 2021. Cenozoic multi−phase deformation in the Qilian Shan and out−of−sequence development of the northern Tibetan Plateau[J]. Tectonophysics, 808: 1−19.
Li C J, Bai D H, Xue S, et al. 2017. A magnetotelluric study of the deep electric structure beneath the Ordos Block[J]. Chinese Journal of Geophysics, 60(5): 1788−1799 (in Chinese with English abstract).
Li W, Jiang D Z, Dong Y M, et al. 2022. Mesozoic contractional deformation in central East Asia: Constraints from deformation and sedimentary record of the Helanshan fold and thrust belt, North China Craton[J]. Gondwana Research, 107: 235−255. doi: 10.1016/j.gr.2022.03.011
Li X, Chen Y, Tian X B, et al. 2022. Magnetotelluric evidence for distributed lithospheric modification beneath the Yinchuan−Jilantai rift system and its implications for Late Cenozoic rifting in western North China[J]. Journal of Geophysical Research: Solid Earth, 127(3): 1−25.
Liu B J, Feng S Y, Ji J F, et al. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin: results of deep seismic reflection rofiling[J]. Science China Earth Sciences, 60: 589−601.
Liu B J, Feng S Y, Ji J F, et al. 2017. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin: Results of deep seismic reflection profiling[J]. Science China Earth Sciences, 47(2): 179−190 (in Chinese with English abstract).
Liu J H, Zhang P Z, Zheng D W, et al. 2010. Pattern and timing of late Cenozoic rapid exhumation and uplift of the Helan Mountain, China[J]. Science China Earth Sciences, 53(3): 345−355. doi: 10.1007/s11430-010-0016-0
Luo W F, Hu Z F, Zhang J Q, et al. Application of CSAMT and logging combined constrained inversion in oil shale identification in the southeast uplift area of Songliao Basin[J]. Geological Bulletin of China, 43(5): 692−700 (in Chinese with English abstract).
Min G, Yin B X, Chen J C, et al. 2022. Deep electrical structure and dynamic mechanism of the Yinchuan Graben on the western margin of the Ordos Block[J]. Geosciences Journal, 26(1): 95−112. doi: 10.1007/s12303-021-0014-6
Min G, Yuan H L, Wang X B, et al. 2023. Crustal and upper mantle electrical structure and uplift mechanism of the Liupanshan orogenic belt in the NE Tibetan Plateau[J]. Tectonphysics, 853: 1−14.
Mohan L, Rastogi B K, Chaudhary P. 2015. Magnetotelluric studies in the epicenter zone of 2001, Bhuj earthquake[J]. Journal of Asian Earth Sciences, 98: 75−84. doi: 10.1016/j.jseaes.2014.10.019
Murphy B S, Egbert G D. 2017. Electrical conductivity structure of southeastern North America: Implications for lithospheric architecture and appalachian topographic rejuvenation[J]. Earth and Planetary Science Letters, 462: 66−75. doi: 10.1016/j.jpgl.2017.01.009
Qiao H Z, Yin C Q, Xiao W J, et al. 2022. Paleoproterozoic polyphase deformation in the Helanshan Complex: Structural and geochronological constraints on the tectonic evolution of the Khondalite Belt, North China Craton[J]. Precambrian Research, 368: 1−17.
Rippe D, Unsworth M J, Currie C A. 2013. Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology[J]. Journal of Geophysical Research: Solid Earth, 118(10): 5601−5624. doi: 10.1002/jgrb.50255
Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion[J]. Geophysics, 66(1): 174−187. doi: 10.1190/1.1444893
Shen X, Liu M, Gao Y, Wang W, et al. 2017. Lithospheric structure across the northeastern margin of the Tibetan Plateau: Implications for the plateau's lateral growth[J]. Earth and Planetary Science Letters, 459: 80−92. doi: 10.1016/j.jpgl.2016.11.027
Shi G Z, Soares C J, Shen C B, et al. 2019. Combined detrital zircon fission track and U−Pb dating of the Late Paleozoic to Early Mesozoic sandstones in the Helanshan, western Ordos fold−thrust belt: Constraints for provenance and exhumation history[J]. Journal of Geodynamics, 130: 57−71.
Shi G Z, Shen C B, Zattin M, et al. 2019. Late Cretaceous−Cenozoic exhumation of the Helanshan Mt Range, western Ordos fold−thrust belt, China: Insights from structural and apatite fission track analyses[J]. Journal of Asian Earth Sciences, 176: 196−208. doi: 10.1016/j.jseaes.2019.02.016
Shi W, Dong S, Hu J. 2020. Neotectonics around the Ordos block, North China: A review and new insights[J]. Earth−Science Reviews, 200: 1−34.
Sifré D, Gardés E, Massuyeau M, et al. 2014. Electrical conductivity during incipient melting in the oceanic low−velocity zone[J]. Nature, 509: 81−85. doi: 10.1038/nature13245
Sun J P, Dong Y P. 2019. Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China[J]. Journal of Asian Earth Sciences, 169: 162−181. doi: 10.1016/j.jseaes.2018.08.002
Vauchez A, Barruol G, Tommasi A. 1997. Why do continents break−up parallel to ancient orogenic belts?[J]. Terra Nova, 9(2): 62−66. doi: 10.1111/j.1365-3121.1997.tb00003.x
Wannamaker P E, Jiracek G R, Stodt, J A, et al. 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data[J]. Journal of Geophysical Research: Solid Earth, 107: 1−21.
Wang S J, Liu B J, Tian X F, et al. 2018. Crustal P−wave velocity structure in the northeastern margin of the Qinghai−Tibetan Plateau and insights into crustal deformation[J]. Science China Earth Sciences, 61: 1221−1237. doi: 10.1007/s11430-017-9227-7
Wang T F. 2020. Discussion on the Liupanshan−Helanshan Collision Zone[J]. Geotectonica et Metallogenia, 44(5): 845−851 (in Chinese with English abstract).
Wang W, Cai G, Lai G, et al. 2023. Three−dimensional S−wave velocity structure of the crust and upper mantle for the normal fault system beneath the Yinchuan Basin from joint inversion of receiver function and surface wave[J]. Science China Earth Sciences, 66(5): 997−1014 (in Chinese with English abstract). doi: 10.1007/s11430-022-1059-y
Wei W B, Ye G F, Jin S, et al. 2008. Geoelectric structure of lithosphere beneath eastern North China: features of a thinned lithosphere from magnetotelluric soundings[J]. Earth Science Frontier, 15(4): 204−216 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60055-X
Wu G J, Tan H B, Sun K, et al. 2020. Characteristics and tectonic significance of gravity anomalies in the Helanshan−Yinchuan Graben and adjacent areas[J]. Chinese Journal of Geophysics, 63(3): 1002−1013 (in Chinese with English abstract).
Wu J, Lin Y A, Flament N, et al. 2022. Northwest Pacific−Izanagi plate tectonics since cretaceous times from western Pacific mantle structure[J]. Earth and Planetary Science Letters, 583: 1−14.
Xiao W J, Windley B F, Hao J, et al. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 22(6): 1−19.
Xu L B, Wei W B, Jin S, et al. 2017. Study of deep electrical structure along a profile from northern Ordos block to Yinshan orogenic belt[J]. Chinese Journal of Geophysics, 60(2): 575−584 (in Chinese with English abstract).
Yang X Y. 2018. The study of the deformation characteristic of the Helanshan tectonic belts[D]. Doctoral Dissertation of Northwestern University (in Chinese with English abstract).
Yang X Y, Dong Y P. 2018. Mesozoic and Cenozoic multiple deformations in the Helanshan Tectonic Belt, Northern China[J]. Gondwana Research, 60: 34−53. doi: 10.1016/j.gr.2018.03.020
Yang X Y, Dong Y P. 2020. Multiple phases of deformation in the southern Helanshan tectonic Belt, northern China[J]. Journal of Asian Earth Sciences, 201: 1−22.
Ye G F, Wang G S, Jin S, et al. 2020. Three−dimensional electrical structure and deep dynamics of the Khondalite Belt and adjacent areas in the Western Block of the North China Craton[J]. Precambrian Research, 350: 1−14.
Yin H X, Ye G F, Yi X C, et al. 2023. The ancient eastward−dipping subduction zone reactivated during the Mesozoic between the Alxa and Ordos Blocks: Electrical evidence from an extended MT profile[J]. Tectonphysics, 864: 1−14.
Yin Y, Wei W, Jin S, Santosh M. 2017. Fossil oceanic subduction zone beneath the western margin of the Trans−North China Orogen: Magnetotelluric evidence from the Lüliang Complex[J]. Precambrian Research, 303: 54−74. doi: 10.1016/j.precamres.2017.01.012
Zhang J, Ma Z J, Ren W J. 2000. The mechanism of the difference between the northern part and the southern part of the fold and thrust belt on the western edge of the ordos basin, China[J]. Geotectonica et Metallogenia, 24(2): 124−133 (in Chinese with English abstract).
Zhang Y Q, Liao C Z, Shi W, et al. 2007. Jurassic Deformation in and Around the Ordos Basin North China[J]. Earth Science Frontiers, 14(2): 182−196. doi: 10.1016/S1872-5791(07)60016-5
Zhang Y P, Chen X H, Zuza A V, et al. 2022. Testing the cenozoic lower crustal flow beneath the Qinling Orogen, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 165: 1−17.
Zhao H G. 2003. Structural characteristics and the evolution in western Ordos Basin[D]. Doctoral Dissertation of Northwestern University (in Chinese with English abstract).
Zhao L, Sun X, Zhan Y, et al. 2023. Characteristics of the three−dimensional deep electrical structure in the Helan Mountains−Yinchuan Basin and its geodynamic implications[J]. Science China Earth Sciences, 66(3): 505−520 (in Chinese with English abstract). doi: 10.1007/s11430-022-1014-y
Zheng J P, Dai H K. 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin mountain respond in the North China Craton[J]. Science China Earth Sciences, 61: 406−424 (in Chinese with English abstract). doi: 10.1007/s11430-017-9166-8
Zuza A V, Cheng X G, Yin A. 2016. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt[J]. Geosphere, 12(2): 501−532. doi: 10.1130/GES01254.1
陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020. doi: 10.12029/gc20190504 董云鹏, 李玮, 张菲菲, 等. 2021. 南北构造带北段贺兰山的形成与演化[J]. 西北大学学报(自然科学版), 51(6): 951−968. 高翔, 郭飚, 陈九辉, 等. 2018. 地幔上涌对鄂尔多斯西缘岩石圈的改造: 来自远震多尺度层析成像的证据[J]. 地球物理学报, 61(7): 2736−2749. doi: 10.6038/cjg2018L0319 胡祥云, 林武乐, 杨文采, 等. 2020. 克拉通岩石圈电性结构研究进展[J]. 中国科学: 地球科学, 50(11): 1533−1554. 黄柳婷, 沈旭章, 郑文俊, 等. 2020. 远震接受函数确定的鄂尔多斯西部及邻区Moho面性质和构造意义[J]. 地球物理学报, 63(3): 871−885. doi: 10.6038/cjg2020N0210 黄方, 何丽娟, 吴庆举. 2015. 鄂尔多斯盆地深部热结构特征及其对华北克拉通破坏的启示[J]. 地球物理学报, 58(10): 3671−3686. doi: 10.6038/cjg20151020 贾承造, 魏国齐, 李本亮, 等. 2003. 中国中西部两期前陆盆地的形成及其控气作用[J]. 石油学报, 24(2): 13−17. doi: 10.3321/j.issn:0253-2697.2003.02.003 李晨晶, 白登海, 薛帅, 等. 2017. 鄂尔多斯地块深部岩石圈电性结构研究[J]. 地球物理学报, 60(5): 1788−1799. doi: 10.6038/cjg20170515 刘保金, 酆少英, 姬计法, 等. 2017. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果[J]. 中国科学: 地球科学, 47(2): 179−190. 罗卫锋, 胡志方, 张家强, 等. 2024. CSAMT和测井联合约束反演在松辽盆地东南隆起区油页岩识别中的应用[J]. 地质通报, 43(5): 693−700. doi: 10.12097/gbc.20210517001 宁夏省地质局. 1974. 中卫地质图 (1: 200 000) [DB]. 中国地质调查局. 宁夏省地质局. 1978. 巴伦别立地质图 (1: 200 000) [DB]. 中国地质调查局. 宁夏省地质局. 1980a. 石嘴山市地质图 (1: 200 000) [DB]. 中国地质调查局. 宁夏省地质局. 1980b. 阿拉善左旗地质图 (1: 200 000) [DB]. 中国地质调查局. 宁夏省地质局. 1980c. 银川市地质图 (1: 200 000) [DB]. 中国地质调查局. 万天丰. 2020. 论六盘山−贺兰山碰撞带[J]. 大地构造与成矿学, 44(5): 845−851. 王未来, 蔡光耀, 来贵娟, 等. 2023. 基于接收函数和面波联合反演的银川盆地下方正断层系统三维壳幔S波速度结构[J]. 中国科学: 地球科学, 53(5): 988−1005. 魏文博, 叶高峰, 金胜, 等. 2008. 华北地区东部岩石圈导电性结构研究——减薄的华北岩石圈特点[J]. 地学前缘, 15(4): 204−216. doi: 10.3321/j.issn:1005-2321.2008.04.024 吴桂桔, 谈洪波, 孙凯, 等. 2020. 贺兰山—银川地堑及邻区重力异常特征及构造意义[J]. 地球物理学报, 63(3): 1002−1013. doi: 10.6038/cjg2020N0233 许林斌, 魏文博, 金胜, 等. 2017. 鄂尔多斯地块北部至阴山造山带深部电性结构特征研究[J]. 地球物理学报, 60(2): 575−584. doi: 10.6038/cjg20170212 杨向阳. 2018. 贺兰构造带构造变形特征研究[D]. 西北大学博士学位论文. 赵红格. 2003. 鄂尔多斯盆地西部构造特征及演化[D]. 西北大学博士学位论文. 赵凌强, 孙翔宇, 詹艳, 等. 2023. 贺兰山−银川盆地三维深部电性结构特征及其地球动力学意义[J]. 中国科学: 地球科学, 53(3): 481−496. 张进, 马宗晋, 任文军. 2000. 鄂尔多斯盆地西缘逆冲带南北差异的形成机制[J]. 大地构造与成矿学, 24(2): 124−133. doi: 10.3969/j.issn.1001-1552.2000.02.004 郑建平, 戴宏坤. 2018. 西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆−山耦合[J]. 中国科学: 地球科学, 48(4): 436−456. -
期刊类型引用(3)
1. 喻光明,毛世东,周振菊,谢亘,黄豪擎. 西南三江甘孜-理塘洋晚古生代构造演化:来自理塘蛇绿混杂岩堆晶辉长岩U-Pb年龄的约束. 地质通报. 2024(01): 61-75 . 本站查看
2. 熊盛青,杨海,范振宇,刘福香. 基于航磁资料的中国蛇绿岩带研究. 地质学报. 2024(03): 725-757 . 百度学术
3. 严松涛,吴青松,代雪健,李虎,辛重阳,朱利东. 四川新龙地区中酸性侵入岩年代学、地球化学及对甘孜-理塘洋演化过程的制约. 地质通报. 2024(Z1): 401-415 . 本站查看
其他类型引用(0)