Paleo-marine redox conditions and development model of high-quality source rocks of the Early Silurian on the West side of Kangdian Oldland: a case study of CYD2 well in Yanyuan area
-
摘要:
在系统的地质调查和沉积学、地球化学研究的基础上, 以康滇古陆西侧盐源盆地南缘CYD2井龙马溪组为研究对象, 探讨早志留世古氧化还原环境、古水文条件、热液影响及有机质富集因素, 总结优质烃源岩发育模式, 为该区优质烃源岩预测提供基础。研究表明: 盐源地区优质烃源岩发育于龙马溪组下部(L1~L3), 经历了由初期(L1)滞留程度较高的硫化环境到晚期(L5)较开阔氧化环境的演化过程; 且在志留纪早期古海洋遭受了强烈的热液活动影响, 表现为轻稀土元素显著富集, Ce略有亏损, Eu显著富集。康滇古陆早期构造演化造成了强烈的热液活动和差异隆升, 控制盐源地区龙马溪初期古海洋氧化还原特征及海盆局限程度, 与海平面持续上升共同控制了盐源地区志留纪龙马溪期古海洋环境及优质烃源岩的形成和分布。
Abstract:Based on the systematic geological survey and sedimentology study of the Longmaxi Formation.in the large area of Yanyuan Basin and the detailed geochemical analysis on the core of CYD2 well drilled in its southern margin, an organic matter enrichment model of the Early Silurian Longmaxi Formation.is proposed.This model gives a good explanation for the mechanism of organic matter accumulation under several influences, and the well understanding of this mechanism will provide a good basis for further high-quality source rock evaluation of shale gas in this area.In this study, the influences including paleo-redox environment, paleo-hydrological conditions, hydrothermal influence, and the factors that affect organic matter enrichment are all discussed.The high-quality source rocks are developed at the bottom(L1~L3)of Longmaxi Formation.in Yanyuan area.It has undergone an evolutionary process from the vulcanization environment with high retention in the early stage(L1)to the open and oxidic environment in the late stage(L5).In the early Silurian, the ancient oceans were strongly influenced by hydrothermal activities evidenced by the obvious LREE enrichment, slight Ce loss and significant Eu enrichment.The early tectonic evolution of the Kangdian Oldland resulted in the intense hydrothermal activities and crustal differential uplifts.It controlled the Paleo-redox condition of seawater and the extend of basin limitation of Yanyuan area during the Early Silurian.The early tectonic evolution of the Kangdian Oldland, together with the continuous rise of sea level, controlled the distribution of ancient marine environment and high-quality source rocks during the Longmaxi period of Silurian in the Yanyuan area.
-
致谢: 野外工作和文章撰写中得中国地质调查局成都地质调查中心张娣、张茜高级工程师的热忱帮助。感谢审稿专家提出建设性的修改意见。
-
图版Ⅰ
a.炭质泥灰岩,L2段井深:1318.6 m;b.硅质炭质泥岩,L3段,井深:1282.9~1288.3 m;c.炭质泥岩中的塔型螺旋笔石,N1笔石带,L4段,井深:1274.5 m;d.炭质硅质泥岩,L3段,井深:1301.6 m单偏光;e.龙马溪组炭质泥岩L3段,井深1299.00 m单偏光;f.龙马溪组炭质泥岩L4段,井深1275.00 m单偏光;g.炭质泥岩中的矿物溶蚀孔隙直径矿物溶蚀孔隙,黄铁矿晶间孔隙,0.050~1.204 μm,L3段,井深1310.00 m;h.炭质泥岩中的矿物溶蚀孔隙直径0.126~2.189 μm,L4段,井深1285.00m:i.炭质泥岩中的矿物溶蚀孔隙直径0.377~9.430 μm,L4段,井深1277.00 m
图版Ⅰ.
图 3 盐源地区CYD2井志留系龙马溪组PAAS标准化稀土元素配分型式(PAAS标准化数据据参考文献[18])
Figure 3. PAAS-normalized REE patterns of the CYD2 well samples in Silurian Longmaxi Formation from Yanyuan area
表 1 盐源地区志留系龙马溪组CYD2井主要元素及比值特征
Table 1 The major and trace element contents ratios of the CYD2 well samples in Silurian Longmaxi Formation in Yanyuan area
样品编号 岩性 分段 TOC/% SiO2/% Al2O3/% TiO2/% CaO/% Eu/Eu* Ce/Ce* UEF MoEF MoEF/UEF Y/Ho Th /U V/Sc Y1 炭质硅质泥岩 L1 4.19 81.11 2.91 0.15 2.21 2.44 0.34 25.36 431.34 17.01 38.37 0.35 126.60 Y2 3.68 80.64 3.64 0.19 2.41 2.68 0.35 20.94 293.94 14.04 37.35 0.41 62.83 Y3 3.31 67.21 2.14 0.10 13.18 1.68 0.37 38.75 354.22 9.14 39.67 0.24 46.30 Y4 3.38 71.63 6.52 0.31 2.68 2.36 0.47 16.55 259.78 15.69 33.58 0.49 31.50 Y5 3.58 81.77 3.55 0.17 2.27 2.28 0.37 21.30 265.72 12.48 33.83 0.43 58.48 Y6 2.76 82.96 3.96 0.19 1.88 4.47 0.13 5.02 168.51 33.57 33.60 0.87 91.11 Y7 炭质泥灰岩 L2 0.58 10.32 1.34 0.06 47.94 4.07 0.19 6.83 74.91 10.97 38.46 0.79 10.93 Y8 0.67 26.47 1.36 0.06 38.32 1.31 0.48 35.24 78.67 2.23 48.80 0.25 10.49 Y9 炭质硅质泥岩 L3 2.14 76.36 6.82 0.33 2.05 2.93 0.22 5.24 85.93 16.40 33.40 1.24 45.99 Y10 2.07 83.20 3.58 0.17 2.99 2.92 0.32 6.51 78.15 12.01 34.00 1.10 36.74 Y11 2.30 82.27 3.57 0.18 3.10 3.33 0.32 9.48 76.25 8.04 34.47 0.82 30.30 Y12 2.22 74.14 6.94 0.32 2.81 2.86 0.25 4.08 55.29 13.56 32.16 0.91 58.56 Y13 2.54 82.31 3.90 0.19 2.54 2.89 0.29 9.57 99.85 10.43 31.11 0.86 44.33 Y14 2.28 79.02 5.24 0.25 2.59 5.89 0.12 4.21 56.64 13.44 29.44 0.52 80.41 Y15 2.47 82.34 4.01 0.21 2.38 3.14 0.36 9.98 113.14 11.34 31.52 0.92 62.01 Y16 2.42 84.38 4.07 0.20 1.00 3.47 0.21 9.21 86.85 9.43 25.36 0.10 98.26 Y17 2.42 77.55 5.37 0.24 2.96 3.18 0.31 4.91 44.71 9.11 29.38 0.92 32.92 Y18 1.92 78.77 6.77 0.35 0.68 2.80 0.50 6.63 82.37 12.43 31.48 1.20 49.20 Y19 1.81 84.37 5.60 0.19 0.63 4.80 0.13 4.41 51.31 11.63 29.05 0.75 49.68 Y20 2.36 78.09 5.74 0.26 2.06 4.09 0.19 4.63 59.61 12.87 29.58 0.89 52.16 Y21 2.19 64.46 13.19 0.68 1.57 3.00 0.56 3.87 46.43 11.99 27.58 1.73 48.90 Y22 2.81 59.50 12.10 0.60 3.86 3.02 0.31 4.31 69.99 16.24 30.19 1.03 56.54 Y23 2.65 71.21 7.24 0.32 4.91 1.82 0.44 2.90 3.79 1.31 34.39 2.49 23.92 Y24 2.14 65.95 6.94 0.33 7.36 1.25 0.65 5.01 5.61 1.12 36.24 1.59 15.47 Y25 炭质泥岩 L4 1.12 51.68 12.09 0.57 8.50 1.72 0.84 1.81 3.97 2.20 31.94 4.44 8.95 Y26 0.91 45.44 12.36 0.60 10.78 1.78 0.75 1.72 1.74 1.02 31.91 5.06 6.77 Y27 0.59 56.76 15.92 0.79 3.48 1.89 0.94 0.93 0.53 0.57 29.73 9.01 6.51 Y28 1.41 47.06 14.04 0.71 8.53 4.19 0.74 0.91 1.13 1.24 31.49 8.48 6.63 Y29 0.98 48.55 14.55 0.71 7.75 1.87 0.75 1.56 1.29 0.83 32.38 5.46 7.88 Y30 钙质炭质泥岩 L5 0.24 52.01 16.10 0.56 4.24 1.55 0.62 0.55 0.54 0.98 29.77 12.19 6.99 Y31 0.03 35.20 10.71 0.51 18.99 1.51 0.55 0.70 1.29 1.84 31.96 11.54 4.58 表 2 盐源地区志留系龙马溪组CYD2井稀土元素地球化学特征
Table 2 The REE contents of the CYD2 well samples in Silurian Longmaxi Formation from Yanyuan area
样品编号 岩性 分段 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y LREE HREE ΣREE LREE/HREE Y1 炭质硅质泥岩 L1 15.2 26.1 3.66 13.9 2.74 1.32 2.44 0.4 2.14 0.43 1.3 0.24 1.21 0.21 16.5 62.92 24.87 87.79 2.53 Y2 15.9 27.6 3.89 15.3 2.96 1.6 2.73 0.46 2.36 0.49 1.42 0.28 1.4 0.22 18.3 67.25 27.66 94.91 2.43 Y3 19.5 30.9 4.02 14.8 2.92 1.03 2.92 0.5 2.89 0.6 1.8 0.34 1.73 0.29 23.8 73.17 34.87 108.04 2.10 Y4 24.2 46.8 6.45 23.9 4.66 2.16 4.03 0.67 3.32 0.67 1.91 0.36 1.82 0.3 22.5 108.17 35.58 143.75 3.04 Y5 17.2 30.3 4.14 15.3 2.98 1.35 2.63 0.44 2.29 0.47 1.29 0.24 1.25 0.2 15.9 71.27 24.71 95.98 2.88 Y6 6.73 6.5 1.68 6.2 1.35 1.2 1.19 0.2 1.18 0.25 0.68 0.14 0.71 0.12 8.4 23.66 12.87 36.53 1.84 Y7 炭质泥灰岩 L2 6.47 8.9 1.27 4.4 0.82 0.66 0.75 0.12 0.63 0.13 0.36 0.07 0.33 0.06 5 22.52 7.45 29.97 3.02 Y8 52 57 5.94 20.8 3.69 1.1 4.5 0.78 4.54 1.08 3.29 0.63 3.21 0.54 52.7 140.53 71.27 211.8 1.97 Y9 炭质硅质泥岩 L3 17.6 17.8 4.18 15.4 3.07 1.78 2.63 0.45 2.37 0.5 1.39 0.28 1.41 0.23 16.7 59.83 25.96 85.79 2.30 Y10 13.5 22.5 3.19 12.5 2.52 1.47 2.28 0.38 2.02 0.4 1.15 0.22 1.11 0.18 13.6 55.68 21.34 77.02 2.61 Y11 14.2 23.3 3.28 12.3 2.47 1.61 2.18 0.35 1.83 0.38 1.09 0.21 1.07 0.18 13.1 57.16 20.39 77.55 2.80 Y12 12.8 17.3 3.19 11.8 2.48 1.4 2.06 0.36 1.86 0.37 1.11 0.22 1.14 0.2 11.9 48.97 19.22 68.19 2.55 Y13 12 19.9 3.06 11.6 2.36 1.34 2.07 0.34 1.83 0.36 1.04 0.2 0.96 0.16 11.2 50.26 18.16 68.42 2.77 Y14 5.43 5.32 1.23 4.69 0.97 1.18 0.83 0.16 0.84 0.18 0.51 0.11 0.48 0.08 5.3 18.82 8.49 27.31 2.22 Y15 16.4 28.4 3.76 13.8 2.92 1.8 2.56 0.42 2.32 0.46 1.32 0.26 1.33 0.22 14.5 67.08 23.39 90.47 2.87 Y16 8.91 12.4 2.38 9.33 1.91 1.31 1.66 0.28 1.43 0.28 0.79 0.15 0.74 0.13 7.1 36.24 12.56 48.8 2.89 Y17 11.6 20.5 2.87 10.5 2.2 1.35 1.85 0.3 1.59 0.32 0.9 0.18 0.91 0.16 9.4 49.02 15.61 64.63 3.14 Y18 25.9 49.2 6.08 21.7 4.16 2.24 3.63 0.56 2.9 0.54 1.52 0.28 1.43 0.22 17 109.28 28.08 137.36 3.89 Y19 7.65 7.6 2.26 8.93 1.89 1.69 1.49 0.23 1.12 0.21 0.61 0.11 0.61 0.1 6.1 30.02 10.58 40.6 2.84 Y20 8.56 10.9 2.1 7.71 1.55 1.26 1.38 0.23 1.21 0.24 0.69 0.14 0.67 0.11 7.1 32.08 11.77 43.85 2.73 Y21 40.4 68.7 9.06 30.8 5.48 3.12 4.94 0.71 3.24 0.66 1.82 0.34 1.65 0.28 18.2 157.56 31.84 189.4 4.95 Y22 20.1 27.3 4.92 18.3 3.54 2.09 3.09 0.5 2.5 0.52 1.45 0.28 1.43 0.24 15.7 76.25 25.71 101.96 2.97 Y23 23.3 41.5 5.62 19.9 3.95 1.44 3.55 0.6 3.39 0.66 1.99 0.38 1.89 0.31 22.7 95.71 35.47 131.18 2.70 Y24 47.5 90 12.5 47.2 9.99 2.53 9.26 1.57 8.29 1.57 4.03 0.67 2.99 0.47 56.9 209.72 85.75 295.47 2.45 Y25 炭质泥岩 L4 50.1 114 11.1 38.2 6.97 2.32 6 0.95 4.69 0.93 2.71 0.53 2.55 0.42 29.7 222.69 48.48 271.17 4.59 Y26 46.1 98.5 10.6 37.4 7.46 2.62 6.73 1.08 5.66 1.1 3.12 0.58 2.93 0.49 35.1 202.68 56.79 259.47 3.57 Y27 65.6 145 14.6 50.8 9.62 3.44 8.41 1.22 5.76 1.1 3.06 0.56 2.86 0.46 32.7 289.06 56.13 345.19 5.15 Y28 47.1 96 10 36 6.7 5.43 6.22 0.92 4.85 0.94 2.8 0.52 2.66 0.44 29.6 201.23 48.95 250.18 4.11 Y29 49.5 100 10.6 36.9 7.02 2.58 6.32 1.01 5.21 1.05 3.13 0.61 3.03 0.49 34 206.6 54.85 261.45 3.77 Y30 钙质炭质泥岩 L5 43.5 77.4 9.58 34.3 6.18 1.85 5.6 0.85 4.39 0.87 2.55 0.47 2.43 0.38 25.9 172.81 43.44 216.25 3.98 Y31 38 65.3 8.63 30.5 6.09 1.83 5.42 0.9 4.73 0.92 2.6 0.48 2.4 0.39 29.4 150.35 47.24 197.59 3.18 注:稀土元素含量单位为10-6 -
郭旭升. 涪陵页岩气田焦石坝区块富集机理与勘探技术[M]. 北京: 科学出版社, 2014. 陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组-龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学, 2017, 42(7): 1169-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201707012.htm 戎嘉余. 上扬子区晚奥陶世海退的生态地层证据与冰川活动影响[J]. 地层学杂志, 1984, 8(1): 19-29. doi: 10.19839/j.cnki.dcxzz.1984.01.003 陈旭, 戎嘉余, 周志毅, 等. 上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J]. 科学通报, 2001, 46(12): 1052-1056. doi: 10.3321/j.issn:0023-074X.2001.12.021 严德天, 王清晨, 陈代钊, 等. 扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J]. 地质学报, 2008, 82(3): 321-327. doi: 10.3321/j.issn:0001-5717.2008.03.005 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483. doi: 10.7623/syxb201512002 郑宇龙, 牟传龙, 王秀平, 等. 四川盆地南缘五峰组-龙马溪组沉积地球化学及有机质富集模式——以叙永地区田林剖面为例[J]. 地球科学与环境学报, 2019, 41(5): 541-560. doi: 10.3969/j.issn.1672-6561.2019.05.004 甘玉青, 王超, 方栋梁, 等. 四川盆地焦石坝地区五峰-龙马溪组页岩元素地球化学特征及对页岩气开发的意义[J]. 石油实验地质, 2018, 40(1): 78-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201801013.htm 张茜, 王剑, 余谦, 等. 康滇古陆西侧龙马溪组黑色页岩地球化学特征及其地质意义[J]. 沉积与特提斯地质, 2017, 37(1): 97-107. doi: 10.3969/j.issn.1009-3850.2017.01.013 王正和, 邓敏, 程锦翔, 等. 康滇古陆西侧断裂及岩浆活动对油气保存条件的影响: 以盐源地区为例[J]. 地球科学, 2018, 43(10): 3616-3624. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201810022.htm Pearce C R, Coe A L, Cohen A S. Seawater redox variations during the deposition of the Kimmeridge ClayFormation, United Kingdom(Upper Jurassic): Evidence from molybdenum isotopes and trace metal ratios[J]. Paleoceanography, 2010, 25(4): PA4213.
钟康惠, 刘肇昌, 施央, 等. 盐源-丽江构造带是新生代陆内造山带[J]. 地质学报, 2004, 78(1): 36-43. doi: 10.3321/j.issn:0001-5717.2004.01.005 胡受权, 郭文平. 云南宁蒗地区菱形构造格局及其联合构造型式[J]. 矿物岩石, 1995, 15(4): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS504.013.htm 唐若龙. 木里-盐源推覆构造特征与金铜、铅锌的成矿关系[J]. 四川地质学报, 1987, 7(2): 5-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB198702001.htm 林宝玉, 苏养正, 朱秀芳, 等. 中国地层典·志留系[M]. 北京: 地质出版社, 1998. 何卫红, 唐婷婷, 乐明亮, 等. 华南南华纪—二叠纪沉积大地构造演化[J]. 地球科学, 2014, 39(8): 929-953. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408002.htm 四川省地质矿产局. 四川省区域地质志[M]. 成都: 地质出版社, 1991: 114-136. Taylor S R, McLennan S M. The continental crust: its composition and evolution: Blackwell[J]. Physics of the Earth and Planetary Interiors, 1985, 42: 196-197.
McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2: 10-21.
Dulski P. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 1994, 350: 194-203.
McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21: 170-182.
张汉文. 秦岭泥盆系的热水沉积岩及其与矿产的关系——概论秦岭泥盆纪的海底热水作用[J]. 中国地质科学院西安地质矿产研究所所刊, 1991: 15-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFK199131001.htm 余瑜, 林良彪, 高健, 等. 川东南中二叠统茅口组硅质岩地球化学特征及形成环境[J]. 吉林大学学报(地球科学版), 2015, (S1): 921. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201506004117.htm Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas type cyclothems[J]. Chemical Geology, 2004, 206: 289-318.
Algeo T J, Tribovillard N. Environmental analysis of paleoceano graphic systems based on molybdenum uranium covariation[J]. Chemical Geology, 2009, 268: 211-225.
Tribovillard N, Algeo T J, Baudin F. Analysis of marine environmental conditions based on molybdenum-uranium covariation-applications to Mesozoic paleoceanography[J]. Chemical Geology, 2012, 324: 46-58.
汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J]. 现代地质, 2015, (1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201501001.htm Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[C]//Modern and Ancient Continental Shelf Anoxia. Geological Society Sepcial Publications, London, 1991, 58: 1-24.
Tribovillard N, Du Chatelet E A, Gay, Aurélien, et al. Geochemistry of cold seepage- impacted sediments: Per-ascensum or per-descensum trace metal enrichment?[J]. Chemical Geology, 2013, 340: 1-12.
Bolhar R, Kamber B S, Moorbath S, et al. Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures[J]. Earth & Planetary Science Letters, 2004, 222(1): 43-60.
Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical Implications of Rare Earth Element Patterns in Hydrothermal Fluids from Mid-Ocean Ridges[J]. Geochimica Et Cosmochimica Acta, 1994, 58(23): 5105-5113.
杨宗玉, 罗平, 刘波, 等. 早寒武世早期热液沉积特征: 以塔里木盆地西北缘玉尔吐斯组底部硅质岩系为例[J]. 地球科学, 2019, 44(11): 3845-3870. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201911022.htm Brookins D G. Aqueous geochemistry of rare-earth elements[C]//Lipin B R, MeKay G A, eds. Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Minerology. Minerological Society of A-mefica. 1989, 21: 221-225.
樊奇, 樊太亮, 李一凡, 等. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式[J]. 地球科学, 2020, 45(1): 1-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202001023.htm Kamber B S, Bolhar R, Webb G E. Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas[J]. Precambrian Research, 2004, 132, 379-399.
McLennan S M, Taylor S R. Th and U in sedimentary rocks crustal evolution and sedimentary recycling[J]. Nature, 1980, 285(5767): 621-624.
McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution tectonic setting and secular trends[J]. Journal Geology, 1991, (1): 1-21.
陈永权, 蒋少涌, 周新源, 等. 塔里木盆地寒武系层状硅质岩与硅化岩的元素、δ30Si、δ18O地球化学研究[J]. 地球化学, 2006, 39(2): 159-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201002012.htm 于炳松, 陈建强, 李兴武, 等. 塔里木盆地肖尔布拉克剖面下寒武统底部硅质岩微量元素和稀土元素地球化学及其沉积背景[J]. 沉积学报, 2004, 22(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200401009.htm 李庆, 胡文瑄, 张军涛, 等. 塔里木盆地西北缘中寒武统硅质岩特征与形成环境[J]. 矿物学报, 2010, 30(3): 293-302. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201003005.htm 骆耀南. 康滇构造带的古板块历史演化[J]. 四川地质学报, 1982, (2): 52-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB198202030.htm 夏威, 于炳松, 孙梦迪. 渝东南YK1井下寒武统牛蹄塘组底部黑色页岩沉积环境及有机质富集机制[J]. 矿物岩石, 2015, 35(2): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201502009.htm Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
夏鹏, 付勇. 杨镇, 等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报, 2020, 94(3): 947-956. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202003019.htm Helz G R, Elvira Bura-Naki, Mikac N, et al. New model for molybdenum behavior in euxinic waters[J]. Chemical Geology, 2011, 284(3/4): 323-332.