U-Pb age and geochemical characteristics of quartz diorite in Early Carboniferous from Langshan area of Inner Mongolia, and its implication for subduction of Paleo-Asian Ocean
-
摘要:
内蒙古狼山山脉西侧分布大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世石英闪长岩体出露于潮格温都尔镇西侧。该岩体岩性为石英闪长岩,LA-ICP-MS锆石U-Pb年龄显示,石英闪长岩的206Pb/238U年龄加权平均值为337.4±6.6 Ma。岩石暗色矿物以角闪石为主,黑云母次之,富铁,富钠,高钠钾比值,为钙碱性系列;富集大离子亲石元素Rb、K、Pb,不同程度的亏损高场强元素Nb、Ta、P、Ti的特点,稀土元素配分型式为轻稀土元素富集,重稀土元素亏损,弱的负Eu异常,总体反映岩浆弧的地球化学特征。构造环境判别图显示样品点落在大陆边缘弧范围,岩石地球化学特征表明狼山地区早石炭世处于大陆边缘弧构造背景,古亚洲洋石炭纪存在向南俯冲。对比北部造山带西乌旗地区的早石炭世石英闪长岩,两者地球化学特征基本相同。因此,早石炭世古亚洲洋发生了双向俯冲,形成了以石英闪长岩为主的岩石类型。
Abstract:The Late Paleozoic magmatites are distributed in the west of Inner Mongolian Langshan Mountain, with the formation concentrated in Early Carboniferous and Late Permian.The quartz diorite body of Early Carboniferous strata are outcropped in the west of Chaogewenduer Town.LA-ICP-MS zircon U-Pb age shows that the 206Pb/238U weighted average age of quartz diorite is 337.4±6.6 Ma.The characteristics of quartz diorite exhibit that the amphibole is the main dark mineral, characterized by enrichment in TFeO(TFeO=4.18%~6.95%) and Na2O (Na2O=3.11%~4.07%), high Na2O/K2O (Na2O/K2O 1.27~2.50), being calc alkaline series, enrichment in LILE (K, Rb, Ba), depletion in Nb, Ta, P and Ti, enrichment in LREE, and depletion in HREE as well as negligible Eu anomalies, which reflects the geochemical characteristics of magmatic arc.Th/Yb-Ta/Yb discriminant diagram shows the samples plot in the area of the continental margin arc.The geochemical characteristics of quartz diorite shows that the tectonic setting of Langshan area belonged to the continental margin arc in Early Carboniferous, the existence of the southward subduction of the paleo-Asian Ocean, and that, compared with the Early Carboniferous quartz diorite in Xiwuqi area of the northern orogenic belt, their geochemical characteristics are basically the same.Therefore, the paleo-Asian Ocean underwent bidirectional subduction in Early Carboniferous and formed the rock type dominated by quartz diorite.
-
Keywords:
- Inner Mongolia /
- Langshan area /
- Early Carboniferous /
- quartz diorite /
- continental margin arc
-
致谢: 写作过程中得到中国地质调查局天津地质调查中心赵凤清研究员、辛后田教授级高级工程师的建议,审稿专家对本文进行了审阅,在此一并表示衷心的感谢。
-
图 5 石英闪长岩微量元素蛛网图(a)和稀土元素配分曲线(b)(标准化数据据参考文献[40])
Figure 5. Primitive mantle-normalized trace element spidergrams (a)and chondrite-normalized REE patterns (b) of quartz biorite
图 6 石英闪长岩La/Nb-La/Ba图解[41]
HIMU—高U/Pb值地幔;MORB—大洋中脊玄武岩;OIB—洋岛玄武岩
Figure 6. La/Nb-La/Ba diagram of quartz biorite
图 8 华北地块北缘地质简图(据参考文献[45]修改)
Figure 8. Geological map of northern margin of North China block
表 1 石英闪长岩锆石U-Th-Pb定年数据
Table 1 LA-ICP-MS zircon U-Th-Pb data for quartz biorite
分析号 Pb U 232Th/238U 207Pb/206Pb比值 1σ 207Pb/235U比值 1σ 206Pb/238U比值 1σ 206Pb/238U年龄/Ma 1σ 含量/10-6 p17.22.2.1 143 2113 0.3843 0.0951 0.0018 0.8119 0.0192 0.0619 0.0007 387 4 p17.22.2.2 81 1307 0.7755 0.0570 0.0007 0.4532 0.0065 0.0577 0.0006 362 4 p17.22.2.3 61 863 0.4421 0.1082 0.0014 0.9201 0.0125 0.0617 0.0007 386 4 p17.22.2.4 97 1088 0.5966 0.2065 0.0046 1.8161 0.0498 0.0638 0.0007 399 5 p17.22.2.5 107 1494 0.4979 0.1304 0.0020 1.0525 0.0214 0.0585 0.0006 367 4 p17.22.2.6 43 730 0.2528 0.0542 0.0007 0.4512 0.0064 0.0604 0.0006 378 4 p17.22.2.7 111 1140 0.7122 0.1756 0.0026 1.6888 0.0259 0.0698 0.0007 435 4 p17.22.2.8 19 348 0.2359 0.0657 0.0013 0.4991 0.0098 0.0551 0.0006 346 4 p17.22.2.9 352 6519 0.1317 0.1152 0.0015 0.7746 0.0113 0.0488 0.0005 307 3 p17.22.2.10 23 436 0.1736 0.0664 0.0012 0.4958 0.0090 0.0541 0.0005 340 3 p17.22.2.11 60 994 0.5383 0.0654 0.0009 0.5067 0.0083 0.0562 0.0006 352 4 p17.22.2.12 40 765 0.1878 0.0558 0.0007 0.4111 0.0060 0.0535 0.0005 336 3 p17.22.2.13 483 3235 0.5315 0.3513 0.0042 3.7886 0.0527 0.0782 0.0008 486 5 p17.22.2.14 42 681 0.2982 0.0855 0.0015 0.6624 0.0111 0.0562 0.0006 353 4 p17.22.2.15 42 782 0.2557 0.0681 0.0009 0.4910 0.0071 0.0523 0.0005 329 3 p17.22.2.16 61 934 0.5025 0.1010 0.0017 0.7602 0.0162 0.0546 0.0006 343 4 p17.22.2.17 41 661 0.4798 0.0943 0.0026 0.6890 0.0181 0.0530 0.0005 333 3 p17.22.2.18 63 1056 0.3903 0.0649 0.0009 0.5160 0.0092 0.0576 0.0006 361 4 p17.22.2.19 190 944 0.5889 0.4358 0.0056 5.3796 0.0960 0.0895 0.0011 553 7 p17.22.2.20 60 740 0.7560 0.1314 0.0019 1.1110 0.0206 0.0613 0.0007 384 4 p17.22.2.21 168 2714 0.0784 0.0940 0.0012 0.7544 0.0113 0.0582 0.0006 365 4 p17.22.2.22 37 568 0.5283 0.0925 0.0014 0.7154 0.0132 0.0561 0.0006 352 4 p17.22.2.23 47 1141 0.8544 0.0731 0.0015 0.3502 0.0071 0.0348 0.0003 220 2 p17.22.2.24 77 1330 0.2758 0.0704 0.0009 0.5421 0.0076 0.0558 0.0005 350 3 表 2 石英闪长岩主量、微量和稀土元素分析结果
Table 2 Result of whole-rock major, trace elements and REE of quartz biorite
样品号 P17-25-1 P17-104-1 P17-116-1 P17-135-1 PM001-36-1 PM001-18-1 P17-22-1 P17-114-1 P17-129-1 P17-143-1 SiO2 54.13 55.76 55.54 55.49 56.49 61.58 61.97 57.98 58.69 61.11 TiO2 1.00 1.57 0.94 0.90 0.90 0.56 0.79 0.78 0.58 1.09 Al2O3 17.37 17.06 18.29 16.84 17.41 15.92 16.92 17.01 17.47 17.72 Fe2O3 1.02 0.88 0.77 0.87 0.04 0.21 0.32 0.61 1.18 0.54 FeO 4.93 6.16 4.54 5.45 5.81 3.99 4.00 4.58 3.41 3.88 MnO 0.11 0.12 0.096 0.11 0.11 0.08 0.069 0.094 0.084 0.079 MgO 6.18 4.41 5.15 6.36 5.13 3.29 3.10 3.77 4.10 2.25 CaO 8.44 6.48 7.50 6.53 7.61 4.67 4.50 6.29 6.32 4.98 Na2O 3.12 3.43 3.30 3.11 3.13 3.50 3.61 3.38 3.44 4.07 K2O 1.52 1.75 1.32 1.36 1.54 2.75 1.98 1.94 1.86 2.01 P2O5 0.13 0.28 0.16 0.18 0.13 0.16 0.15 0.12 0.10 0.26 H2O+ 1.31 1.25 1.46 1.88 0.95 1.28 1.69 1.90 1.70 1.36 CO2 0.09 0.02 0.32 0.14 0.04 1.57 0.31 0.92 0.52 0.10 烧失量 1.51 1.42 1.90 2.18 1.07 2.86 2.13 2.94 2.38 1.59 总和 99.46 99.32 99.51 99.38 99.37 99.57 99.54 99.49 99.61 99.58 TFeO 5.85 6.95 5.23 6.23 5.85 4.18 4.29 5.13 4.47 4.37 Fe2O3 5.46 6.42 4.86 5.77 5.27 3.80 3.92 4.73 4.25 4.03 Cs 3.34 2.24 2.95 2.82 3.77 3.38 2.98 2.82 3.71 2.33 Rb 59.30 70.90 47.40 54.50 43.00 94.00 84.90 70.70 77.30 76.60 Sr 332.00 558.00 629.00 540.00 560.00 479.00 406.00 523.00 475.00 484.00 Ba 291.00 457.00 533.00 510.00 254.00 550.00 392.00 561.00 519.00 547.00 Ga 17.00 17.20 16.70 18.20 18.70 19.90 17.80 17.50 17.20 19.70 Nb 5.51 9.71 6.39 5.44 3.89 5.95 5.86 6.26 5.64 9.18 Ta 0.50 0.76 0.45 0.43 0.36 0.70 0.25 0.59 0.50 0.73 Zr 102.00 80.60 98.30 128.00 51.00 49.10 161.00 92.20 95.40 80.60 Hf 3.18 2.52 3.06 3.70 1.68 1.96 4.33 2.90 2.92 2.55 Th 5.10 3.84 3.34 5.25 3.69 4.21 8.04 6.22 6.03 5.15 V 150.00 126.00 166.00 194.00 168.00 72.70 89.50 107.00 96.80 60.40 Cr 203.00 66.00 105.00 126.00 80.20 87.60 89.60 43.70 57.50 20.90 Co 24.70 23.90 18.40 23.60 23.30 13.30 14.40 16.00 14.90 11.40 Ni 23.00 34.70 11.60 29.80 20.80 31.70 19.70 20.10 15.20 9.99 Li 14.40 20.30 24.30 31.80 24.90 25.20 20.70 28.20 28.00 26.60 Sc 26.20 21.70 23.90 26.80 21.80 13.20 15.10 19.90 18.60 13.10 U 1.52 1.10 1.11 1.39 0.73 1.80 1.61 1.16 1.00 1.28 Pb 9.59 9.24 8.05 8.70 10.70 17.20 11.9 14.2 10.8 12.3 Zn 58.20 54.80 44.00 65.80 62.30 56.70 56.70 43.60 52.30 53.40 Cu 18.80 25.10 16.50 46.40 21.90 19.70 15.70 16.30 12.80 12.60 La 18.00 18.60 16.20 19.30 15.60 14.20 19.00 18.70 19.00 21.70 Ce 49.40 56.80 44.30 49.00 30.80 25.30 40.30 45.40 42.70 50.20 Pr 4.59 6.63 4.37 5.12 3.87 3.22 3.75 4.18 3.98 5.12 Nd 17.70 31.10 18.00 21.50 14.90 12.30 13.00 15.80 15.00 20.90 Sm 4.00 7.26 3.93 4.78 2.97 2.70 2.64 3.22 3.00 4.37 Eu 1.20 1.91 1.39 1.44 1.29 1.06 0.99 1.10 1.19 1.34 Gd 3.92 7.98 3.78 4.52 2.91 2.68 2.63 3.03 2.79 4.01 Tb 0.66 1.20 0.61 0.74 0.49 0.45 0.42 0.49 0.44 0.62 Dy 4.04 6.92 3.67 4.44 2.80 2.72 2.30 2.91 2.60 3.65 Ho 0.82 1.38 0.72 0.90 0.58 0.52 0.46 0.59 0.52 0.71 Er 2.22 3.62 1.96 2.38 1.51 1.42 1.29 1.57 1.43 1.86 Tm 0.32 0.49 0.27 0.34 0.23 0.23 0.19 0.24 0.21 0.25 Yb 2.10 2.87 1.81 2.24 1.52 1.48 1.25 1.58 1.36 1.53 Lu 0.32 0.42 0.27 0.32 0.24 0.24 0.21 0.24 0.20 0.23 Y 19.90 32.60 17.40 21.20 14.00 13.20 11.60 14.50 12.70 17.10 ΣREE 129.19 179.78 118.68 138.22 93.71 81.72 100.03 113.55 107.12 133.59 LREE 94.89 122.30 88.19 101.14 69.43 58.78 79.68 88.40 84.87 103.63 HREE 34.30 57.48 30.49 37.08 24.28 22.94 20.35 25.15 22.25 29.96 LREE/HREE 2.77 2.13 2.89 2.73 2.86 2.56 3.92 3.51 3.81 3.46 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
Windley B F, Alexeiev D, Xiao W J, et al.Tectonics models for accretion of the Central Asian Orogenic Belt[J].J.Geol.Soc., Lond., 2007, 164:31-47. https://www.researchgate.net/publication/27246576_Tectonic_models_for_accretion_of_the_Central_Asian_Orogenic_Belt
Han B F, He G Q, Wang X C, et al.Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J].Earth-Sci.Rev., 2011, 109:74-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a792742ae51038a6367bfa517217091
Xu Z, Han B F, Ren R, et al.Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China:implications for Paleozoic intraoceanic subduction-accretion process[J].Lithos, 2012, 132/133:141-161.
Xu B, Charvet J, Chen Y, et al.Middle Paleozoic convergent orogenic belts in western Inner Mongolia(China):framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J].Gondwana Res., 2013, 23:1342-1364.
Zhang X H, Gao Y L, Wang Z J, et al.Carboniferous appinitic intrusions from the northern North China craton:geochemistry, petrogenesis and tectonic implications[J].J.Geol.Soc., Lond., 2012, 169:337-351. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301002056.htm
Coleman R G.Continental growth of Northwest China[J].Tectonics, 1989, 8(3):621-635. https://www.researchgate.net/publication/252895163_Continental_Growth_of_Northwest_China
Windley B F, Allen M B, Zhang C, et al.Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia[J].Geology, 1990, 18(2):128-131. http://adsabs.harvard.edu/abs/1990Geo....18..128W
肖序常, 格雷厄姆S A.中国西部元古代蓝片岩带——世界上保存最好的前寒武纪蓝片岩[J], 新疆地质, 1990, 8(1):12-21. http://qikan.cqvip.com/Qikan/Article/Detail?id=3001378583 肖序常, 汤耀庆, 冯益民, 等.新疆北部及其邻区大地构造[M].北京:地质出版社, 1992:1-169. Allen M B, Windley B F, Zhang C.Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J].Tectonophysics, 1992, 220(1/4):89-115. https://www.researchgate.net/publication/221995690_Palaeozoic_Collisional_Tectonics_and_Magmatism_of_the_Chinese_Tien_Shan_Central_Asia
Allen M B, Engör A M C, Natalin B A.Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia[J].Journal of the Geological Society(London), 1995, 152(2):32-338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d93ec7e7a85de5d3e1296212feefd909
Sengör A M C, Natalin B A, Burtman V S.Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in the Eurasia[J].Nature, 1993, 364:299-304. https://www.nature.com/articles/364299a0
Gao J, Li M S, Xiao X C, et al.Paleozoic tectonic evolution of the Tianshan orogen, northwestern China[J].Tectonophysics, 1998, 287(1/4):213-231. https://www.sciencedirect.com/science/article/abs/pii/S004019519880070X
Jahn B M, Griffin W L, Windley B F.Continental growth in the Phanerozoic:Evidence from Central Asia[J].Tectonophysics, 2000, 328(1):vii-x. https://www.sciencedirect.com/science/article/abs/pii/S0040195100001748
李锦轶.新疆东部新元古代晚期和古生代构造格局及其演变[J].地质论评, 2004, 50(3):304-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200403015 Xiao W J, Zhang L C, Qin K Z, et al.Paleozoic accretionary and collisional tectonics of the eastern Tianshan(CHINA):Implications for the continental growth of Central Asia[J].American Journal of Science, 2004, 304(4):370-395. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CPFD&filename=DZDQ200412002039
Xiao W J, Han C, Yuan C, et al.Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China:Implications for the tectonic evolution of Central Asia[J].Journal of Asian Earth Sciences, 2008, 32(2/4):102-117. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200901001082.htm
Xiao W J, Windley B F, Huang B C, et al.End -Permian to mid -Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J].International Journal of Earth Sciences, 2009, 98(6):1189-1217.
Wang Z Z, Han B F, Feng L X, et al.Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J].Asian Earth Sci., 2015, 97:337-351. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f4ae3595f23f841c3f99fbf2b41e60b
Zhang S H, Zhao Y, Song B, et al.Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Paleozoic active continental margin[J].J.Geol.Soc.Lond., 2007, 164:451-463.
Zhang S H, ZhaoY, Song B, et al.Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:geochronology, petrogenesis, and tectonic implications[J].Geol.Soc.Am.Bull., 2009a, 121:181-200. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/121/1-2/181/2330/Contrasting-Late-Carboniferous-and-Late-Permian?redirectedFrom=PDF
Zhang S H, Zhao Y, Kroner A, et al.Early Permain plutons from the northern North China Block:constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J].Int.J.Earth Sci., 2009b, 98:1441-1467.
Zhang X H, Wilde S, Zhang H F, et al.Early Permian high-K calc-alkaline volcanic rocks from NW Inner Mongolia, North China:geochemistry, origin and tectonic implications[J].J.Geol.Soc.Lond., 2011, 168:525-543. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201001096.htm
周志广, 张华锋, 刘还林, 等.内蒙中部四子王旗地区基性侵入岩锆石定年及其意义[J]岩石学报, 2009, 25(6):1519-1528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200906023 滕学建, 田健, 刘洋, 等.内蒙古狼山地区早志留世石英闪长岩体的厘定及其地质意义[J].地球科学, 2019, 44(4):1236-1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201904013 赵闯, 苏旭亮, 薛斌, 等.内蒙古西部苦楚乌拉-英巴地区花岗岩锆石U-Pb定年及地球化学特征[J].中国地质, 2020, http://141.rm.cglhub.com/kcms/detail/11.1167.P.20200210.2231.004.html." target="_blank"> http://141.rm.cglhub.com/kcms/detail/11.1167.P.20200210.2231.004.html. 王文龙, 滕学建, 刘洋, 等.内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J].地质力学学报, 2019, 23(3):382-396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201703006 Feng J Y, Xiao W J, Windley B, et al.Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China:implications for Late Permian accretionary tectonics in the southern Altaids[J].Asian Earth Sci., 2013, 78:114-142. https://www.researchgate.net/publication/257940259_Field_geology_geochronology_and_geochemistry_of_mafic-ultramafic_rocks_from_Alxa_China_Implications_for_Late_Permian_accretionary_tectonics_in_the_southern_Altaids?ev=prf_cit
刘建峰, 迟效国, 张兴洲, 等.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义[J].地质学报, 2009, 83(3):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200903006 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗地区闪长-花岗岩类SHRIMP年代学[J].地质学报, 2004, 78(6):789-799. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200406009 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报, 2005, 21(1):143-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501014 刘烨.内蒙古东升庙地区花岗片麻岩和侵入岩的地球化学、年代学特征及构造意义[D].兰州大学硕士学位论文, 2012. Wu T R, He G Q, Zhang C.On Paleozoic tectonics in the Alxa region, Inner Mongolia, China[J].Acta Geol., Sin., 1998, 72:256-263.
Zhang W, Jian P, Kröner A, et al.Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J].Asian Earth Sci., 2013, 72:63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8389815332903d0031c5655e2776f34
李怀坤, 耿建珍, 郝爽, 等.用激光烧灼多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物岩石地球化学通报, 2009, 28(增刊):77. http://www.cnki.com.cn/Article/CJFDTotal-KWXB2009S1311.htm Liu Y S, Gao S, Hu Z C.Continental and oceanic crust recycling-induced melt -peridotite interactions in the Trans -North of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571.
Ludwig K R.Users manual for Isoplot 3.0:A geochronological toolkit for Microsoft Exccel[J].Berkeley:Berkeley Geochronology Center, California, 2003:1-39. https://www.researchgate.net/publication/245539605_Users_manual_for_IsoplotEx_a_geochronological_toolkit_for_Microsoft_Excel
Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews, 1994, 37(3/4):215-224. https://www.researchgate.net/publication/223901164_Naming_materials_in_the_magmaigneous_rock_system
Kuno H.Differentiation of basaltic magmas[C]//Hess H H, Poldervaart A.Basalts: The Poldervaart treatise on rocks of basaltic composition, Interscience, New York, 1968: 623-688.
Sun S S, Mcdonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989, 42(1):313-345. https://www.researchgate.net/publication/231575101_Chemical_and_isotopic_systematics_of_oceanic_basalts_Implications_for_mantle_composition_and_processes
Saunders A D, Storey M, Kent R W, et al.Consequences of plume-lithosphere interactions[C]//Storey B C, Alabaster T, Pankhurst R J.Magmatism and the Cause of Continental Breakup.Geological Society, Special Publications 68, London, 1992: 41-60.
Wilson M.Igneous Petrogenesis[M].London:Unwin Hyman, 1989:1-466.
Defant M J, Drummond M S.Derivation of some modern arc magmas bymelting of young subducted lithosphere[J].Nature, 1990, 347:662-665. https://www.researchgate.net/publication/253404808_Derivation_of_some_modern_arc_magmas_by_melting_of_young_subducted_lithosphere
Michael P G, Eva S S.From continents to island arcs:A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J].Canada Mineralogy, 2000, 38:1065-1073. https://www.researchgate.net/publication/250273368_From_continents_to_island_arcs_A_geochemical_index_of_tectonic_setting_for_Arc-related_and_within-plate_felsic_to_intermediate_volcanic_rocks
Jian P, Liu D, Kröner A, et al.Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J].Lithos, 2008, 101:233-259. https://www.researchgate.net/publication/229097104_Time_scale_of_an_early_to_mid-Paleozoic_orogenic_cycle_of_the_long-lived_Central_Asian_Orogenic_Belt_Inner_Mongolia_of_China_Implications_for_continental_growth
石玉若, 刘翠, 邓晋福, 等.内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化探讨[J].岩石学报, 2014, 30(11):3155-3171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201411005 Xiao W J, Windley B F, Hao J, et al.Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt[J].Tectonics, 2003, 22(6), doi: 10.1029/2002TC001484.
李文国, 李庆富, 姜万德, 等.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996. 天津地质调查中心.区域地质矿产调查报告(查干呼舒庙等六幅 ).2016.