LA-ICP-MS zircon U-Pb age and geological characteristics of the Early Jurassic potassium porphyritic granites in Kargang area, eastern Tibet
-
摘要:
用LA-ICP-MS技术测得卡贡地区似斑状钾长花岗岩锆石的206Pb/238U年龄为178±2 Ma(MSWD=3.7,n=20),属于早侏罗世的产物。岩石地球化学特征表明,岩石具富碱富钾(K2O+Na2O=8.02%~8.76%,K2O/Na2O=1.71~2.11)、低铝(Al2O3=14.08%~14.73%,A/CNK=1.01~1.04),不含透辉石和刚玉分子较低的特征;岩石普遍富集Rb、Th、K、U等大离子亲石元素,明显亏损Ba、Nb、Sr、P、Ti等元素,高场强元素Zr、Nb、Ta含量极低,(Ga/Al)×104值为4.48~5.06,Rb/Sr值为1.84~2.29,均显示出岩浆分异程度较高的特征;岩石的形成与俯冲消减作用有关,其构造环境由挤压环境逐渐向相对伸展环境转变,伴随着地壳深部压力减小,幔源岩浆上涌,并与上覆地壳发生部分熔融作用而形成。
Abstract:In this paper, LA-ICP-MS zircon U-Pb age test was carried out on the potassium porphyritic granites in the Kargang area, which shows that the 206Pb/238U age weighted average value of the rock mass is 178±2 Ma(MSWD=3.7, n=20), suggesting a product of Early Jurassic.The geochemical characteristics of the rocks show that the rocks have alkali-rich potassium(K2O+Na2O=8.02%~8.76%, K2O/Na2O=1.71~2.11), but low aluminum(Al2O3=14.08%~14.73%, A/CNK=1.01~1.04), without pyroxene and with lower corundum molecules.The rocks are generally characterized by rich Rb, Th, K, U and other large ionic pro-stone elements, obvious loss of Ba, Nb, Sr, P, Ti and other elements, and very low values of high field strength elements Zr, Nb, with(Ga/Al)×104 values of 4.48~5.06 and Rb/Sr ratios of 1.84~2.29, which shows the characteristics of high magma differentiation; in addition, the formation of rocks was related to subduction reduction, and its tectonic environment changed gradually from extrusion environment to relative stretching environment, accompanied by the decrease of deep crustal pressure, which led to the upwelling of mantle source magma and the partial melting of the overlying crust.
-
致谢: 实验测试过程中得到武汉上谱分析科技有限责任公司的协助,提供了良好的实验条件,使文稿获得了精确的实验数据;审稿专家在文稿修改过程中提出的宝贵意见对文章质量的提升和谬误的及时修改帮助极大,在此一并表示感谢。
-
图 1 研究区大地构造位置图(a)和区域地质简图(b)(据参考文献[3]修改)
1—上三叠统-侏罗系碎屑岩;2—上三叠统碎屑岩;3—中三叠统竹卡组安山岩、岩屑凝灰岩;4—下石炭统卡贡组变质砂岩、千枚岩;5—下石炭统卡贡岩组变质砂岩、千枚岩夹大理岩、玄武岩岩块;6—下石炭统邦达岩组+错绒沟口岩组变质砂岩、千枚岩;7—下古生界酉西群;8—新元古界吉塘群;9—古-中元古界卡穷岩群;10—晚白垩世二长花岗岩、似斑状二长花岗岩;11—早侏罗世二长花岗岩、似斑状钾长花岗岩;12—晚三叠世花岗闪长岩;13—晚三叠世二长花岗岩;14—中三叠世二长花岗岩;15—中奥陶世二长花岗岩;16—晚寒武世石英闪长岩;17—区域次级断裂;18—区域分区断裂
Figure 1. Tectonic Location(a)and geological sketch map(b) of the study area
图 6 卡贡地区早侏罗世似斑状钾长花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化值据参考文献[9])
Figure 6. Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element patterns(b) of the Early Jurassic potassium porphyritic granites in Kargang area
表 1 卡贡地区早侏罗世似斑状钾长花岗岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb analytical data of the Early Jurassic potassium porphyritic granites in Kargang area
测点号 Pb Th U Th/U 同位素比值 年龄/Ma /10-6 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 8.13 246 216 1.14 0.0504 0.0026 0.1972 0.0101 0.0283 0.0004 217 114 183 8.6 180 2.5 02 10.36 383 274 1.40 0.0511 0.0023 0.1907 0.0082 0.0271 0.0003 256 102 177 7.0 173 2.1 03 12.18 335 333 1.01 0.0557 0.0022 0.2177 0.0086 0.0285 0.0004 443 89 200 7.2 181 2.6 04 10.46 346 280 1.23 0.0522 0.0021 0.1985 0.0076 0.0276 0.0003 295 86 184 6.4 175 2.0 05 13.33 401 361 1.11 0.0510 0.0021 0.1986 0.0074 0.0283 0.0003 243 101 184 6.3 180 1.9 06 7.65 235 205 1.15 0.0546 0.0029 0.2112 0.0108 0.0282 0.0004 394 88 195 9.1 179 2.4 07 9.79 291 279 1.04 0.0541 0.0025 0.2057 0.0102 0.0274 0.0003 376 106 190 8.6 174 2.1 10 20.83 349 664 0.53 0.0504 0.0014 0.1900 0.0054 0.0273 0.0002 213 67 177 4.6 173 1.5 11 8.23 236 222 1.06 0.0520 0.0027 0.2079 0.0113 0.0288 0.0004 283 116 192 9.5 183 2.5 12 19.5 623 500 1.24 0.0539 0.0020 0.2152 0.0080 0.0288 0.0003 369 87 198 6.7 183 1.7 13 11.81 277 344 0.81 0.0544 0.0022 0.2106 0.0084 0.0280 0.0003 387 91 194 7.0 178 2.0 17 15.03 469 405 1.16 0.0532 0.0020 0.2030 0.0069 0.0278 0.0003 345 83 188 5.8 177 1.8 18 6.40 197 166 1.19 0.0536 0.0026 0.2136 0.0105 0.0289 0.0004 354 109 197 8.8 184 2.8 19 9.48 230 275 0.84 0.0519 0.0024 0.1969 0.0090 0.0277 0.0005 283 107 182 7.6 176 2.8 20 7.89 254 206 1.24 0.0485 0.0025 0.1894 0.0093 0.0284 0.0004 124 79 176 8.0 180 2.3 21 37.36 570 1137 0.50 0.0551 0.0015 0.2202 0.0059 0.0289 0.0003 417 61 202 4.9 184 1.9 22 22.33 235 705 0.33 0.0551 0.0016 0.2153 0.0061 0.0282 0.0002 417 67 198 5.1 180 1.4 23 11.43 314 322 0.97 0.0541 0.0019 0.2046 0.0075 0.0273 0.0003 376 77 189 6.3 174 1.8 24 17.14 415 509 0.81 0.0549 0.0018 0.2066 0.0067 0.0272 0.0002 406 76 191 5.7 173 1.6 25 8.61 252 230 1.10 0.0540 0.0025 0.2110 0.0094 0.0285 0.0004 369 108 194 7.9 181 2.5 08 9.26 285 229 1.24 0.0753 0.0032 0.3008 0.0128 0.0289 0.0004 1077 85 267 10.0 184 2.3 09 15.02 528 398 1.33 0.0570 0.0020 0.2163 0.0076 0.0275 0.0003 500 76 199 6.4 175 1.7 14 10.46 212 235 0.90 0.0687 0.0030 0.2619 0.0112 0.0277 0.0004 900 89 236 9.0 176 2.3 15 8.49 304 280 1.08 0.0669 0.0028 0.2561 0.0110 0.0278 0.0004 835 87 232 8.9 177 2.4 16 12.17 321 342 0.94 0.0586 0.0019 0.2237 0.0073 0.0276 0.0003 554 77 205 6.0 176 1.9 表 2 卡贡地区早侏罗世似斑状钾长花岗岩主量、微量和稀土元素分析结果
Table 2 Whole-rock major, trace elements and REE data of the Early Jurassic potassium porphyritic granites in Kargang area
样号 H1 H2 H3 H4 H5 SiO2 69.78 70.80 69.37 70.26 68.89 TiO2 0.39 0.33 0.39 0.41 0.52 Al2O3 14.40 14.25 14.73 14.08 14.61 Fe2O3 2.31 1.92 2.27 2.43 2.90 MnO 0.06 0.05 0.06 0.06 0.08 MgO 1.09 0.91 1.11 1.18 1.40 CaO 1.97 1.77 1.82 1.75 2.04 Na2O 2.77 2.77 2.82 2.71 2.96 K2O 5.66 5.76 5.95 5.63 5.06 P2O5 0.13 0.11 0.13 0.14 0.17 烧失量 0.67 0.63 0.61 0.66 0.92 总量 99.24 99.30 99.25 99.31 99.53 A/NK 1.35 1.32 1.33 1.33 1.41 A/CNK 1.01 1.02 1.02 1.02 1.04 Li 58.8 56.3 61.0 65.9 74.8 Be 8.21 8.12 7.79 8.38 9.85 Sc 6.05 4.38 5.39 5.67 6.47 V 37.0 30.9 35.7 37.8 47.1 Cr 15.0 12.0 13.8 15.1 19.6 Co 4.78 4.01 4.77 5.07 6.14 Ni 8.35 7.14 8.27 8.60 11.5 Cu 2.86 2.79 3.48 2.90 4.13 Zn 38.1 33.2 39.7 41.7 50.5 Ga 19.2 19.1 19.6 19.6 21.8 Rb 362 366 382 373 367 Sr 180 181 176 163 199 Y 21.4 19.2 20.0 21.1 30.4 Zr 222 185 207 234 267 Nb 23.5 20.5 21.7 23.5 31.1 Sn 12.1 10.2 11.3 12.2 15.5 Cs 13.4 12.4 13.9 14.6 14.4 Ba 615 607 551 494 430 La 50.4 52.4 59.2 57.2 69.9 Ce 94.3 94.6 105 102 136 Pr 10.2 10.4 11.7 11.5 16.3 Nd 34.9 34.8 38.6 38.6 50.6 Sm 5.22 5.16 5.42 5.72 7.98 Eu 0.91 0.89 0.89 0.85 0.96 Gd 3.70 3.43 3.64 3.72 5.17 Tb 0.60 0.54 0.56 0.58 0.88 Dy 3.41 3.14 3.32 3.32 5.07 Ho 0.69 0.61 0.65 0.66 1.00 Er 2.03 1.85 1.90 2.02 2.93 Tm 0.30 0.28 0.29 0.30 0.45 Yb 2.10 1.88 1.95 2.04 2.96 Lu 0.29 0.29 0.29 0.31 0.42 Hf 6.84 5.75 6.33 7.20 8.09 Ta 2.10 1.89 1.91 2.02 3.10 Tl 2.32 2.33 2.45 2.41 2.45 Pb 34.1 36.1 35.3 34.2 31.9 Th 45.9 44.6 48.4 53.2 68.9 U 8.93 7.75 9.40 8.99 10.4 ΣREE 209 210 233 229 300 LREE 196 198 220 216 281 HREE 13.1 12.0 12.6 12.9 18.9 LREE/HREE 14.9 16.5 17.5 16.7 14.9 LaN/YbN 17.2 20.0 21.8 20.1 16.9 δEu 0.60 0.61 0.58 0.53 0.43 δCe 0.96 0.94 0.92 0.92 0.95 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
刘本培, 冯庆来, 方念乔.滇西南昌宁-孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学, 1993, 18(5):529-538. https://www.ixueshu.com/document/946e317b94c48768d0577d3e508ea41a318947a18e7f9386.html 樊炳良, 王新然, 白涛, 等.藏东卡贡地区晚寒武世错多勤石英闪长岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2019, 39(4):471-479. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200406&flag=1 樊炳良, 张鑫利, 于涛, 等.藏东吉塘复式花岗岩成因——来自锆石U-Pb年龄和地球化学的证据[J].地质通报, 2019, 38(8):1274-1286. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190803&flag=1 樊炳良, 白涛, 冯德新, 等.藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因[J].地质通报, 2018, 37(7):1226-1235. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180707&flag=1 Liu Y S, Hu Z C, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004
Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
Ludwig K R.User's Manual for isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center, Special Publication No.4a.2003.
吴元保, 郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2007, 8(16):1589-1604. http://d.old.wanfangdata.com.cn/Periodical/kxtb200416002 Sun S S, McDonough W F.Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in the Ocean Basins.Geological Society of London Special Publications, 1989, 42: 313-345.
Chappell B, White A J R.I- and S-type granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh[J].Earth Sciences, 1992, 83:1-26. http://cn.bing.com/academic/profile?id=6f03caf823d3c86871acbbe1254988a2&encoded=0&v=paper_preview&mkt=zh-cn
王永文, 颜丹平, 刘红旭, 等.西天山伊犁地块北缘桦木沟高分异I型花岗岩年代学、地球化学及其构造意义[J].现代地质, 2015, 29(3):529-541. doi: 10.3969/j.issn.1000-8527.2015.03.005 高栋, 吴才来, 郜源红, 等.南阿尔金玉苏普阿勒克塔格花岗岩体锆石U-Pb年代学、地球化学特征及地质意义[J].地球科学, 2019, 44(11):3812-3828. http://d.old.wanfangdata.com.cn/Periodical/dqkx201911019 Condie K C.High field strength element rations in Archean basalts:a window to evolving sources of mantle plumes[J].Lithos, 2005, 79:491-504. doi: 10.1016/j.lithos.2004.09.014
Muller D, Groves D I.Potasic igneus rocks and associated gold-copper mineralization[M].Lect Notes Earth Sci., 1994.
Gorton M P, Schandl E S.From continents to island arcs:a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J].Canadian Mineralogist, 2000, 38(5):1065-1073. doi: 10.2113/gscanmin.38.5.1065
西藏自治区地质矿产勘查开发局地热地质大队.1: 5万吉塘镇幅、益庆乡幅、亚雪村幅、察雅县幅区域地质调查报告.2019. 西藏自治区地质调查院.1: 25万八宿幅区域地质调查报告.2007.