The evaluation and influencing factors of groundwater tri-nitrogen pollution in the Ningdong coal base, exemplified by Meihuajing field
-
摘要:
为研究大规模综合机械化采煤氮污染来源及影响程度,选取宁东煤炭基地侏罗纪煤田鸳鸯湖矿区的梅花井井田为研究对象,通过调查取样分析,对梅花井井田地下水三氮污染分布、物源、水文地质条件进行研究。结果表明:①宁东煤炭基地鸳鸯湖矿区梅花井井田三氮NH4+、NO3-、NO2-含量范围分别为0.06~0.12mg/L、4.67~234mg/L、 < 0.01~2.01mg/L,与国家地下水质量标准Ⅲ类水质限值对比,NO2-达到重度或极严重污染,主要分布在潜水含水层;NO3-污染级别为中度、轻度污染,超标样点占调查样点的75%,垂向上已延伸到承压含水层。水平空间上无论矿权范围还是矿权外,污染样点均有存在。②部分水样中NO3-毫克当量百分数超过25%,对水化学类型产生影响。③煤矿区NO3-、NO2-的污染首先与丰富的物源有关,还受煤矿开采扰动、地形地貌条件、垂向补给径流、水文地球化学条件等因素的影响。研究结果为风积沙大型机械化煤矿开采区地下水氮污染的防治提供了可参考依据。
Abstract:In order to study the large-scale comprehensive mechanized coal mining nitrogen pollution sources and the influence degree, the authors selected the Jurassic coalfield of Yuanyang Lake mining area of Meihuajing well field as the research object. In order to study the three nitrogen pollutants and the effect of large-scale coal mining on groundwater, the authors conducted the sampling investigation of groundwater spatial distribution, physical source and hydrogeological conditions of Ningdong coal base. Some conclusions have been reached:(1) The ranges of three nitrogen pollutants NH4+ and NO3- and NO2- are 0.06~0.12mg/L, 4.67~234mg/L, and < 0.01~2.01mg/L respectively in Meihuajing well field base in Yuanyang Lake mining coal area in the east of Ningxia; compared with the national underground water quality, NO2- reaches the level of severe or very severe pollution, and is mainly distributed in unconfined aquifer; the level of NO3- pollution is moderate and mild, and the excessive standard sample points reach 75% in all sample points, and they extend to the confined aquifer. In space, the pollution sample points are present, regardless of the range of mineral rights and out of mineral rights. (2) The NO3- mg equivalent percentage of some water samples is more than 25%, which affects the chemical type of water. (3)The pollution of NO3- and NO2- in coal mine area is related first to abundant material source and second to the influence of coal mining disturbance and hydrogeochemical conditions. The results of the study provide a reference for the prevention and control of groundwater nitrogen pollution in the mining area of large mechanized coal mine.
-
Keywords:
- Ningdong coal base /
- groundwater /
- nitrogen /
- pollution /
- influencing factors
-
致谢: 感谢中国地质调查局西安地质调查中心张戈教授对论文的指导,项目组同志在野外进行样品采集、室内筛样中给予帮助,西北地质调查测试中心对样品进行测试分析,在此一并表示感谢。
-
表 1 地下水测试数据
Table 1 The list of groundwater test data
样号 地貌类型 水温/℃ pH 井水埋深/m 含水层类型 总矿化度mg/L NH4+mg/L NO3–mg/L NO2–mg/L 水化学类型 J1 风积沙滩 16 7.73 65 承压水 491.3 0.06 15.7 < 0.01 HCO3-SO4-Na-Mg-Ca J2 风积沙滩 15 8.53 70 承压水 569.32 0.07 20.2 < 0.01 HCO3-SO4-Na-Ca-Mg J3 风积沙滩 14 7.96 100 承压水 630.02 0.06 6.71 < 0.01 HCO3-Mg-Na-Ca J4 风积沙滩 18 7.71 0 泉水 826.62 0.08 80.8 0.74 HCO3-SO4-Na-Mg-Ca J5 风积沙滩 17 7.89 5 潜水 1368.28 0.12 200 < 0.01 SO4-HCO3-Cl-Na-Mg J6 风积沙滩 17 7.95 2 潜水 1038.91 0.11 234 0.92 HCO3-NO3-Na-Mg J7 风积沙滩 16 8.01 4 潜水 1538.07 0.11 67.1 0.49 HCO3-Cl-SO4-Na-Mg J8 风积沙滩 12 7.94 4.3 潜水 1668.22 0.1 171 2.01 Na-HCO3 J9 冲积平原 7.13 1 潜水 185.2 0.06 7.97 < 0.01 HCO3-SO4-Ca-Mg J10 冲积平原 17 8.51 潜水 1622.24 0.08 43.2 0.84 Cl-SO4-HCO3-Na-Mg J11 冲洪积平原 16 9.63 2 潜水 1549.54 0.1 6.3 0.69 Cl-SO4-Na-Mg J12 冲洪积平原 8.19 3.5 潜水 3278.22 0.1 79.6 < 0.01 Cl-SO4-Na-Mg 表 2 煤矸石、表土中N元素含量
Table 2 The content of nitrogen in gangue and soil
物源类型 样品编号 N pH 附近布设井孔 GS1 301 8.7 GS2 1556 7.58 研究区内 GS3 1406 8.02 GS4 257 6.78 GS5 519 8.31 GS6 424 8.70 GS7 899 8.15 GS8 859 8.23 GS9 1523 8.12 煤矸石 GS10 173 9.22 GS11 2382 8.15 研究区外 GS12 1668 7.78 GS13 703 8.39 GS14 2331 7.89 GS15 3123 7.52 GS16 2131 7.13 GS17 1595 7.14 GS18 770 10.97 GS19 418 8.36 煤矸石平均值 1213 8.17 土壤 T1 472 9.21 J3 T2 290 9.34 J5 T3 440 9.26 J2 T4 386 9.41 J1 T5 170 8.97 J7 T6 320 8.95 J11 土壤平均值 346 9.19 中国土壤普查技术含量分级[22] 6级 < 50 5级 50~750 4级 750~1000 3级 1000~1500 2级 1500~2000 1级 >2000 表 3 粉煤灰淋滤液、地表水、雨水中N元素含量
Table 3 The content of nitrogen in fly ash filter, surface water and rain water
水样类型 样品编号 NH4+ NO3– NO2– 粉煤灰场旁水样 F1 0.06 10.8 < 0.01 F2 0.07 8.09 < 0.01 F3 0.07 11.4 < 0.01 河水 H1 < 0.02 1.36 < 0.01 H2 < 0.02 4.09 < 0.01 湖水 H3 0.07 1.9 < 0.01 雨水 Y1 0.04 2 0 国家地表水环境质量标准(GB38382002)Ⅲ类水限值 1 10 -
吴雨华.欧美国家地下水硝酸盐污染防治研究进展[J].中国农学通报, 2011, 27(8):284-290. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201108057 Chen J Y, Wang Y, Zhan G B, et al. over view on the Studies of Nitrate Pollution in Gorund water[J]. Progress Ingeograhy, 2006, 25(1):35-42.
刘锦阳, 康卫东, 黎澄生, 等.神府矿区地下水三氮分布研究[J].环境工程, 2014, 32:282-286. doi: 10.3969/j.issn.1674-991X.2014.04.046 Zhao L, Ting R, Wang N B. Groundwater impact of open cut coal mine and an assessment methodology:A case study in NSW[J]. International Journal of Mining Science and Technology, 2017, 27:61-866. http://d.wanfangdata.com.cn/Periodical/zgkydxxb-e201705021
犹俊, 杨秀丽, 罗维, 等.贵州清水河流域地下水质量现状与保护对策[J].环保科技, 2017, 23(3):18-27. doi: 10.3969/j.issn.1674-0254.2017.03.004 范廷玉, 谷得明, 严家平.采煤沉陷积水区地表水与浅层地下水的氮、磷动态及相关性[J].环境化学, 2015, 34(6):1158-1167. http://d.old.wanfangdata.com.cn/Periodical/hjhx201506018 李琦.陕北风沙滩地区地下水脆弱性评价及"三氮"对地下水污染的数值模拟[D].长安大学硕士学位论文, 2009: 18-25. http://cdmd.cnki.com.cn/Article/CDMD-11941-2009210293.htm 邹涛, 张勇, 贺根良, 等.神府煤热解中试过程中硫、氮迁移分布探讨[J].煤化工, 2015, 43(6):22-25. http://d.old.wanfangdata.com.cn/Periodical/mhg201506006 Gomo M, Vermeulen D. Hydrogeochemical characteristics of a flooded underground coal mine groundwater system[J]. Journal of African Earth Sciences, 2014, (92):68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab4c42ed926989502a6f515d94087806
Meng Q J, Feng Q Y, Wu Qi Q, et al. Distribution characteristics of nitrogen and phosphorus in mining induced subsidence wetland in Panbei coal mine, China[J]. Procedia Earth and Planetary Science, 2009:1237-1241. doi: 10.1016-j.proeps.2009.09.190/
周强.中国煤中硫氮的赋存状[J].煤质技术, 2008, 23(1):73-77. http://d.old.wanfangdata.com.cn/Periodical/jjmjs200801020 李德有, 李向峰.煤矸石井下填充后微生物作用对地下水的影响[J].河南化工, 2010, 3:41-44. http://d.old.wanfangdata.com.cn/Periodical/hnhg201005013 吴代赦, 郑宝山, 唐修义, 等.中国煤中氮的含量及其分布[J].地球与环境, 2006, 34(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx200601001 赵福玲, 邓寅生.煤矸石矿井填充过程中微生物作用后发酵液对地下水的影响[J].环境科学与管理, 2007, 32(9):44-47. doi: 10.3969/j.issn.1673-1212.2007.09.013 黄金荣.梅花井煤矿水文地质分析及研究[J].黑龙江科技信息, 2012, 11:61. http://d.old.wanfangdata.com.cn/Periodical/hljkjxx201211096 李志亮.矿井水害防治技术在梅花井煤矿的应用[J].中小企业管理与科技, 2013, 9:181-182. http://d.old.wanfangdata.com.cn/Periodical/xzqykj201309123 冯洁.宁东煤炭资源开采对地下水的影响研究[D].西安科技大学硕士学位论文, 2012: 1-96. http://cdmd.cnki.com.cn/Article/CDMD-10704-1012044542.htm 徐耀先, 杨健.煤矿开采区地下水环境影响评价方法与治理研究[J].环境科学导刊, 2009, 28(5):71-74. doi: 10.3969/j.issn.1673-9655.2009.05.024 Soares M I M. Biological denitrification of Groundwater[J]. Water, Air, and Soil Pollution, 2000, 123:183-193. doi: 10.1023/A:1005242600186
国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002:116, 156. 刘钦甫, 郑丽华, 张金山, 等.煤矸石中氮溶出的动态淋滤实验[J].煤炭学报, 2010, 35(6):1009-1015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000443324 全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社, 1992:87. 瓮绍苏.地表水回补对地下水水质的影响[J].生态与环境工程, 2017, 8:111-112. http://d.old.wanfangdata.com.cn/Periodical/zgxjsxcpjx201715070 王立刚, 李虎, 王迎春, 等.小清河流域畜禽养殖结构变化及其粪便氮素污染负荷特征分析[J].农业环境科学学报2011, 30(5):986-992. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201105027 冯晓月, 王克勤, 华锦欣, 等.松华坝水源区牧羊河氮、磷分布特征研究[J].绿色科技, 2017, (10). 32-35. http://d.old.wanfangdata.com.cn/Periodical/lsdsj201710013 刘清, 孟庆俊, 茅佳俊, 等.环境因子对采煤塌陷地氮磷释放的影响[J].江苏农业科学, 2014, 42(7):356-359. doi: 10.3969/j.issn.1002-1302.2014.07.123 Townsend M A, Young D P. Assessment of nitratenitrogen distribution in Kansas ground water[J]. Natural Resources Research, 2000, 9(2):126-134. doi: 10.1023/A%3A1010143426576
李瑞, 肖琼.里湖地下河N、S来源及水岩作用过程[J].地质学报, 2015, 89:274-277. http://d.old.wanfangdata.com.cn/Conference/8771702 冯蕊.煤矸石综合利用发展方向研究[J].环境与可持续发展, 2013, 5:122-125. doi: 10.3969/j.issn.1673-288X.2013.05.036 沈照理.水文地球化学基础[M].北京:地质出版社, 1993:137-139. 朱雅宁.氨氮在弱透水层中的渗透迁移规律研究[D].吉林大学硕士学位论文, 2011: 36. http://cdmd.cnki.com.cn/Article/CDMD-10183-1011098628.htm Wendland F, Bach M, Kunkel R. The influence of nitrate reduction strategies on the temporal development of the nitrate pollution of soil and groundwater throughout Germany-a regionally differentiated case study[J]. Nutrient Cycling in Agroecosystems, 1998, 50:167-179. doi: 10.1023/A:1009736227245
Cepuder P, Shukla K M. Groundwater nitrate in Austria:A case study in Tullnerfeld[J]. Nutrient Cycling in Agroecosystems, 2002, 64:301-315. doi: 10.1023/A:1021438310211
Kraynov S R, Solomin G A, Zakutin V P, 等.地下水中氮化物转换的氧化还原条件[J].世界地质, 1994, 12(4):119-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004588058
Sitaula B K, Sitaula J B, Aakra A, et al. Nitrification and methane oxidation in forest soil:Acid deposition, nitrogen input and plant effects[J]. Water, Air and Soil Pollution, 2001, 130(1/4):1061-1066. doi: 10.1023/A:1013978212795
王晓娟, 张荣社.人工湿地微生物硝化和反硝化强度对比研究[J].环境科学学报, 2006, 26(2):225-229. doi: 10.3321/j.issn:0253-2468.2006.02.010 金相灿, 刘树坤, 章宗涉, 等.中国湖泊环境(第一册)[M].北京:海洋出版社, 1995:267-271. 宁夏回族自治区国土调查监测院.鸳鸯湖矿区梅花井煤矿矿山地质环境保护与治理恢复方案. 2009: 25. 中国环境监测总站.水质采样样品的保存和管理技术规定(HJ493—2009). 2009.