Zircon U-Pb ages and geochemical characteristics of volcanic rocks in Baiyin-gaolao Formation of Suolun area within central Da Hinggan Mountains and their tectonic implications
-
摘要:
白音高老组火山岩位于大兴安岭中段科右前旗索伦地区,主要岩性为流纹岩和流纹质晶屑凝灰岩。LA-ICP-MS锆石U-Pb同位素分析表明,3组样品的锆石U-Pb年龄分别为127±2Ma、133±2Ma和123±1Ma,即白音高老组火山岩形成于133~123Ma,为早白垩世岩浆活动的产物。岩石学和岩石地球化学特征显示,白音高老组火山岩类似于高分异的Ⅰ型花岗岩,有斜长石和少量角闪石部分熔融残留。锆石的176Hf/177Hf值介于0.282854~0.283026之间,εHf(t)为较高的正值,变化于+5.5~+11.5之间,Hf二阶段模式年龄(TDM2)为828~439Ma,表明兴安地块地壳的主体增生年代为新元古代—显生宙。通过对比东北地区(以邻区为主)同时代岩浆-构造活动,研究区内白音高老组火山岩形成于伸展构造环境,这种伸展构造环境的形成可能与古太平洋板块俯冲于欧亚大陆之下的弧后伸展环境有关。
Abstract:The volcanic rocks in Baiyingaolao Formation are located in Suolun area of Horqin Right Wing Front Banner within central Da Hinggan Mountains.Lithologically, the Baiyingaolao Formation is composed mainly of rhyolites and rhyolitic tuffs.Three groups of zircon samples yielded U-Pb ages of 127±2Ma, 133±2Ma and 123±1Ma respectively.The results of LA-ICP-MS zircon U-Pb dating indicate that the volcanic rocks in the Baiyingaolao Formation of the study area were formed during the Early Cretaceous period with ag-es of 133~123Ma.Petrological and geochemical characteristics of these volcanic rocks suggest that they are all highly fractionated rocks similar to I-type granite rocks, and their parental magmas were likely derived from the partial melting of lower crustal materials with pla-gioclase and a little hornblende as the residual phases.In addition, the volcanic rocks sampled in this paper, tectonically located in the Xing'an terrain, have high initial 176Hf/177Hf ratios (0.282854~0.283026) and positive εHf(t) values (+5.5~+11.5).These data, combined with young Hf two-stage model ages of 828~439Ma, suggest that the crustal growth of the Xing'an terrain occurred during Neopro-terozoic and Phanerozoic periods.The above results, combined with previous studies of the contemporaneous magma-tectonic activi-ties in Northeast China, imply that the generation of the Early Cretaceous volcanic rocks in the central Da Hinggan Mountains was relat-ed to the extensional environment caused by the subduction of the Paleo-Pacific plate beneath the Eurasian continent.
-
致谢: 成文过程中得到吉林大学杨德明和马瑞教授的帮助,修改过程中得到吉林大学葛文春教授和吉林农业大学隋振民教授的指导,吉林大学杨浩、董玉、王智慧博士和杜岳丹硕士提出宝贵的修改意见,在此一并致以衷心的感谢。
-
表 1 白音高老组火山岩LA-ICP-MS锆石U-Th-Pb分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb data for volcanic rocks of Baiyingaolao Formation
样品编号 Pb Th U Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U /10-6 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ P23-26-2 样品岩性为流纹岩 02 4.48 101 181 0.56 0.0483 0.0030 0.132 0.0080 0.0197 0.00058 126 7 126 4 03 5.94 108 253 0.43 0.0483 0.0032 0.132 0.0084 0.0198 0.00061 126 8 127 4 04 3.79 97.6 155 0.63 0.0514 0.0053 0.136 0.014 0.0192 0.00075 130 12 123 5 05 4.31 117 166 0.71 0.0477 0.0032 0.132 0.0086 0.0202 0.00061 126 8 129 4 06 4.48 85.7 178 0.48 0.0457 0.0026 0.130 0.0073 0.0207 0.00059 125 7 132 4 07 12.6 547 436 1.26 0.0470 0.0016 0.130 0.0046 0.0201 0.00051 124 4 128 3 08 11.8 290 463 0.63 0.0465 0.0017 0.131 0.0049 0.0204 0.00052 125 4 130 3 09 21.2 525 616 0.85 0.0556 0.0071 0.152 0.019 0.0198 0.00060 143 16 126 4 10 8.35 237 310 0.76 0.0462 0.0026 0.131 0.0072 0.0206 0.00059 125 6 131 4 11 6.53 144 198 0.73 0.0552 0.0059 0.165 0.017 0.0217 0.00063 155 15 138 4 12 9.31 404 304 1.33 0.0462 0.0025 0.132 0.0070 0.0207 0.00058 126 6 132 4 13 6.5 171 262 0.65 0.0483 0.0032 0.131 0.0086 0.0198 0.00061 125 8 126 4 14 5.87 166 224 0.74 0.0478 0.0035 0.133 0.0095 0.0203 0.00064 127 8 129 4 15 9.98 459 356 1.29 0.0538 0.0027 0.141 0.0070 0.0191 0.00053 134 6 122 3 16 9.86 360 366 0.98 0.0503 0.0022 0.135 0.0061 0.0195 0.00052 128 5 124 3 17 6.19 119 200 0.59 0.0477 0.0049 0.146 0.014 0.0223 0.00067 139 13 142 4 18 4.86 133 186 0.72 0.0500 0.0031 0.138 0.0084 0.0200 0.00059 131 7 127 4 19 11.1 526 378 1.39 0.0502 0.0018 0.136 0.0050 0.0196 0.00050 129 4 125 3 20 12.1 493 428 1.15 0.0500 0.0019 0.138 0.0053 0.0200 0.00052 131 5 128 3 21 13.9 583 466 1.25 0.0476 0.0022 0.132 0.0060 0.0201 0.00054 126 5 128 3 22 10.7 275 440 0.63 0.0529 0.0025 0.139 0.0067 0.0191 0.00053 132 6 122 3 23 18.4 497 718 0.69 0.0472 0.0016 0.129 0.0046 0.0199 0.00050 123 4 127 3 24 5.32 216 194 1.11 0.0487 0.0025 0.131 0.0067 0.0195 0.00053 125 6 124 3 25 11.2 653 370 1.76 0.0548 0.0020 0.140 0.0053 0.0185 0.00048 133 5 118 3 P18-3-1 样品岩性为流纹质凝灰岩 01 2.70 48.7 108 0.45 0.0477 0.0036 0.142 0.011 0.0217 0.00068 135 10 138 4 02 4.73 105 184 0.57 0.0490 0.0023 0.146 0.0069 0.0216 0.00059 138 6 138 4 03 2.76 46.8 113 0.42 0.0481 0.0038 0.143 0.011 0.0216 0.00071 136 10 138 4 04 2.72 51.1 114 0.45 0.0498 0.0032 0.140 0.0088 0.0205 0.00061 133 8 131 4 05 14.8 383 591 0.65 0.0510 0.0015 0.143 0.0046 0.0203 0.00052 135 4 130 3 06 4.43 51.1 144 0.36 0.0512 0.0030 0.188 0.011 0.0266 0.00078 175 9 169 5 07 6.53 154 262 0.59 0.0485 0.0026 0.138 0.0074 0.0207 0.00059 132 7 132 4 08 6.55 131 261 0.5 0.0503 0.0020 0.146 0.0059 0.0210 0.00056 138 5 134 4 09 5.45 101 213 0.48 0.0507 0.0023 0.150 0.0070 0.0215 0.00059 142 6 137 4 10 4.23 119 131 0.9 0.0530 0.0071 0.163 0.021 0.0223 0.00073 153 18 142 5 11 5.85 134 227 0.59 0.0518 0.0022 0.150 0.0066 0.0209 0.00056 141 6 134 4 12 6.86 152 285 0.53 0.0510 0.0028 0.140 0.0077 0.0199 0.00057 133 7 127 4 13 6.86 213 237 0.9 0.0527 0.0037 0.153 0.011 0.0211 0.00067 145 9 135 4 14 1.08 31.2 41.6 0.75 0.0550 0.010 0.155 0.029 0.0205 0.0011 146 25 130 7 15 5.42 106 224 0.47 0.0547 0.0025 0.151 0.0070 0.0201 0.00054 143 6 128 3 16 4.41 111 177 0.63 0.0548 0.0032 0.149 0.0086 0.0198 0.00058 141 8 126 4 17 4.92 90.9 188 0.48 0.0488 0.0026 0.145 0.0077 0.0216 0.00059 137 7 138 4 18 9.94 460 301 1.53 0.0512 0.0020 0.149 0.0059 0.0211 0.00054 141 5 135 3 19 3.35 55.2 129 0.43 0.0485 0.0037 0.146 0.011 0.0219 0.00067 139 10 140 4 20 4.63 96.6 181 0.53 0.0522 0.0025 0.148 0.0072 0.0206 0.00055 140 6 131 3 21 4.49 146 161 0.91 0.0521 0.0027 0.148 0.0077 0.0206 0.00056 140 7 132 4 22 6.7 289 246 1.17 0.0568 0.0036 0.145 0.0091 0.0185 0.00056 137 8 118 4 23 5.62 135 217 0.62 0.0501 0.0030 0.141 0.0083 0.0204 0.00057 134 7 130 4 24 1.95 37.9 74.8 0.51 0.0542 0.0043 0.154 0.012 0.0207 0.00064 146 11 132 4 25 5.89 193 231 0.84 0.0536 0.0038 0.142 0.0098 0.0192 0.00059 134 9 122 4 AB7112 样品岩性为英安质岩屑晶屑角砾凝灰岩 01 5.48 76.6 221 0.35 0.0493 0.0016 0.129 0.0038 0.0189 0.00031 123 3 121 2 02 7.05 205 257 0.8 0.0485 0.0012 0.131 0.0027 0.0196 0.00030 125 2 125 2 03 7.82 52.8 242 0.22 0.0498 0.0024 0.128 0.0058 0.0186 0.00037 122 5 119 2 04 4.96 70.8 195 0.36 0.0517 0.0016 0.134 0.0036 0.0189 0.00030 128 3 120 2 05 6.61 112 276 0.41 0.0492 0.0012 0.125 0.0026 0.0184 0.00028 119 2 118 2 06 7.52 82.3 306 0.27 0.0488 0.0012 0.130 0.0026 0.0194 0.00029 124 2 124 2 07 5.81 95.3 238 0.4 0.0483 0.0012 0.126 0.0027 0.0189 0.00029 120 2 121 2 08 4.93 85.8 192 0.45 0.0610 0.0024 0.163 0.0058 0.0194 0.00031 153 5 124 2 09 8.47 91.7 347 0.26 0.0474 0.0011 0.127 0.0025 0.0195 0.00030 122 2 124 2 10 6.51 123 255 0.48 0.0484 0.0011 0.126 0.0023 0.0189 0.00028 121 2 121 2 11 4.86 81.4 192 0.42 0.0471 0.0012 0.126 0.0028 0.0194 0.00030 121 2 124 2 12 6.34 81.5 246 0.33 0.0502 0.0011 0.132 0.0025 0.0191 0.00029 126 2 122 2 13 6.79 105 277 0.38 0.0521 0.0012 0.139 0.0025 0.0194 0.00029 132 2 124 2 14 6.21 109 248 0.44 0.0481 0.0012 0.128 0.0028 0.0193 0.00030 122 3 123 2 15 6.59 85.4 277 0.31 0.0498 0.0012 0.132 0.0027 0.0193 0.00030 126 2 123 2 16 4.25 66 170 0.39 0.0479 0.0024 0.120 0.0056 0.0181 0.00031 115 5 116 2 17 6.57 62.5 270 0.23 0.0477 0.0012 0.130 0.0027 0.0198 0.00031 124 2 126 2 18 4.94 89.1 195 0.46 0.0489 0.0013 0.133 0.0030 0.0198 0.00031 127 3 126 2 19 4.94 101 175 0.58 0.0467 0.0011 0.131 0.0026 0.0204 0.00031 125 2 130 2 20 7.67 208 273 0.76 0.0498 0.0011 0.135 0.0025 0.0197 0.00030 129 2 126 2 21 7.19 97 278 0.35 0.0496 0.0011 0.135 0.0024 0.0197 0.00030 128 2 126 2 22 8.4 224 315 0.71 0.0498 0.0012 0.133 0.0029 0.0194 0.00031 127 3 124 2 表 2 白音高老组火山岩主量、微量和稀土元素分析结果
Table 2 Major, trace and REEs data for volcanic rocks of Baiyingaolao Formation
样品号 P23-26-1 P23-26-2 P24-4-2 P24-5-1 P18-3-1 P15-17-1 P2-1-1 PB3073 AB9145-3 PB9012 PB4061 岩石名称 流纹岩 流纹岩 流纹岩 流纹岩 流纹质凝灰岩 流纹岩 流纹质熔结凝灰岩 流纹岩 流纹质晶屑熔岩 流纹质晶屑凝灰岩 流纹岩 SiO2 77.15 79.94 75.96 75.05 74.72 69.63 72.88 75.28 76.19 76.60 74.84 TiO2 0.08 0.05 0.12 0.15 0.20 0.44 0.23 0.14 0.14 0.14 0.1 Al2O3 11.83 10.49 13.00 13.49 13.06 15.26 13.77 13.61 13.18 12.49 13.96 Fe2O3 0.56 1.01 1.06 1.36 1.26 1.60 2.65 1.15 1.07 1.06 1.14 FeO 0.08 0.13 0.29 0.17 0.55 1.15 0.75 0.69 0.08 0.17 0.55 MnO 0.03 0.07 0.03 0.02 0.05 0.08 0.05 0.04 0.05 0.03 0.01 MgO 0.10 0.17 0.40 0.23 0.31 0.36 0.20 0.19 0.16 0.08 0.17 CaO 0.11 0.17 0.31 0.36 1.77 0.69 0.33 0.17 0.19 0.22 0.15 Na2O 1.03 1.60 3.38 2.93 3.90 4.78 4.59 3.66 3.25 2.82 3.64 K2O 8.29 4.82 3.93 4.60 2.93 4.57 4.61 4.36 4.44 5.42 4.67 P2O5 0.02 0.02 0.04 0.06 0.08 0.09 0.05 0.04 0.03 0.02 0.03 烧失量 0.60 1.32 1.35 1.42 1.07 1.20 0.63 1.32 1.03 0.88 1.27 总量 99.89 99.76 99.75 99.77 99.88 99.79 100.65 100.67 99.77 99.87 100.49 A/CNK 1.09 1.28 1.25 1.29 1.02 1.08 1.05 1.23 1.25 1.14 1.23 A/NK 1.11 1.33 1.32 1.38 1.36 1.19 1.10 1.27 1.30 1.19 1.26 Ba 548 1480 637 705 494 749 961 783 767 236 971 Rb 515 151 112 119 65.6 99.5 95.7 102 149 180 118 Sr 125 115 120 123 291 195 488 117 116 155 107 Y 15 25.6 15.1 15.7 12.9 34.7 26.1 15.2 14.8 17.3 15 Zr 38.5 96 127 120 86.6 272 329 147 122 162 155 Nb 5.62 9.39 7.48 6.66 6.88 13.3 8.85 7.00 8.34 21.8 7.09 Th 9.73 11.1 10 9.93 7.10 6.05 6.95 11.2 6.90 11.1 11.7 Pb 63 24.9 22.4 19.7 18.9 21.1 13.1 14.4 20.9 20.7 17.7 Ga 10.9 9.08 14 12.8 15.8 18.1 20.2 13.5 15.1 15.4 15.6 Zn 83.4 37.7 57.9 28.5 33.7 68.2 101 91.8 32.4 40.6 13.4 Cu 1.76 2.31 2.21 2.02 3.13 3.13 10.7 2.21 3.58 9.55 2.69 Ni 0.56 2.86 2.23 0.99 2.54 0.86 2.88 1.79 0.57 0.48 1.06 V 1.21 0.46 7.04 5.38 25.8 3.98 85.5 5.11 13 14.5 3.75 Cr 3.51 3.62 1.93 2.55 5.29 2.93 2.96 2.10 5.58 7.58 1.95 Hf 1.57 3.46 4.00 3.65 3.07 6.90 7.97 4.27 4.14 6.17 4.96 Cs 8.20 4.37 3.93 4.50 2.80 4.16 11 3.24 6.27 4.68 2.16 Sc 2.03 2.21 2.22 2.12 3.70 5.92 11.8 2.05 2.29 3.15 3.14 Ta 0.48 0.65 0.70 0.63 0.51 0.80 0.50 0.75 0.83 1.51 0.63 Co 0.32 0.33 1.47 0.97 2.85 0.99 8.50 0.48 0.53 0.28 0.13 U 3.90 4.02 2.89 2.41 2.10 2.14 1.81 2.93 5.45 4.10 3.2 La 9.22 26.3 26 27.2 23 37.7 32.5 27.8 24.4 44.1 28.5 Ce 25.3 51.1 50.2 49.5 42.5 82.7 68.3 46.6 44 65.8 55.3 Pr 3.15 6.71 6.15 6.37 5.24 10.9 9.04 6.05 4.98 8.29 6.23 Nd 11.7 23.7 21.2 22.1 18.6 43 38.4 22 17.8 28.9 22.4 Sm 2.61 4.17 3.72 3.79 3.33 8.49 7.51 3.62 2.87 4.60 3.54 Eu 0.29 0.45 0.47 0.50 0.55 1.62 1.69 0.50 0.54 0.35 0.25 Gd 2.06 3.42 2.93 3.06 2.57 6.62 5.88 2.89 3.26 5.42 2.86 Tb 0.43 0.62 0.50 0.51 0.43 1.21 1.09 0.45 0.45 0.69 0.48 Dy 2.36 3.42 2.51 2.56 2.22 6.18 5.03 2.50 2.23 3.13 2.57 Ho 0.50 0.74 0.50 0.51 0.44 1.26 0.96 0.48 0.46 0.63 0.48 Er 1.41 2.13 1.41 1.44 1.18 3.38 2.46 1.45 1.45 2.05 1.54 Tm 0.28 0.41 0.29 0.28 0.22 0.60 0.45 0.25 0.26 0.35 0.32 Yb 1.74 2.58 1.88 1.84 1.38 3.79 2.50 1.95 1.77 2.24 2.02 Lu 0.41 0.51 0.43 0.43 0.31 0.94 0.36 0.30 0.34 0.44 0.31 Eu/Eu* 0.37 0.35 0.42 0.44 0.55 0.64 0.75 0.45 0.54 0.21 0.24 注:主量元素含量单位为%,微量和稀土元素为 10-6 表 3 白音高老组火山岩锆石Hf同位素分析结果
Table 3 Zircon Hf isotopic data for volcanic rocks of Baiyingaolao Formation
样品编号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ 176Hf/177Hf εHf(0) εHf(t) ±2G TDM1/Ma TDM2 /Ma fLu/Hf AB7112 英安质岩屑晶屑角砾凝灰岩 01 121 0.039528 0.001180 0.282915 0.000021 0.282481 5 7.6 0.8 481 693 -0.96 02 125 0.024334 0.000696 0.282953 0.000027 0.282697 6.4 9.1 1 420 600 -0.98 03 119 0.043831 0.001331 0.282986 0.000031 0.282496 7.6 10.1 1.1 380 532 -0.96 04 120 0.021244 0.000690 0.282920 0.000028 0.282666 5.2 7.8 1 467 679 -0.98 05 118 0.026017 0.000860 0.283026 0.000036 0.282710 9 11.5 1.3 319 439 -0.97 06 124 0.045912 0.001493 0.282931 0.000032 0.282382 5.6 8.2 1.1 461 655 -0.96 07 121 0.024270 0.000759 0.282933 0.000028 0.282653 5.7 8.3 1 450 650 -0.98 08 124 0.048849 0.001599 0.283008 0.000036 0.282420 8.3 10.9 1.3 351 481 -0.95 09 124 0.037460 0.001180 0.282854 0.000025 0.282420 2.9 5.5 0.9 567 828 -0.96 10 121 0.038328 0.001165 0.282911 0.000026 0.282482 4.9 7.5 0.9 486 702 -0.96 11 124 0.060943 0.001984 0.282938 0.000033 0.282208 5.9 8.4 1.2 458 643 -0.94 12 122 0.058175 0.001853 0.282916 0.000029 0.282234 5.1 7.6 1 488 694 -0.94 13 124 0.023388 0.000663 0.282959 0.000022 0.282716 6.6 9.3 0.8 411 587 -0.98 14 123 0.044754 0.001294 0.282893 0.000025 0.282417 4.3 6.9 0.9 514 742 -0.96 15 123 0.039568 0.001150 0.282928 0.000024 0.282505 5.5 8.1 0.9 461 661 -0.97 16 116 0.038694 0.001193 0.282930 0.000027 0.282491 5.6 8 1 460 662 -0.96 17 126 0.038990 0.001405 0.282923 0.000037 0.282406 5.3 8 1.3 472 672 -0.96 18 126 0.047245 0.001700 0.282899 0.000035 0.282273 4.5 7.1 1.2 511 729 -0.95 19 130 0.025129 0.000824 0.282936 0.000028 0.282632 5.8 8.6 1 447 638 -0.98 20 126 0.027242 0.000800 0.282962 0.000023 0.282668 6.7 9.4 0.8 409 580 -0.98 表 4 大兴安岭中段索伦地区中生代地层划分对比
Table 4 Division and correlation of Mesozoic strata inSuolun area of central Da Hinggan Mountains
-
蒋国源, 权恒.大兴安岭根河、海拉尔盆地中生代火山岩[J].中国地质科学院沈阳地质矿产研究所文集, 1988, 3:23-100. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198800019003.htm 赵国龙, 杨桂林, 王忠, 等.中南部中生代火山岩[M].北京:北京科学技术出版社, 1989. 林强, 葛文春, 孙德有, 等.东北地区中生代火山岩的大地构造意义[J].地质科学, 1998, 33(2):129-139. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.000.htm 葛文春, 林强, 孙德有, 等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报, 1999, 15(3):396-406. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199903007.htm 张吉衡. 大兴安岭地区中生代火山岩的年代学格架[D]. 吉林大学硕士学位论文, 2006. 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D]. 中国地质大学博士学位论文, 2009. 内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社, 1991:1-725. Wang F, Zhou X H, Zhang L C, et al.Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and Implications for the Dynamic Setting of NE Asia[J].Earth and Planetary Science Let-ters, 2006, 251(1):179-198. https://www.researchgate.net/profile/Xin-Hua_Zhou/publication/222410896_Late_Mesozoic_volcanism_in_the_Great_Xing%27an_Range_NE_China_Timing_and_implications_for_the_dynamic_setting_of_NE_Asia/links/02e7e522537cc420ca000000/Late-Mesozoic-volcanism-in-the-Great-Xingan-Range-NE-China-Timing-and-implications-for-the-dynamic-setting-of-NE-Asia.pdf
Zhang J H, Ge W C, Wu F Y, et al.Large-scale Early Cretaceous volcanic events in the northern Great Xing'an Range, northeastern China[J]. Lithos, 2008, 102(1):138-157.
Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Im-plications for subduction-induced delamination[J]. Chemical Geolo-gy, 2010, 276(3):144-165. http://www.academia.edu/13671242/Destruction_of_the_North_China_Craton_Induced_by_Ridge_Subductions
Wu F Y, Walker R J, Ren X, et al.Osmium Isotopic Constraints on the Age of Lithospheric Mantle Beneath Northeastern China[J]. Chemical Geology, 2003, 196(1):107-129. https://www.researchgate.net/publication/223399827_Osmium_isotopic_constraints_on_the_age_of_lithospheric_mantle_beneath_northeastern_China
Wu F Y, Lin J Q, Wilde S A, et al.Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China[J].Earth and Planetary Science Letters, 2005, 233(1):103-119. https://www.researchgate.net/publication/222992706_Nature_and_significance_of_the_Early_Cretaceous_giant_igneous_event_in_eastern_China
Wu F Y, Sun D Y, Ge W C, et al.Geochronology of the Phanerozo-ic Granitoids in Northeastern China[J]. Journal of Asian Earth Sci-ences, 2011, 41(1):1-30. doi: 10.1016/j.jseaes.2010.11.014
Koschek G.Origin and significance of the SEM cathodolumines-cence from zircon[J].Journal of Microscopy, 1993, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3
Belousova E, Griffin W L, O'Reilly S Y, et al.Igneous Zircon:Trace Element Composition as An Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622. doi: 10.1007/s00410-002-0364-7
Anderson T.Correction of Common Lead in U-Pb Analyses that Do Not Report 204Pb[J].Chemical Geology, 2003, 192:59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb
Yang J H, Wu F Y, Wilde S A, et al.Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton:Geochronological, geochemical and Nd-Hf isotopic evi-dence[J]. Precambrian Research, 2008, 167:125-149. doi: 10.1016/j.precamres.2008.07.004
Blichert-Toft J, Albarède F.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-crust System[J].Earth and Planetary Science Letters, 1997, 148(1):243-258. https://www.researchgate.net/publication/260885945_The_Lu-Hf_isotope_geochemistry_of_chondrites_and_the_evolution_of_the_mantle-crust_systemEarth_Planet_Sci_Lett_148_1997_243-258
Veevers J J, Saeed A, Belousova E A, et al.U-Pb Ages and Source Composition by Hf-isotope and Trace-element Analysis of Detri-tal Zircons in Permian Sandstone and Modern Sand from South-western Australia and A Review of the Paleogeographical and De-nudational History of the Yilgarn Craton[J]. Earth-Science Re-views, 2005, 68(3):245-279.
Boynton W V, Cosmochemisty of the rare earth element:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. New York:Elsevier, 1984:63-114.
Sun S S, McDongough W F. Chemical and isotopic systematics of oce-anic basalts:implications for mantle composition and processes[C]//Saunders A D, Norry M J.Magmatism in Ocean Basins. Geological Society of Special Publication, London, 1989, 42:313-345.
Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zir-con[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):327-341. doi: 10.2113/0530327
许文良, 葛文春, 裴福萍, 等.东北地区中生代火山作用的年代学格架及构造意义[J].矿物岩石地球化通报, 2008, 27(增刊):286-287. http://cdmd.cnki.com.cn/Article/CDMD-10183-1016089738.htm 内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].武汉:中国地质大学出版社, 1996:1-344. 葛文春, 李献华, 林强, 等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学, 2001, 36(2):176-183. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200102005.htm 苟军, 孙德有, 赵忠华, 等.满洲里南部白音高老组流纹岩锆石UPb定年及岩石成因[J].岩石学报, 2010, 26(1):333-344. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201001038.htm 王建国, 和钟铧, 许文良.大兴安岭南部钠闪石流纹岩的岩石成因:年代学和地球化学证据[J].岩石学报, 2013, 29(3):853-863. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303010.htm Dong Y, Ge W C, Yang H, et al.Geochronology and geochemistry of Early Cretaceous volcanic rocks from the Baiyingaolao Forma-tion in the central Great Xing' an Range, NE China, and its tecton-ic implications[J].Lithos, 2014, 205:168-184. doi: 10.1016/j.lithos.2014.07.004
Kong Y M, Ma R, He Z H, et al.Characteristics and tectonic setting of volcanic rocks in Early Cretaceous Baiyingaolao Formation of Keyouzhongqi area, Inner Mongolia[J].Global Geology, 2014, 17(2):78-85.
赵书跃, 韩彦东, 朱春燕, 等.大兴安岭火山喷发带北段中性、中酸性火山岩地球化学特征及其地质意义[J].地质力学学报, 2004, 10(3):276-287. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200403009.htm 林强, 葛文春, 孙德有, 等.大兴安岭中生代两类流纹岩与玄武岩的成因联系[J].长春科技大学学报, 2000, 30(4):322-328. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200004002.htm 林强, 葛文春, 曹林, 等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学, 2003, 32(3):208-222. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200303001.htm 葛文春, 林强, 李献华, 等.大兴安岭北部伊列克得组玄武岩的地球化学特征[J].矿物岩石, 2000, 28(3):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200003002.htm 葛文春, 林强, 孙德有, 等.大兴安岭中生代两类流纹岩成因的地球化学研究[J].地球科学-中国地质大学学报, 2000, 25(2):172-178. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002012.htm 张连昌, 陈志广, 周新华, 等.大兴安岭根河地区早白垩世火山岩深部源区与构造岩浆演化:Sr-Nd-Pb-Hf同位素地球化学制约[J].岩石学报, 2007, 23(11):2823-2835. doi: 10.3969/j.issn.1000-0569.2007.11.013 郭锋, 范蔚茗, 王岳军, 等.大兴安岭南段晚中生代双峰式火山作用[J].岩石学报, 2001, 17(1):161-168. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101016.htm McDonough W F, Sun S S.The Composition of the Earth[J]. Chemical geology, 1995, 120(3):223-253.
Taylor S R, McLennan S M.The Continental Crust:Its Composi-tion and Evolution[M].Blackwell:Oxford Preess, 1985:1-312.
Pearce J A.Role of the Sub-continental Lithosphere in Magma Genesis at Active Continental Margins[C]//Hawkesworth C J, Norry M J. Continental Basalts and Mantle Xenoliths, Nantwich, Cheshire:Shiva Publications, 1983:230-249.
Tischendorf G, Paelchen W.Zur Klassifikation von Granitoiden[J]. Classification of Granitoids Zeitschrift Fuer Geologische Wissen-schaften, 1985, 13(5):615-627.
Wilson M.Igneous Petrogenesis[M].London:Unwin Hywin Press, 1989:295-323.
Bea F, Fershtater G, Corretgé L G.The Geochemistry of Phospho-rus in Granite Rocks and the Effect of Aluminium[J].Lithos, 1992, 29(1):43-56.
Wu F, Jahn B, Wilde S, et al.Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics, 2000, 328(1):89-113. https://www.researchgate.net/publication/223576713_Phanerozoic_crustal_growth_U-Pb_and_Sr-Nd_isotopic_evidence_from_the_granites_in_northeastern_China
Wu F, Sun D, Li H, et al.A-type Granites in Northeastern China:Age and Geochemical Constraints on their Petrogenesis[J].Chemi-cal Geology, 2002, 187(1):143-173. https://www.researchgate.net/publication/223536562_A-type_granites_in_Northeastern_China_Age_and_geochemical_constraints_on_their_petrogenesis
Wu F, Jahn B, Wilde S A, et al.Highly Fractionated I-type Granites in NE China (I):Geochronology and Petrogenesis[J].Lithos, 2003, 66(3):241-273. https://www.researchgate.net/publication/222062598_Highly_fractionated_I-type_granites_in_NE_China_I_Geochronology_and_petrogenesis
Jahn B, Wu F, Chen B.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes, 2000, 23(2):82-92. https://www.researchgate.net/publication/279887806_Massive_granitoid_generation_in_Central_Asia_Nd_isotope_evidence_and_implication_for_continental_growth_in_the_Phanerozoic
Jahn B M, Wu F Y, Capdevila R, et al.Highly Evolved Juvenile Granites with Tetrad REE Patterns:the Woduhe and Baerzhe Granites from the Great Xing'an Mountains in NE China[J].Lithos, 2001, 59(4):171-198. doi: 10.1016/S0024-4937(01)00066-4
Jahn B, Capdevila R, Liu D, et al.Sources of Phanerozoic Granit-oids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geo-chemical and Nd Isotopic Evidence, and Implications for Phanero-zoic Crustal Growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1
吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 隋振民. 大兴安岭东北部花岗岩类锆石U-Pb年龄、岩石成因及地壳演化[D]. 吉林大学博士学位论文, 2007. 隋振民, 葛文春, 吴福元, 等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报, 2007, 23(2):461-480. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702024.htm 周漪, 葛文春, 王清海.大兴安岭中部乌兰浩特地区中生代花岗岩的成因——地球化学及Sr-Nd-Hf同位素制约[J].岩石矿物学杂志, 2011, 30(5):901-923. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201105014.htm Lightfoot P C, Hawkesworth C J, Sethna S F.Petrogenesis of Rhyo-lites and Trachytes from the Deccan Trap:Sr, Nd and Pb Isotope and Trace Element Evidence[J].Contributions to Mineralogy and Petrology, 1987, 95(1):44-54. doi: 10.1007/BF00518029
Green T H.Experimental Studies of Trace-element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 years later[J].Chem-ical Geology, 1994, 117(1):1-36.
张旗, 李承东.花岗岩:地球动力学意义[M].北京:海洋出版社, 2012:1-276. Shao J A, Zang S X, Mou B L, et al.Extensional tectonics and asthe-nospheric upwelling in the orogenic belt:a case study from Hing-gan-Mongolia Orogenic belt[J].Chinese Science Bulletin, 1994, 39:533-537.
邵济安, 张履桥, 牟保磊.大兴安岭中南段中生代的构造热演化[J].中国科学(D辑), 1998, 28(3):193-200. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199803000.htm 邵济安, 张履桥, 牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘, 1999, 6(4):339-346. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904025.htm 邵济安, 李献华, 张履桥, 等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约[J].地球化学, 2001, 30(6):517-524. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200106002.htm 邵济安, 刘福田, 陈辉, 等.大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J].地质学报, 2001, 75(1):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101010.htm 邵济安, 张履桥, 贾文, 等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨[J].岩石学报, 2001, 17(2):283-290. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200102012.htm Fan W M, Guo F, Wang Y J, et al.Late Mesozoic Calc-alkaline Vol-canism of Post-orogenic Extension in the Northern Da Hinggan Mountains, Northeastern China[J].Journal of Volcanology and Geo-thermal Research, 2003, 121(1):115-135. https://www.researchgate.net/profile/Feng_Guo8/publication/223489977_Late_Mesozoic_calc-alkaline_volcanism_of_post-orogenic_extension_in_the_northern_Da_Hinggan_Mountains_northeastern_China/links/0deec52856d217b3e9000000.pdf?disableCoverPage=true
高晓峰, 郭锋, 范蔚茗, 等.南兴安岭晚中生代中酸性火山岩的岩石成因[J].岩石学报, 2005, 21(3):737-748. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503015.htm 孟恩, 许文良, 杨德彬, 等.满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J].岩石学报, 2011, 27(4):1209-1226. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104029.htm 秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早白垩世A型花岗岩锆石LA-ICP-MS测年、地球化学特征及其地质意义[J].吉林大学学报(地球科学版), 2012, S3:154-165. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3017.htm 施璐, 郑常青, 姚文贵, 等.大兴安岭中段五岔沟地区蛤蟆沟林场A型花岗岩年代学、岩石地球化学及构造背景研究[J].地质学报, 2013, 87(9):1264-1276. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201309006.htm 张履桥, 邵济安, 郑广瑞.内蒙古甘珠尔庙变质核杂岩[J].地质科学, 1998, 33(2):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.001.htm 张玉涛, 张连昌, 英基丰, 等.大兴安岭北部扎兰屯脉岩群的地球化学特征及其地质意义[J].岩石学报, 2006, 22(11):2733-2742. doi: 10.3969/j.issn.1000-0569.2006.11.011 王涛.花岗岩研究与大陆动力学[J].地学前缘, 2000, (7):137-146. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2000S2020.htm 刘宝山, 任凤和, 李仰春, 等.伊春地区晚印支期Ⅰ型花岗岩带特征及其构造背景[J].地质与勘探, 2007, 43(1):74-78. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200701014.htm