• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

兴蒙造山带南缘早—中二叠世砂岩碎屑锆石U-Pb年龄、Hf同位素组成及其构造意义

朱俊宾, 和政军

朱俊宾, 和政军. 2017: 兴蒙造山带南缘早—中二叠世砂岩碎屑锆石U-Pb年龄、Hf同位素组成及其构造意义. 地质通报, 36(2-3): 357-371.
引用本文: 朱俊宾, 和政军. 2017: 兴蒙造山带南缘早—中二叠世砂岩碎屑锆石U-Pb年龄、Hf同位素组成及其构造意义. 地质通报, 36(2-3): 357-371.
ZHU Junbin, HE Zhengjun. 2017: Detrital zircon U-Pb ages and Hf isotopes of Early-Middle Permian sandstones from the south margin of Xing-Meng orogenic belt and their tectonic significance. Geological Bulletin of China, 36(2-3): 357-371.
Citation: ZHU Junbin, HE Zhengjun. 2017: Detrital zircon U-Pb ages and Hf isotopes of Early-Middle Permian sandstones from the south margin of Xing-Meng orogenic belt and their tectonic significance. Geological Bulletin of China, 36(2-3): 357-371.

兴蒙造山带南缘早—中二叠世砂岩碎屑锆石U-Pb年龄、Hf同位素组成及其构造意义

基金项目: 

中国地质调查局项目《中国及邻区海陆大地构造研究》 编号:DD20160343(121201102000150009)

详细信息
    作者简介:

    朱俊宾(1984-),男,博士,工程师,从事大地构造研究。E-mail:zhujunbin0819@163.com

  • 中图分类号: P534.46;P588.21

Detrital zircon U-Pb ages and Hf isotopes of Early-Middle Permian sandstones from the south margin of Xing-Meng orogenic belt and their tectonic significance

  • 摘要:

    利用LA-MC-ICP-MS 分析技术,对兴蒙造山带南缘下二叠统三面井组和中二叠统额里图组砂岩中的碎屑锆石进行了U-Pb 年龄和Hf 同位素研究。结果显示,三面井组砂岩记录了3 组碎屑锆石年龄:280~369Ma(4 颗)、1800~2271Ma(43 颗,峰值1877Ma)和2507~2711Ma(9 颗)。额里图组砂岩碎屑锆石年龄集中分布在271~371Ma(9 颗)、1258~1395Ma(18 颗,峰值1326Ma)和1695~2454Ma(34 颗,峰值1864Ma)3 个年龄区间。对比研究发现,样品中的元古宙和太古宙碎屑锆石是华北克拉通古老基底的反映;晚古生代锆石具有较低的εHf(t)值(-5.3~-23.7)和较老的Hf 模式年龄(1124~3039Ma),与华北克拉通北缘晚古生代岩浆岩具有一致性,而明显区别于兴蒙造山带内岩浆岩Hf 同位素特征,说明前者是其物源供给区。结合区域资料认为,华北克拉通北缘在早―中二叠世期间不存在类似安第斯型的俯冲大陆边缘,三面井组和额里图组砂岩是在伸展背景下沉积形成的。

    Abstract:

    In this paper, the authors used the LA-MC-ICP-MS analytical techniques to determine U-Pb ages and Hf isotopic composition of detrital zircons from the Lower Permian Sanmianjing Formation and Middle Permian Elitu Formation in Zhengxiangbai Banner area of Inner Mongolia on the southern margin of the Xing-Meng orogenic belt. Detrital zircon dating of the sandstone of the Sanmianjing Formation yielded three main age populations respectively at 280~369Ma (4 grains), 1800~2271Ma (43 grains, peaked at 1877Ma), and 2507~2711Ma (9 grains), whereas the Elitu Formation displays prominent age groups at 271~371Ma (9 grains), 1258~1395Ma (18 grains, peaked at 1326Ma) and 1695~2454Ma (34 grains, peaked at 1864Ma), respectively. The detrital zircon geochronological and Hf isotopic studies indicate that the Meso-Proterozoic to Neoarchean grains were probably derived from the basement of the North China Craton. The Late Paleozoic zircons exhibit negative εHf(t) values of -5.3~-23.7 and old Hf model ages of 1124~3039Ma. These characteristics show a strong resemblance to the Late Paleozoic igneous zircons from the north margin of the North China Craton, suggesting that the source of the Sanmianjing Formation and Elitu Formation partly came from the North China Craton. Integration of provenance data with regional geological information and magmatic records suggests that no Andean-type active continental margin was generated on the northern margin of the North China Craton during Early to Middle Permian, and the Sanmianjing Formation and Elitu Formation were deposited in an extensional tectonic environment.

  • 作为古洋壳和上地幔构造就位至大陆边缘的产物[1-3],蛇绿岩记录了古大洋形成、演化与消亡的信息[4]。它们在碰撞型和增生型造山带中普遍产出,并作为闭合后的板块或增生地体构造界线的主要标志[5],在重建一个地区区域演化中扮演着十分重要的角色。

    狮泉河-纳木错-嘉黎缝合带是由蛇绿岩套、构造混杂岩块组成的蛇绿混杂岩带,北西自狮泉河,向南东经拉果错、阿索、格仁错、申扎永珠、纳木错西,再向东经九子拉、凯蒙、波密等地,在拉萨地体北部呈北西—南东向延伸约上千千米[6-7]。作为狮泉河-纳木错-嘉黎缝合带的一部分,拉果错蛇绿岩是缝合带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带代表的洋盆演化具有重要的意义。目前,关于拉果错蛇绿岩的形成时代存在不同见解,已知的同位素年龄区间为190~124 Ma[8-10],横跨侏罗纪—白垩纪。此外,关于拉果错蛇绿岩形成的构造环境观点同样存在分歧。西藏地质矿产局[11]认为该蛇绿岩是洞错蛇绿岩的构造推覆体;樊帅权等[10]、王保弟等[12]认为其形成于俯冲带上的构造环境;张玉修等[9]认为其为班公湖-怒江缝合带的一个分支。

    基于此,本文选择拉果错蛇绿岩中斜长花岗岩及与之伴生的基性岩类(辉长岩、辉绿岩及辉绿玢岩)为研究对象,通过详细的岩石学、锆石U-Pb年代学和地球化学研究,确定该区蛇绿岩的形成时代与岩石成因,并通过区域地质资料对比,约束狮泉河-纳木错-嘉黎缝合带所代表的洋盆性质。

    研究区位于西藏改则县以南拉果错地区,大地构造位置处于狮泉河-纳木错-嘉黎缝合带中段(图 1)。区内地层主要为上石炭统—下二叠统拉嘎组(C2P1l)、中二叠统下拉组(P2x)、下白垩统罗玛组(K1lm)和郎山组(K1l)。其中,拉嘎组岩性以粉砂岩、细砂岩、含砾砂岩、板岩及少量石英砂岩为主,夹少量灰岩。下拉组岩性主要为细晶白云岩、生物碎屑灰岩和生物碎屑泥晶灰岩,局部夹灰色细砂岩、板岩,硅质条带灰岩、角砾状灰岩等,在生物碎屑灰岩中,发育大量的珊瑚等生物化石。罗玛组岩性以碎屑岩与碳酸盐岩的韵律性沉积为主,局部见火山岩夹层。郎山组岩性较单一,以生物碎屑灰岩为主。

    图  1  西藏中部拉果错地区地质简图
    Figure  1.  Simplified geological map of Lhaguo Tso area, central Tibet

    区内中酸性岩浆岩较发育,岩性以花岗闪长斑岩、石英钠长斑岩、花岗斑岩和花岗闪长岩为主,直接侵入于拉果错蛇绿岩中。

    拉果错蛇绿岩是本文研究的重点,其分布面积较广,岩石端元较齐全。在前人研究的基础上,本文经过详细的路线调查,初步明确拉果错蛇绿岩能识别的岩石端元包括超基性岩、堆晶辉长岩、基性岩墙、枕状熔岩、斜长花岗岩、放射虫硅质岩等,与现今大洋岩石圈的岩石组合可以对比,表明拉果错蛇绿岩应为典型的古洋壳残片。拉果错蛇绿岩各岩石端元详细的岩石学特征描述如下。

    超基性岩:主要包括变质橄榄岩(图版Ⅰ-ae)、强蚀变辉橄岩、单辉橄榄岩、斜辉橄榄岩、橄榄辉石岩、异剥辉石岩等不同岩石端元,可见到较多的全蚀变(碳酸盐化)超基性岩。

      图版Ⅰ 
    a.斜长花岗岩侵入超基性岩;b.斜长花岗岩侵入辉绿岩;c.堆晶辉长岩;d.枕状玄武岩;e.蛇纹石化橄榄岩;f.辉绿岩;g.辉绿玢岩;h.斜长花岗岩。Px—辉石; Pl—斜长石; Chl—绿泥石; Am—角闪石; Ab—钠长石; Ep—绿帘石; Srp—蛇纹石; Q—石英
      图版Ⅰ. 

    堆晶辉长岩:是拉果错蛇绿岩的主要组成部分,野外表现为白色的“斜长岩”和灰黑色的“辉石岩”、“辉长岩”等交替成层出现(图版Ⅰ-c),镜下主要见斜长石、辉石等矿物组成。

    基性岩墙:包括辉长岩、辉绿岩、辉绿玢岩等,是本文研究的重点。与堆晶辉长岩不同的是,基性岩墙呈致密块状,未见堆晶结构。辉长岩主要由斜长石(约40%)和辉石(约60%)组成,辉长结构,块状构造,其中斜长石呈半自形板状,聚片双晶发育;辉石呈半自形柱状,部分颗粒发生纤闪石化,粒径大小与斜长石相当。辉绿岩主要由斜长石(约60%)、辉石(15%)和绿泥石(约15%)组成,另见少量金属矿物(约8%),其中斜长石呈自形-半自形板状,部分发生绢云母化及碳酸盐化,聚片双晶发育;辉石多呈粒状,绿泥石呈鳞片状,分布于斜长石颗粒之间搭建的三角形空隙中;金属矿物多呈粒状,分布于粒间孔隙中(图版Ⅰ-bf)。辉绿玢岩呈斑状结构,分为斑晶(约7%)和基质两部分,其中斑晶主要由斜长石组成,基质主要由斜长石(约55%)、角闪石(约35%)和少量金属矿物(约3%)组成(图版Ⅰ-g)。

    斜长花岗岩:呈脉状侵入于辉橄岩和辉绿岩中,侵入接触关系明显(图版Ⅰ-ab)。镜下显示其主要由钠长石(约48%)和石英(约40%)组成,次为绿泥石(约6%)及绿帘石(约1%),另见绿帘石脉(约5%)。钠长石主要呈粒状,聚片双晶发育,粒径多介于0.05~0.35 mm之间。石英呈他形粒状,粒径大小与钠长石相当。绿泥石系暗色矿物蚀变而来,呈鳞片状,分布于钠长石和石英颗粒之间。绿帘石呈粒状,分布于粒间空隙中。岩石中见绿帘石脉穿插分布,脉体中绿帘石呈微粒状集合体(图版Ⅰ-h)。

    枕状熔岩:具典型的枕状构造,由于构造的影响,枕状玄武岩一般较破碎(图版Ⅰ-d)。岩石主要由斜长石、绿泥石、方解石组成;另见不超过5%的杏仁体,典型的填间(间片、间粒)结构,块状-杏仁状构造。斜长石大部分为板条状,粒径多在0.025~0.27 mm之间。绿泥石为绿色,多色性可见。方解石为微粒状,粒径在0.1 mm以下。杏仁体较少,圆形或不规则状,大小0.15~1 mm,主要由石英或石英、绿泥石或石英、方解石充填。岩石中见方解石细脉穿插,脉宽一般小于0.2 mm。

    硅质岩:岩石呈深绿灰色,具微晶结构、块状构造,并见次生钠长石脉。岩石主要由硅质及泥质组成,具含泥质微晶结构,并发育次生裂隙,局部见硅化石英脉。岩石中硅质多为隐晶-微晶,粒径0.005 mm左右,其间混杂少量粘土质,局部呈细纹状富集,并弥漫尘状铁炭质,局部见粘土质重结晶为绢(水)云母等。

    为探讨拉果错蛇绿岩的构造背景,本文采集了拉果错蛇绿岩中的6件辉长岩、3件辉绿岩、5件辉绿玢岩及3件斜长花岗岩样品进行了全岩地球化学分析。全岩主量、微量元素分析在西南冶金地质测试所完成。其中主量元素测试分析方法为重量法、X射线荧光法、滴定法,采用荷兰帕纳科Axios X荧光射线光谱仪测定,分析误差小于5%;微量元素测试分析方法为等离子发射光谱法、X荧光光谱法,采用美国THEROM公司生产的iCAP6300全谱直读等离子发射光谱仪测定,当元素含量大于10×10-6时,精度误差小于5%;含量小于10×10-6时,误差小于10%。

    为确定拉果错蛇绿岩的形成时代,本文选取其中的斜长花岗岩样品进行锆石U-Pb定年。锆石U-Pb同位素定年分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)完成,激光剥蚀系统为GeoLas 2005,ICP-MS为Agilent 7500a。实验中激光波长193 nm、束斑32 μm、脉冲频率6 Hz;采用锆石标准91500为外标进行U-Pb同位素分馏校正,并利用91500的变化采用线性内插的方式对U-Th-Pb同位素比值漂移进行了校正。采用ICPMSDTACAL程序离线处理分析数据,详细的仪器操作条件和数据处理方法见参考文献[13],采用Isoplot/Ex(3.0版)绘制U-Pb谐和图绘制及年龄加权平均计算。

    辉长岩、辉绿岩、辉绿玢岩和斜长花岗岩全岩主量、微量和稀土元素分析结果见表 1

    表  1  拉果错蛇绿岩的全岩主量、微量和稀土元素分析结果
    Table  1.  Major, trace and rare earth elements data for the Lhaguo Tso ophiolite
    岩性
    样号
    斜长花岗岩辉长岩辉绿岩辉绿(玢)岩
    PD003Gs14PD003Gs182145Gs1447Gs1754Gs11758Gs11777GsPM003Gs36PM003Gs381195Gs11908Gs41910Gs1194Gs1908Gs11910Gs51438Gs51442Gs3
    SiO271.9072.6573.1847.8949.6149.7953.1948.0052.3453.1752.0749.6452.6247.0450.8049.5650.59
    Al2O313.9113.2513.0116.9214.7417.3813.2315.7014.0216.0816.9316.9016.0816.5919.5015.3516.60
    Fe2O31.030.912.892.252.032.143.102.312.271.252.921.660.970.981.543.202.28
    FeO1.651.090.535.037.928.1110.087.156.608.167.087.949.306.785.667.185.02
    TFe2O32.862.123.477.8410.8311.1514.3010.259.6010.3210.7910.4811.308.517.8311.187.86
    CaO2.012.473.6811.897.679.095.3010.669.193.037.157.287.6410.197.759.984.95
    MgO1.131.150.258.218.426.304.727.746.706.814.655.614.469.723.845.308.18
    K2O0.090.040.060.600.390.600.120.500.470.221.581.050.921.380.550.752.10
    Na2O6.446.344.892.293.662.484.592.934.075.612.484.374.231.594.993.943.90
    TiO20.400.400.180.540.970.631.550.790.890.690.810.600.690.730.491.390.72
    P2O50.060.060.040.040.060.030.130.050.060.030.060.030.030.100.040.140.07
    MnO0.050.030.070.160.160.210.180.170.160.190.190.150.180.190.130.170.13
    烧失量1.151.401.073.744.082.983.703.512.914.443.854.502.614.474.462.454.93
    总计99.8299.7999.8499.5699.7299.7499.8899.5099.6799.6899.7799.7399.7299.7599.7599.4199.47
    K2O+Na2O6.536.384.952.894.053.084.713.434.545.834.065.425.152.975.544.696.00
    K2O/Na2O0.010.010.010.260.110.240.030.170.110.040.640.240.220.870.110.190.54
    Mg#4856147164574364626150564873535271
    La5.566.4411.603.043.543.824.643.133.083.923.003.153.009.444.704.904.88
    Ce19.0021.9024.205.696.998.4212.806.407.556.466.134.706.2015.809.5010.509.94
    Pr2.682.713.890.811.141.031.951.091.190.930.940.690.832.201.291.911.43
    Nd12.5011.8017.203.775.554.739.736.656.124.304.823.464.329.625.599.546.55
    Sm3.853.094.801.131.791.543.371.922.141.491.591.261.622.641.673.352.05
    Eu1.050.941.240.440.660.581.100.740.790.520.760.670.580.800.631.631.01
    Gd3.182.575.461.031.471.302.721.571.711.301.401.101.392.261.472.831.71
    Tb1.050.781.200.310.490.420.980.560.600.450.460.390.480.670.440.920.52
    Dy6.724.998.931.953.142.796.303.653.812.963.152.543.254.382.886.043.38
    Ho1.591.201.720.450.740.691.480.870.940.700.740.640.791.060.711.430.80
    Er4.453.494.581.242.111.944.152.502.621.962.091.852.262.892.063.972.24
    Tm0.760.630.780.200.350.320.690.420.450.330.350.320.410.480.340.650.38
    Yb4.664.134.801.282.232.124.372.732.852.152.312.222.672.982.384.382.58
    Lu0.710.730.750.210.360.360.670.450.460.370.400.380.460.450.410.650.44
    Y38.2030.1052.0010.1017.2015.2033.0020.2021.4015.6016.6015.2018.4024.8017.0033.2018.70
    ∑REE67.7665.4091.1521.5530.5630.0654.9532.6834.3127.8428.1423.3728.2655.6734.0752.7037.91
    LREE44.6446.8862.9314.8819.6720.1233.5919.9320.8717.6217.2413.9316.5540.5023.3831.8325.86
    HREE23.1218.5228.226.6710.899.9421.3612.7513.4410.2210.909.4411.7115.1710.6920.8712.05
    LREE/HREE1.932.532.232.231.812.021.571.561.551.721.581.481.412.672.191.532.15
    Cu2.56511.0011.7080.2068.2047.0042.30112.0073.80174.0010.3016.1029.002.6162.5037.7042.60
    Cr21.0039.807.14462.00182.00164.0067.00114.00152.0051.9044.3042.2062.6035.4053.80312.00230.00
    Ni17.1025.802.3180.8059.1052.8022.8066.5053.1018.2010.1012.5022.2016.6022.3090.0096.20
    Co13.9019.802.3030.9034.2038.7041.5041.0035.2033.4029.2030.2035.5019.2023.0050.1030.80
    Rb3.242.582.5110.004.3312.804.324.496.379.3545.0024.6021.2020.904.9118.4034.60
    W0.631.050.310.570.520.740.540.530.540.710.551.440.640.660.650.630.55
    Sr120.0048.60112.00336.00103.00200.0098.30936.0085.60194.00293.00272.00172.00234.00114.00768.00384.00
    Ba32.0025.1012.2099.6073.60110.0038.60226.00112.00172.00420.00296.00134.00107.0096.60476.001930.00
    V55.8065.4023.40258.00266.00294.00410.00302.00249.00290.00336.00282.00306.00262.00210.00284.00212.00
    Sc11.4011.9013.4049.8032.0039.5031.3037.4031.3040.3038.8039.0040.1028.2031.2045.8029.80
    Nb5.355.064.242.554.313.236.312.823.762.883.042.802.814.102.944.343.18
    Ta1.000.960.340.680.910.761.140.720.820.720.720.700.710.890.780.880.76
    Zr105.00107.00185.0020.5044.2028.9083.6027.5055.1026.9025.5022.2032.1067.3033.0084.2048.00
    Hf2.503.605.580.690.650.490.511.800.790.350.360.380.201.100.452.402.00
    Sn2.452.861.361.561.671.751.791.541.541.321.881.571.621.761.901.951.68
    Ag0.030.080.030.040.040.030.040.050.040.120.020.020.030.020.030.030.04
    Au0.520.610.590.880.501.430.520.520.370.530.470.550.700.460.310.410.96
    U0.681.180.470.660.660.741.120.341.120.380.970.720.941.070.510.780.42
    Th2.102.753.641.861.001.940.850.742.140.721.300.771.322.921.451.201.50
    Eu*0.921.020.741.251.241.251.111.301.261.141.561.741.181.001.231.621.65
    (La/Yb)N0.801.051.631.601.071.210.720.770.731.230.880.960.762.141.330.751.28
    (La/Sm)N0.911.311.521.691.241.560.871.030.911.651.191.571.162.251.770.921.50
    (Gd/Yb)N0.550.500.920.650.530.490.500.460.480.490.490.400.420.610.500.520.53
    (Sm/Nd)N0.950.810.860.920.991.001.070.891.081.071.021.121.150.840.921.080.96
    注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
    下载: 导出CSV 
    | 显示表格

    由于辉长岩、辉绿岩和辉绿玢岩具有相似的全岩地球化学特征,本文将其统称为基性岩类。基性岩类的SiO2含量在47%~54%之间,MgO含量在3%~10%之间,TiO2含量在0.49%~2%之间,Al2O3含量在13%~20%之间,K2O+Na2O含量在2%~6%之间,K2O/Na2O值在0.03~0.87之间。样品的Mg#值在43~73之间,变化范围较大。在Nb/Y-Zr/TiO2*0.0001图解上,样品点落入亚碱性玄武岩区域(图 2-a);在SiO2-TFeO/MgO图解中,大部分样品为拉斑玄武岩系列岩石(图 2-b)。

    图  2  Nb/Y-Zr/TiO2*0.0001岩石分类图解[14](a)和(b)SiO2-TFeO/MgO图解[15]
    Figure  2.  Nb/Yb-Zr/TiO2*0.0001 diagram(a)and SiO2-TFeO/MgO diagram(b)

    基性岩类的稀土元素总量较低,在22×10-6~56×10-6之间。在球粒陨石标准化稀土元素配分曲线上,所有样品表现出与E-MORB(富集洋中脊玄武岩)相似的特征(图 3-a),即轻、重稀土元素弱分馏,轻、重稀土元素比值(LREE/HREE)在1.41~2.67之间,(La/Yb)N值在0.72~2.14之间。此外,样品具不明显的正Eu异常,Eu/Eu*值在1.00~1.74之间;在原始地幔标准化的蛛网图解中,辉长岩样品表现出了Nb元素的亏损,富集Th、U、Ta等元素,部分样品表现出Hf元素的亏损(图 3-b)。

    图  3  稀土元素配分模式(a、c)[16]和微量元素蛛网图(b、d)[17]
    OIB—洋岛玄武岩;E-MORB—富集洋中脊玄武岩;N-MORB—正常洋中脊玄武岩
    Figure  3.  Chondrite-normalized REE patterns(a, c)and primitive mantle-normalized trace element diagrams(b, d)

    斜长花岗岩的SiO2含量在71%~74%之间,平均值72.58%;MgO含量在0.25%~2%之间,平均值0.84%;TiO2含量在0.18%~0.40%之间,平均值0.33%,Al2O3的含量在13%~14%之间,平均值13.39%。K2O+Na2O含量在4%~7%之间,K2O/Na2O值在0.006~0.015之间。样品的Mg#值在14.41~55.80之间,变化范围较大。在Or-Ab-An三角图解中,均落入奥长花岗岩范围(图 4-a);K2O含量极低,在SiO2-K2O图解中,落入低钾(拉斑)系列岩石范围(图 4-b)。

    图  4  Or-Ab-An图解(a)和SiO2-K2O图解(b)
    Figure  4.  Or-Ab-An diagram(a)and SiO2-K2O diagram(b)

    斜长花岗岩稀土元素含量较低,介于65×10-6~92×10-6之间。在球粒陨石标准化稀土元素配分曲线上,与基性岩类一样,表现出平坦型,轻、重稀土元素分馏也不明显,其LREE/HREE值在1.93~2.53之间,(La/Yb)N值在0.80~1.1.63之间,且Eu异常不明显(图 3-c)。在原始地幔标准化的蛛网图解中,斜长花岗岩样品表现出了典型的Nb亏损,富集Th、Ta等元素(图 3-d)。

    斜长花岗岩锆石U-Pb同位素数据见表 2

    表  2  斜长花岗岩(2145TW)LA-ICP-MS锆石U-Th-Pb同位素分析结果
    Table  2.  LA-ICP-MS zircon U-Th-Pb data for plagiogranite(2145TW)
    样品编号含量/10-6Th/U同位素比值(±1σ)年龄/Ma(±1σ)
    ThU207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    2145TW-011321590.830.05440.00450.19520.01530.02610.0006387189181131664
    2145TW-022232011.110.06100.00560.21190.01700.02610.0006639200195141664
    2145TW-031551431.080.05670.00580.20950.02070.02660.0008480234193171695
    2145TW-046073991.520.04160.00310.15660.01130.02660.0005148101693
    2145TW-054423111.420.03970.00310.14830.01100.02600.0006140101663
    2145TW-061271261.000.07260.00660.27780.02450.02600.00081003192249191665
    2145TW-071361530.890.06180.00560.22670.01750.02650.0008733194207151695
    2145TW-081331291.030.07040.00750.25220.02300.02700.0008939219228191725
    2145TW-091141280.890.05400.00480.19780.01550.02660.0008372197183131695
    2145TW-1098.01200.820.05140.00440.18540.01470.02630.0007261194173131675
    2145TW-113202511.280.04240.00370.15200.01190.02580.0007144101644
    2145TW-1260.697.40.620.07710.00930.26670.02530.02630.00091124241240201676
    2145TW-134603111.480.03870.00280.14360.01020.02610.000613691663
    2145TW-141271390.910.05770.00540.21240.01880.02690.0007517206196161715
    2145TW-154753171.500.04330.00330.16240.01200.02650.0006153101694
    2145TW-161211360.890.07060.00530.25940.01750.02670.0007946158234141704
    2145TW-172952321.270.05140.00400.17860.01160.02680.0007261178167101704
    2145TW-181531531.000.06640.00560.23920.01900.02660.0007820176218161695
    2145TW-1994.11200.780.07650.00780.26340.02510.02640.00081109201237201685
    2145TW-2092.21180.780.08560.00770.29440.02650.02620.00071329174262211674
    2145TW-211211310.920.08050.00630.29660.02480.02650.00071209156264191694
    2145TW-221401580.890.06690.00590.24320.01980.02660.0007835183221161694
    2145TW-231191460.820.05960.00620.20710.01730.02670.0008591429191151705
    2145TW-242061901.090.05330.00410.18670.01440.02590.0006343169174121654
    下载: 导出CSV 
    | 显示表格

    分析结果显示,在CL图像上,斜长花岗岩的锆石具有明显的岩浆振荡环带,Th/U值在0.62~1.52之间,显示典型岩浆锆石的特征。24个测点的206Pb/238U年龄介于164±4~172±5 Ma之间,其年龄加权平均值为167.8±1.7 Ma(MSWD=0.22;图 5)。

    图  5  锆石阴极发光(CL)图像、锆石U-Pb谐和图(a)和年龄分布图(b)
    Figure  5.  CL images, U-Pb concordia plots(a)and age distribution for zircons(b)

    1:25万改则幅[8]在拉果错蛇绿岩硅质岩中获得的放射虫时代为晚侏罗世—早白垩世,张玉修等[9]测得拉果错斜长花岗岩锆石SHRIMP U-Pb年龄为167 Ma,Yuan等[18]报道拉果错蛇绿岩中橄榄辉绿岩和石英闪长岩的锆石U-Pb年龄分别为165 Ma和161 Ma。本次研究获得拉果错蛇绿岩中斜长花岗岩的锆石U-Pb年龄为167.8 Ma,与上述报道的时代基本一致,为晚侏罗世,能够代表拉果错蛇绿岩的形成时代。

    拉果错基性岩类的MgO含量在3%~10%之间,Mg#值在43~73之间,变化范围均较大,说明基性岩类经历一定的分异演化。基性岩类Cr在35.4×10-6~462×10-6之间,Ni在10.1×10-6~96.2×10-6之间,与原始玄武质岩浆的Cr、Ni(Cr=300×10-6~500×10-6,Ni=300×10-6~400×10-6)含量差异较大,也证明基性岩类经历了不同程度的镁铁质矿物的分离结晶作用。

    弧后盆地玄武岩主要来源于软流圈地幔,既可以是亏损地幔也可以是富集地幔[19-22]。俯冲不活动元素主要赋存于金红石、石榴子石和锆石中,稳定性高,在俯冲过程中不发生迁移,可以用来鉴别地幔源区,如Nb、Ta、Zr、Ti等[19, 23-25]。在Zr-Nb判别图解中,本次研究的所有样品均集中在亏损地幔区域或其附近(图 6-a)。基性岩石的轻、重稀土元素分异很弱((La/Yb)N=0.72~2.14),与石榴子石的轻、重稀土元素分配系数差别较大,而与尖晶石的轻、重稀土元素分配系数(≈1)较相似,证明基性岩石的源区可能为尖晶石相的地幔橄榄岩。它们具有较低的Dy/Yb(1.14~1.52)、Sm/Yb(0.57~0.89)、La/Sm(1.38~3.58)值,并且在La/Yb-Dy/Yb图解(图 6-b)中,基性岩石落入尖晶石橄榄岩的稳定区域,证明基性岩类来源于尖晶石橄榄岩地幔[27-29]

    图  6  Zr-Nb[26]图解(a)和Dy/Yb-La/Yb[27]图解(b)
    Figure  6.  Zr-Nb diagram(a)and Dy/Yb-La/Yb diagram(b)

    关于蛇绿岩中斜长花岗岩的成因大致有2种模式,一是由玄武质岩浆分离结晶形成,二是由玄武质岩石部分熔融形成,而蛇绿岩中的玄武质岩石和斜长花岗岩中的元素La和Yb与SiO2之间的变异关系是重要的判别依据[30]。如果斜长花岗岩中元素La和Yb与相应的玄武质岩石中的含量接近,即La和Yb的含量不随SiO2含量的增加而增加,保持相对的稳定,那么斜长花岗岩成因与玄武质岩石有关,是玄武质岩石经部分熔融形成的;如果斜长花岗岩中La和Yb含量明显高于玄武质岩石中的含量,表明La和Yb的含量随着SiO2含量的升高而逐渐升高,那么斜长花岗岩成因极有可能与大洋中脊玄武质岩浆相关,是其经过分离结晶形成的[30]。拉果错斜长花岗岩的La和Yb含量较高,与本区的中基性岩相比,La和Yb含量随SiO2含量升高而同样具有升高的迹象,因此,斜长花岗岩应该是大洋中脊玄武质岩浆经过分离结晶作用形成的产物。

    斜长花岗岩与基性岩类相比,均富集Th、U,不同程度亏损Nb、Ti,具有相近的化学成分。相容元素Cr、Ni含量均低于原生岩浆岩[31-32]。斜长花岗岩Cr=7×10-6~40×10-6、Ni=2×10-6~26×10-6;基性岩除2件样品的Cr分别为462×10-6和312×10-6外,其余样品的Cr在35×10-6~230×10-6之间,Ni在10×10-6~97×10-6之间,表明二者经历了不同程度的橄榄石、铬尖晶石、辉石等镁铁质矿物的分离结晶[33-34]。在稀土元素配分曲线和微量元素蛛网图(图 3)中,斜长花岗岩与辉长岩具有大体相似的配分形式及微量特点,具体表现为斜长花岗岩的LREE/HREE值为2.23,(La/Yb)N值为1.16,(La/Sm)N值为1.25,(Sm/Nd)N值为0.87;与之相比玄武质岩石各项比值分别为1.82、1.10、1.38和1.01。此外,在Cr-Ni图解(图 7)上,斜长花岗岩与玄武质岩石线性关系明显。所以,笔者认为二者应为同源岩浆分离结晶作用的产物。

    图  7  Cr-Ni图解[35]
    Figure  7.  Cr-Ni diagram

    Dilek等[4]以蛇绿岩的生成环境为依据,将其划分为与俯冲作用无关的蛇绿岩和与俯冲作用相关的蛇绿岩2个大类。其中,俯冲带上盘型(SSZ型)是与俯冲作用相关的一种亚类,在俯冲带上的伸展板块上形成,可进一步分为4个次级类型,即弧后至弧前、弧前、大洋弧后和大陆弧后。

    基性岩的构造环境判别图解相对于酸性岩构造图解,具有更高的准确性。在Ti/1000-V图解(图 8-a)中,所有辉长岩、辉绿(玢)岩样品都落入弧后盆地玄武岩和大洋中脊玄武岩的区域。在Y-La-Nb图解(图 8-b)中,除1件辉绿岩样品落入洋内弧玄武岩区域外,其余样品均落入E-MORB区域、弧后盆地区域及两者之间的过渡区域。上述投图结果表明,基性岩石的地球化学特征同时具有岛弧玄武岩和洋中脊玄武岩的特点,这与弧后盆地玄武岩的特征基本一致[19]。前人研究显示,弧后盆地玄武岩不仅可以形成于洋内弧后盆地(如马里亚纳海沟)[39],也可以形成于陆缘弧后盆地(如冲绳海槽)[40]。西太平洋产出的洋内弧的弧后盆地玄武岩有N-MORB至洋内岛弧玄武岩之间的地球化学特征[41],而与之相反,大陆基底上发育的弧后盆地则具有相似与E-MORB至大陆弧火山岩之间的地球化学特征[42]。此外,拉果错蛇绿岩中基性岩石的球粒陨石标准化稀土元素配分型式类似于E-MORB。根据以上结果可知,拉果错蛇绿岩可能形成于大陆弧后盆地的大地构造环境。

    图  8  Ti/1000-V图解(a)和Y/15-La/10-Nb/8三角图解(b)[36]
    1A—钙碱性玄武岩;1B—钙碱性玄武岩和岛弧拉斑玄武岩;1C—火山弧拉斑玄武岩;2A—大陆玄武岩;2B—弧后盆地玄武岩;3A—碱性玄武岩;3B、C—E-MORB;3D—N-MORB;岛弧玄武岩和洋中脊玄武岩的Ti/V值据Shervais[37],弧后盆地玄武岩区域据Metzger等[38]
    Figure  8.  Ti/1000-V diagram(a)and triangular Y/15-La/10-Nb/8 diagram(b)

    通过以上研究,拉果错蛇绿岩形成时代为晚侏罗世,形成于大陆弧后盆地的构造背景。笔者认为,在晚侏罗世,狮泉河-纳木错-嘉黎缝合带代表的“洋盆”应处于大陆弧后盆地的构造背景下。该缝合带夹持于班-怒结合带与雅江带之间,北侧班-怒洋南向俯冲或南侧新特提斯洋北向俯冲均有可能是该弧后盆地拉张的深部动力学解释,然而从现有资料看,班-怒洋是否存在南向俯冲仍有较大争议。因此,笔者认为,南侧新特提斯洋北向俯冲可能是该弧后盆地打开更合理的解释。

    (1) 拉果错斜长花岗岩的锆石U-Pb年龄为167.8±1.7 Ma,表明拉果错蛇绿岩形成于晚侏罗世。

    (2) 拉果错蛇绿岩中基性岩的地球化学特征表明其来源于尖晶石橄榄岩地幔,斜长岩的地球化学组分与其相近,二者为同源岩浆的产物。

    (3) 拉果错蛇绿岩地球化学特征同时具有岛弧玄武岩和洋中脊玄武岩的特征,形成于具有强烈MORB特征的弧后盆地环境。

    致谢: 野外工作期间得到中国地质科学院地质研究所赵磊、徐芹芹副研究员的大力支持和帮助,成文过程中得到任纪舜研究员的指导,LAICP-MS 锆石U-Pb 定年和Hf 同位素测试得到天津地质调查中心周红英教授级高工的帮助,审稿专家对本文提出宝贵的修改意见,在此一并表示衷心的感谢.
  • 图  1   研究区地质简图

    Figure  1.   Geological sketch map of the study area

    图  2   正镶白旗南部三面井组和额里图组实测剖面

    Figure  2.   Geological sections of the Sanmianjing Formation and ElituFormation in southern Zhengxiangbai Banner area

    图  3   三面井组(a、c)和额里图组(b、d)野外照片及砂岩样品显微照片

    Pl—斜长石;Kfs—钾长石;Qtz—石英;Ms—白云母

    Figure  3.   Photomicrographs of sandstone samples and field photographsof the Sanmianjing Formation and Elitu Formation

    图  4   三面井组和额里图组砂岩部分代表性碎屑锆石CL 图像(实线圆圈表示U-Pb 测点位置,虚线圆圈表示Hf 同位素测点位置, 下面数字为Hf 同位素值)

    Figure  4.   Representative CL images of detrital zircons in sandstonesfrom the Sanmianjing Formation and Elitu Formation

    图  5   三面井组和额里图组砂岩碎屑锆石U-Pb 谐和图和年龄频率分布图

    Figure  5.   Concordia and probability density plots of detrital zircon U-Pb ages forrocks sandstones from the Sanmianjing Formation and Elitu Formation

    图  6   三面井组和额里图组砂岩碎屑锆石t-εHf(t)图解

    Figure  6.   Diagrams of εHf(t) values versus crystallizing ages of detrital zircon forsandstones from the Sanmianjing Formation and Elitu Formation

    表  1   三面井组和额里图组砂岩LA-ICP-MS 锆石U-Th-Pb 分析结果

    Table  1   Results of LA-ICP-MS zircon U-Th-Pb dating for the sandstonesfrom the Sanmianjing Formation and Elitu Formation

    样品号
    测点号
    PbU232Th/238U同位素比值年龄/Ma
    /10-6206Pb/238U207Pb/235U207Pb/206Pb206Pb/238U207Pb/235U207Pb/206Pb
    样品号14SMJ4
    12114760.79560.35910.00366.0280.0830.12170.0015197820198027198221
    22517640.24070.31510.00334.8520.0670.11170.0013176618179425182721
    31443980.26190.34840.00355.6870.0760.11840.0014192719192926193221
    4153030.47530.04440.00050.31750.00990.05190.00162803280927970
    5391020.51330.33850.00345.3250.0750.11410.0014188019187326186523
    6641720.45940.33600.00345.2780.0720.11390.0014186819186525186322
    7771350.62670.47840.004810.960.150.16610.0020252025252034251920
    81514570.04230.33320.00335.3310.0730.11600.0014185418187426189622
    91474140.15740.34870.00355.7610.0790.11980.0014192819194126195421
    102084471.16730.37290.00398.3090.110.16160.0019204321226531247220
    11611110.54910.47650.004810.890.150.16580.0020251225251434251620
    121634650.25190.33940.00345.4040.0710.11550.0014188419188525188821
    131574330.34230.34480.00355.5560.0750.11690.0014191019190926190921
    141373270.45500.38480.00396.8950.0930.12990.0015209921209828209721
    152734830.77570.47320.005210.950.160.16780.0020249828251936253620
    161143390.23120.33040.00335.2490.0720.11520.0014184119186126188322
    171283380.69820.33470.00355.2590.0730.11400.0014186119186226186322
    1829310170.38690.28180.00284.8280.0650.12420.0015160116179024201821
    192406900.36640.33230.00345.2080.0710.11370.0013185019185425185921
    201264380.48270.27730.00294.6290.0640.12110.0014157817175524197221
    211744920.59020.32490.00335.0180.0670.11200.0013181418182224183321
    22772030.86800.32880.00345.1480.0700.11350.0013183319184425185721
    23122360.52880.04840.00050.34850.0120.05220.001730533041029373
    24822400.45080.32570.00345.0180.0700.11180.0013181719182225182822
    25722070.62110.32160.00334.9330.0690.11120.0013179819180825182022
    26243461.18320.05830.00060.43330.00860.05390.00103664366736642
    27421200.56290.32500.00335.0790.0700.11340.0014181418183325185422
    28822170.92370.32480.00335.0560.0680.11290.0013181318182925184721
    29152460.44670.05890.00060.44360.0120.05460.001436943731039657
    30831730.31180.44830.004510.230.140.16550.0019238824245633251320
    311393610.86280.33320.00345.2950.0710.11530.0014185419186825188421
    321986120.31580.31560.00315.0450.0680.11590.0014176817182724189421
    331494230.10870.35310.00365.8370.0800.11990.0014194920195227195421
    34771950.81890.33690.00345.4000.0740.11620.0014187219188526189921
    351905340.40290.33930.00356.1350.0840.13110.0015188319199527211321
    362134010.56160.46270.004710.880.150.17050.0020245225251334256220
    37931660.58460.49000.005111.560.160.17110.0020257127257035256920
    38812260.43260.33480.00345.3250.0730.11530.0014186219187326188522
    391745250.09010.33500.00345.3420.0750.11560.0014186319187626189022
    40992241.33860.33180.00335.2480.0730.11470.0014184719186026187622
    411644330.67200.33010.00335.1840.0710.11390.0014183918185025186222
    样品号14SMJ4
    423188030.49440.35880.00365.9390.0800.12010.0014197620196727195721
    431163180.44080.33590.00345.3100.0720.11470.0014186719187025187521
    443779900.55720.34340.00375.5250.0760.11670.0014190320190526190621
    45451170.71710.33500.00335.3690.0740.11620.0014186319188026189922
    4641990.91190.34160.00355.5350.0780.11750.0015189419190627191923
    471103280.70680.30230.00344.8390.0700.11610.0014170319179226189721
    481624530.26590.34570.00365.6140.0780.11780.0014191420191827192322
    49511181.14660.34900.00365.7020.0810.11850.0015193020193227193422
    501273780.49340.31760.00335.4820.0760.12520.0015177818189826203121
    51912550.29010.35130.00365.9010.0800.12180.0014194120196127198321
    523425751.38460.46020.004610.470.140.16500.0019244024247733250820
    532117080.09130.30200.00314.6980.0640.11280.0013170118176724184621
    541313930.16890.33560.00345.2760.0720.11400.0013186519186525186521
    551712481.24320.52440.005413.480.190.18650.0022271828271437271119
    56551560.34200.33890.00355.3850.0780.11520.0015188219188227188323
    57411150.52490.32370.00334.9310.0750.11050.0015180818180828180725
    581654550.76150.32060.00335.0610.0690.11450.0013179319183025187221
    591734110.04840.42100.00458.3330.120.14360.0017226524226833227120
    60732070.51540.32420.00334.9200.0680.11010.0013181018180625180022
    611353870.38550.33440.00365.3190.0730.11530.0014186020187226188521
    622464670.56120.47000.004810.690.150.16500.0020248425249734250720
    样品号14ELT3
    1913850.42410.22640.00222.6410.0370.08460.0011131613131218130724
    2341430.46060.22050.00222.5860.0410.08510.0012128413129720131727
    3793740.13540.21760.00222.4760.0500.08250.0014126913126526125832
    43108400.58690.32910.00325.0840.0680.11210.0013183418183425183321
    51333720.39410.33460.00335.2470.0710.11370.0014186118186025186022
    6327030.45270.04290.00040.3080.00650.05210.00102713273628946
    71434120.23190.33650.00335.2920.0720.11410.0014187018186825186522
    81353820.24960.33960.00335.3390.0740.11400.0014188518187526186522
    938410920.05950.35530.00355.9410.0820.12130.0015196019196727197522
    10153230.50970.04360.00040.3090.00810.05150.00132753274726258
    11692820.33320.23320.00232.7770.0380.08640.0011135113134919134724
    121715360.15160.31730.00344.8820.0700.11160.0013177719179926182521
    13605620.27320.10960.00161.2100.0240.08010.00126701080516119830
    141965940.17590.32110.00325.2760.0720.11920.0014179518186525194421
    151293360.30510.35560.00356.1210.0850.12480.0016196119199328202722
    16255450.58420.04290.00040.3050.00630.05160.00102713271626745
    17832360.42690.32470.00325.1220.0710.11440.0014181218184026187122
    183148280.51670.33730.00335.4800.0750.11780.0014187418189726192322
    191524140.53780.32350.00325.2570.0710.11790.0014180718186225192421
    样品号14ELT3
    201284950.34990.23780.00313.5630.0610.10870.0013137518154126177822
    211584900.20360.31660.00314.8950.0660.11220.0013177318180124183521
    2254911.28760.44130.00499.7250.150.15980.0020235726240936245421
    233159310.16020.33540.00335.2730.0720.11400.0014186418186425186422
    24572470.30080.22540.00222.6200.0380.08430.0011131013130619129925
    25316680.64370.04320.00040.31100.00600.05220.00092733275529441
    262346970.08920.33970.00355.4630.0780.11660.0014188519189527190522
    271153420.19640.33270.00335.2910.0710.11530.0014185218186725188521
    282627600.11220.34650.00345.7190.0770.11970.0014191819193426195221
    29472110.27150.22120.00222.5970.0370.08510.0011128813130019131925
    302748110.18060.33610.00335.3020.0720.11440.0014186819186925187021
    31671950.43720.32180.00325.3040.0740.11950.0015179818186926194922
    321265520.35280.22440.00222.6550.0370.08580.0011130513131618133424
    33862930.40510.27820.00273.9860.0560.10390.0013158316163123169523
    342397320.10510.33020.00325.2090.0710.11440.0014183918185425187122
    351143130.82600.31730.00314.9560.0670.11330.0014177617181225185322
    36892780.27110.31320.00314.8500.0680.11230.0014175718179425183722
    37431220.51460.32770.00325.2430.0740.11600.0015182718186026189622
    38341330.85330.22330.00222.6150.0410.08490.0012129913130520131428
    39275930.53040.04320.00040.31240.00650.05250.00102723276630845
    40245210.54000.04320.00040.31240.00730.05240.00122733276630451
    41572450.44160.21930.00212.5450.0360.08420.0011127812128518129725
    42641640.77680.33570.00335.4270.0800.11730.0015186618188928191524
    433119300.19760.32950.00325.0930.0680.11210.0013183618183525183421
    441255410.25670.22900.00232.7110.0370.08590.0010132913133118133523
    451273160.74510.34200.00345.5650.0750.11800.0014189619191126192721
    463038790.06480.34590.00336.1270.0830.12850.0015191518199427207721
    471646280.16750.25970.00253.7340.0500.10430.0013148814157921170222
    48713180.13460.22570.00222.7500.0390.08840.0011131213134219139024
    491043840.27920.25810.00263.6200.0500.10170.0012148015155422165623
    502069140.36040.21300.00283.2620.0510.11110.0014124516147223181722
    51132550.68050.04300.00040.30810.0110.05190.00172723273928376
    52962520.49240.33810.00335.4680.0740.11730.0014187818189625191521
    531573400.17160.43640.00429.5400.130.15860.0019233423239132244020
    541375660.38660.22590.00222.7080.0370.08690.0010131313133118135923
    55974030.25340.23310.00242.8470.0400.08860.0011135114136819139523
    561976520.29750.27910.00294.5710.0680.11880.0015158716174426193823
    571363520.57260.32460.00325.7340.0790.12810.0016181218193627207221
    587913860.14930.05920.00060.44420.00690.05450.00083714373639032
    59143150.39660.04300.00040.30910.00960.05220.00162713274829369
    603058310.03440.36280.00377.6380.110.15270.0018199621218930237620
    样品号14ELT3
    612045430.55560.33720.00345.4100.0730.11640.0014187319188626190121
    62994530.21330.22150.00222.5960.0360.08500.0010129013130018131623
    631799100.22860.19590.00282.3640.0390.08750.0010115317123220137223
    641426510.17980.22220.00232.6200.0360.08550.0010129413130618132723
    653068330.63490.33390.00345.2240.0700.11350.0013185719185725185621
    662767980.32710.33370.00335.2700.0700.11450.0013185618186425187321
    671687300.34640.22680.00232.6820.0360.08580.0010131813132418133322
    681064660.26130.22770.00232.6910.0370.08570.0010132213132618133223
    692236300.21500.34580.00355.7590.0790.12080.0014191519194026196821
    702229930.16730.22840.00222.6880.0360.08540.0010132613132518132423
     注:灰色阴影部分为不和谐数据
    下载: 导出CSV

    表  2   三面井组和额里图组砂岩碎屑锆石Lu-Hf 同位素组成

    Table  2   Lu-Hf isotopic compositions of detrital zircons for sandstonesfrom the Sanmianjing Formation and Elitu Formation

    样品号年龄/Ma176Yb/177Hf176Lu/177Hf176Hf/177HfεHf(0)εHf(t)TDM/MaTDM2/MafLu/Hf
    14SMJ4.118720.00760.00020.2815480.000023-43.3-1.923402631-0.99
    14SMJ4.22800.05280.00210.2824440.000024-11.6-5.811791667-0.94
    14SMJ4.318650.00880.00030.2816520.000020-39.61.522052415-0.99
    14SMJ4.425190.03070.00090.2811730.000022-56.5-1.628923113-0.97
    14SMJ4.519540.02660.00080.2816060.000021-41.21.322962500-0.98
    14SMJ4.625160.01170.00040.2811140.000023-58.6-2.929303185-0.99
    14SMJ4.719090.01350.00040.2815270.000022-44.0-2.023762665-0.99
    14SMJ4.820970.03010.00090.2813760.000031-49.4-3.826132920-0.97
    14SMJ4.925360.01590.00050.2811650.000020-56.8-0.928743080-0.98
    14SMJ4.103050.03910.00150.2821110.000021-23.4-17.016302386-0.95
    14SMJ4.1118280.00160.00000.2815160.000016-44.4-3.823722715-1.00
    14SMJ4.123660.02030.00090.2819140.000016-30.4-22.618782778-0.97
    14SMJ4.1318540.01190.00040.2814640.000018-46.3-5.524632838-0.99
    14SMJ4.143690.01670.00070.2818790.000017-31.6-23.719142850-0.98
    14SMJ4.1525130.00900.00040.2811560.000016-57.2-1.528753098-0.99
    14SMJ4.1618840.02430.00090.2815510.000018-43.2-2.323762668-0.97
    14SMJ4.1719540.01050.00040.2814830.000015-45.6-2.524372735-0.99
    14SMJ4.1818990.01320.00050.2815100.000017-44.6-2.924062717-0.99
    14SMJ4.1918760.01760.00060.2815010.000023-45.0-3.924262760-0.98
    14SMJ4.2019060.02410.00070.2815030.000016-44.9-3.324312747-0.98
    14SMJ4.2118990.01610.00050.2814930.000020-45.2-3.624312756-0.98
    14SMJ4.2219190.01220.00040.2813670.000018-49.7-7.425913007-0.99
    14SMJ4.2319340.02830.00090.2815930.000021-41.70.323172546-0.97
    14SMJ4.2425080.03120.00100.2812380.000023-54.30.228132993-0.97
    14SMJ4.2518460.02100.00060.2815380.000021-43.6-3.223742695-0.98
    14SMJ4.2627110.02060.00070.2810520.000017-60.8-1.330393238-0.98
    14SMJ4.2718070.01080.00040.2815090.000023-44.7-4.924022769-0.99
    14SMJ4.2818850.02880.00080.2814870.000026-45.4-4.524602804-0.97
    14SMJ4.2918000.00300.00010.2812970.000015-52.2-12.226673212-1.00
    14SMJ4.3025070.02560.00080.2811600.000024-57.0-2.229023139-0.98
    14ELT3.113070.02930.00100.2817460.000022-36.3-8.221152592-0.97
    14ELT3.212580.03200.00100.2817270.000028-37.0-9.921382660-0.97
    14ELT3.318330.02630.00080.2816960.000025-38.11.821732376-0.98
    14ELT3.42710.04580.00140.2821690.000035-21.3-15.715452276-0.96
    14ELT3.519750.03600.00110.2817050.000026-37.74.821782297-0.97
    14ELT3.62750.04410.00140.2821950.000030-20.4-14.615082215-0.96
    14ELT3.713470.03050.00100.2818400.000024-33.0-4.019832360-0.97
    14ELT3.820270.01920.00060.2815510.000027-43.21.323572557-0.98
    14ELT3.918350.02340.00080.2815740.000019-42.4-2.423362638-0.98
    14ELT3.1024540.01870.00070.2814970.000031-45.18.824352423-0.98
    14ELT3.1112990.04820.00160.2817790.000023-35.1-7.821022557-0.95
    14ELT3.122730.03960.00140.2822710.000022-17.7-12.014002047-0.96
    14ELT3.1318850.02410.00090.2816330.000021-40.30.722602484-0.97
    14ELT3.1419520.03780.00140.2816840.000024-38.53.222252382-0.96
    14ELT3.1513190.04080.00140.2818330.000024-33.2-5.220172416-0.96
    14ELT3.1619490.01630.00070.2815810.000021-42.10.523202545-0.98
    14ELT3.1716950.03010.00110.2817600.000023-35.80.721002338-0.97
    14ELT3.1818530.02610.00090.2814780.000023-45.8-5.724782849-0.97
    14ELT3.192720.03980.00140.2821820.000021-20.9-15.215272246-0.96
    14ELT3.2012970.02440.00090.2819110.000024-30.4-2.418792226-0.97
    14ELT3.2120770.00850.00030.2814680.000024-46.1-0.224502682-0.99
    14ELT3.222720.03840.00120.2823220.000030-15.9-10.213231934-0.96
    14ELT3.2319150.02850.00090.2816960.000030-38.03.521752330-0.97
    14ELT3.2424400.01330.00040.2811900.000022-56.0-2.028333074-0.99
    14ELT3.252710.03360.00110.2824610.000026-11.0-5.311241623-0.97
    14ELT3.263710.01920.00060.2820940.000028-24.0-16.016132371-0.98
    14ELT3.2719680.02300.00080.2814970.000025-45.1-2.324432729-0.98
    14ELT3.2813320.03910.00120.2815110.000027-44.6-16.224533104-0.96
    14ELT3.2919010.03850.00120.2817430.000023-36.44.421322266-0.96
    14ELT3.3018560.01600.00050.2815280.000029-44.0-3.223792701-0.99
    下载: 导出CSV
  • Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of Geological Society, London, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022

    Tang K D. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean Craton[J]. Tectonics, 1990, 9(2): 249-260. doi: 10.1029/TC009i002p00249

    Tong Y, Jahn B M, Wang T, et al. Permian alkaline granites in the Erenhot-Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance[J]. Journal of Asian Earth Sciences, 2015, 97: 320-336. doi: 10.1016/j.jseaes.2014.10.011

    邵济安. 中朝板块北缘中段地壳演化[M]. 北京:北京大学出版社, 1991:1-136.
    徐备,陈斌. 内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化[J]. 中国科学(D辑),1997,27(3):227-232. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199703005.htm
    徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,2014,30(7):1841-1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm
    邵济安,何国琦,唐克东. 华北北部二叠纪陆壳演化[J]. 岩石学报, 2015,31(1):47-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201501003.htm

    Wang Q, Liu X Y. Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia[J]. Tectonics, 1986, 5(7): 1073-1088. doi: 10.1029/TC005i007p01073

    Xiao W J, Windley B F, Hao J, et al. Accertion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt[J]. Tectonics, 2003, 22(6): 1-20.

    Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 2009, 98(6): 1189-1217. doi: 10.1007/s00531-008-0407-z

    Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26: 207-224. doi: 10.1016/j.jseaes.2005.09.001

    李锦轶,高立明,孙桂华,等. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞的约束[J]. 岩石学报,2007,23(3):565-582. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200703006.htm
    石玉若,刘翠,邓晋福,等. 内蒙古中部花岗质岩类年代学格架及该区构造岩浆演化讨论[J]. 岩石学报,2014,30(11):3155-3171. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411005.htm

    Iizuka T, Hirata T. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation MCICP MS technique. Chemical Geology, 2005, 220(1): 121-137.

    张海华,郑月娟,陈树旺,等. 内蒙古巴林左旗二叠系碎屑锆石LA-ICP-MS U-Pb年龄及构造意义[J]. 地质学报,2015,89(10): 1703-1717. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201510001.htm
    郑月娟,公繁浩,陈树旺,等. 内蒙古西乌珠穆沁旗地区下二叠统原寿山沟组碎屑锆石LA-ICP-MS U-Pb年龄及地质意义[J]. 地质通报,2013,32(8):1260-1268. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130812&journal_id=gbc
    内蒙古自治区地质矿产局. 内蒙古自治区区域地质志[M]. 北京: 地质出版社,1991:1-725.

    Zhang S H, Zhao Y, Ye H, et al. Origin and evolution of the Bainaimiao arc belt: Implications for crustal growth in the southern Central Asian orogenic belt[J]. Geological Society of America Bulletin, 2014, 126(9/10): 1275-1300. https://www.researchgate.net/profile/Shuan-Hong_Zhang/publication/268370946_Origin_and_evolution_of_the_Bainaimiao_arc_belt_Implications_for_crustal_growth_in_the_southern_Central_Asian_orogenic_belt/links/5548413e0cf2b0cf7aceb843.pdf

    黄汲清. 中国主要地质构造单元[M]. 北京:地质出版社,1954:1-102.
    耿建珍,李怀坤,张健,等. 锆石Hf同位素组成的LA-MC-ICPMS测定[J]. 地质通报,2011,30(10):1508-1514. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20111004&journal_id=gbc

    Nowell G M, Kempton P D, Noble S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectrometry: insights into the depleted mantle[J]. Chemical Geology, 1998, 149(3/4):211-233.

    Blichert-Toft J, Albarede F. The Lu-Hf geochemistry of the chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X

    吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200416001.htm
    张志存,盛金章. 内蒙古白乃庙Parafusulina动物群[J]. 微体古生物学报,1987,4(3):237-246. http://www.cnki.com.cn/Article/CJFDTOTAL-WSGT198703000.htm
    周祖仁. 湘东南早二叠世栖霞中、晚期的staffella vulgaris (sp. nov.),Misellinaclaudiae及Parafusulinamultiseptata 䗴类群[J]. 古生物学报,1984,23(1):107-123.
    内蒙古自治区地质矿产局. 内蒙古自治区岩石地层[M]. 武汉:中国地质大学出版社,1996:1-344.
    田树刚,李子舜,王峻涛,等. 内蒙古东部及邻区石炭纪-二叠纪构造地层格架与形成环境[J]. 地质通报,2012,31(10):1554-1564. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20121002&journal_id=gbc

    Yang J H, Wu F Y, Shao J A, et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352. https://www.researchgate.net/publication/223423132_Constraints_on_the_timing_of_uplift_of_the_Yanshan_Fold_and_Thrust_Belt_North_China

    洪大卫,王式广,谢锡林,等. 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘,2000,7(2):441-456.

    Zhang S H, Zhao Y, Song B, et al. Carboniferous granitic plutons from the northern margin of the North China block: Implications for a late Paleozoic active continental margin[J]. Journal of Geological Society, 2007, 164(2): 451-463. doi: 10.1144/0016-76492005-190

    王芳,陈福坤,候振辉,等. 华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成[J]. 岩石学报, 2009,25(11):3057-3074. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911035.htm

    Zhang S H, Zhao Y, Santosh M. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent[J]. Precambrian Research, 2012, 222/223: 339-367. doi: 10.1016/j.precamres.2011.06.003

    Wang Q H, Yang H, Yang D B, et al. Mid-Mesoproterozoic (~ 1.32Ga) diabase swarms from the western Liaoning region in the northern margin of the North China Craton: BaddeleyitePb-Pb geochronology, geochemistry and implications for the final breakup of the Columbia supercontinent[J]. Precambrian Research, 2014, 254: 114-128. doi: 10.1016/j.precamres.2014.08.005

    翟明国,卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解[J]. 中国科学(D辑),2000,30(增刊):129-137. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2000S1016.htm
    刘树文,吕勇军,凤永刚,等. 冀北单塔子杂岩的地质学和锆石U-Pb年代学[J]. 高校地质学报,2007,13(3):484-497. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703012.htm
    简平,张旗,刘敦一,等. 内蒙古固阳晚太古代赞岐岩(sanukite)——角闪花岗岩的SHRIMP定年及其意义[J]. 岩石学报, 2005,21(1):151-157. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501016.htm
    韩国卿,刘永江,温泉波,等. 西拉木伦河缝合带北侧二叠纪砂岩碎屑锆石LA-ICP-MSU-Pb年代学及其构造意义[J]. 地球科学-中国地质大学学报,2012,36(4):687-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201104008.htm
    程胜东,方俊钦,赵盼,等. 内蒙古西拉木伦河两岸志留-泥盆系碎屑锆石年龄及其构造意义[J]. 岩石学报, 2014,30(7):1909-1921. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407007.htm

    Li J Y, Guo F, Li C W, et al. Permian back-arc extension in central Inner Mongolia, NE China: Elemental and Sr-Nd-Pb-Hf-O isotopic constraints from the Linxi high-MgOdiabasedikes[J]. Island Arc, 2015, 24: 404-424. doi: 10.1111/iar.2015.24.issue-4

    Shi Y R, Anderson J L, Li L L, et al. Zircon ages and Hf isotopic compositions of Permian and Triassic A-type granites from central Inner Mongolia and their significance for late Palaeozoic and early Mesozoic evolution of the Central Asian Orogenic Belt[J]. International Geology Review, 2016, 58(8): 967-982. doi: 10.1080/00206814.2016.1138333

    Eizenhöfer P R, Zhao G C, Sun M, et al. Geochronological and Hf isotopic variability of detrital zircon in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolia arcs and tectonic implications[J]. Geological Society of America Bulletin, 2015, 127(9/10): 1422-1436.

    Zhao P, Xu B, Tong Q L, et al. Sedimentological and geochronological constraints on the Carboniferous evolution of central Inner Mongolia, southeastern Central Asian Orogenic Belt: Inland sea deposition in a post-orogenic setting[J]. Gondwana Research, 2016, 31: 253-270. doi: 10.1016/j.gr.2015.01.010

    王荃,刘雪亚,李锦轶. 中国内蒙古中部的古板块构造[J]. 中国地质科学院院报,1991,第22号: 1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199101000.htm
    马旭,陈斌,陈家富,等. 华北克拉通北缘晚古生代岩体的成因和意义:岩石学、锆石U-Pb年龄、Nd-Sr同位素及锆石原位Hf同位素证据[J]. 中国科学:地球科学,2012,42(12):1830-1850. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201212006.htm
    王挽琼,徐仲元,刘正宏,等. 华北板块北缘中段早中二叠世的构造属性:来自花岗岩类锆石U-Pb年代学及地球化学的制约[J]. 岩石学报,2013,29(9):2987-3003. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309003.htm

    Li Y L, Zhou H W, Brouwer, F M, et al. Late Carboniferous-Middle Permian arc/forearc-related basin in Central Asian Orogenic Belt: Insights from the petrology and geochemistry of the Shuangjing Schist in Inner Mongolia, China[J]. Island Arc, 2011, 20: 535-549. doi: 10.1111/j.1440-1738.2011.00784.x

    Zhang X H, Mao Q, Zhang H F, et al. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: The early Permian Guyang batholith from the northern North China Craton[J]. Lithos, 2011, 125: 569-591. doi: 10.1016/j.lithos.2011.03.008

    Zhang Z, Zhang H F, Shao J A, et al. Mantle upwelling during Permian to Triassic in the northern margin of the North China Craton: Constraints from southern Inner Mongolia[J]. Journal of Asian Earth Sciences, 2014, 79: 112-129. doi: 10.1016/j.jseaes.2013.09.015

    李洪颜,徐义刚,黄小龙,等. 华北克拉通北缘晚古生代活化:山西宁武-静乐盆地上石炭统太原组碎屑锆石U-Pb测年及Hf同位素证据[J]. 科学通报,2009,54(5):632-640. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905017.htm

    Wang Y, Zhou L Y, Zhao L J. Cratonic reactivation and orogeny: An example from the northern margin of the North China Craton[J]. Gondwana Research, 2013, 24: 1203-1222. doi: 10.1016/j.gr.2013.02.011

    Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1

    Chen Y, Zhang Z C, Li K, et al. Detrital zircon U-Pb ages and Hf isotopes of Permo-Carboniferous sandstones in central Inner Mongolia, China: Implications for provenance and tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Tectonophysics, 2016, 671: 183-201. doi: 10.1016/j.tecto.2016.01.018

    Luo Z W, Zhang Z C, Li K, et al. Petrography, geochemistry, and U-Pb detrital zircon dating of early Permian sedimentary rocks from the North Flank of the North China Craton: Implications for the late Palaeozoic tectonic evolution of the eastern Central Asian Orogenic Belt[J]. International Geology Review, 2016, 58(7): 787-806. doi: 10.1080/00206814.2015.1118646

    Wang Y, Luo Z H, Santosh M, et al. The Liuyuan volcanic belt in NW China revisited: Evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt[J]. Geological Magazine, 2016, 1: 1-21. https://www.researchgate.net/publication/293017274_The_Liuyuan_Volcanic_Belt_in_NW_China_revisited_evidence_for_Permian_rifting_associated_with_the_assembly_of_continental_blocks_in_the_Central_Asian_Orogenic_Belt

    张晓晖,翟明国. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应[J]. 岩石学报,2010,26(5):1329-1341. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201005001.htm

    Yarmolyuk V V, Kovalenko V I, Kozlovsky A M, et al. Late Paleozoic-Early Mesozoic rift system of Central Asia: composition of magmatic rocks, sources, order of formation and geodynamics[C]// Kovalenko V I. Tectonic problems of Central Asia. World of Science Publisher, Moscow, 2005: 197-226.

    Yarmolyuk V V, Kovalenko V I,Kozlovsky A M, et al. Crust-forming processes in the Hercynides of the Central Asian Foldbelt[J]. Petrology, 2008, 16: 679-709. doi: 10.1134/S0869591108070035

    Blight J H S, Crowley Q G, Petterson M G, et al. Granites of the southern Mongolia Carboniferous arc: New geochronological and geochemical constraints[J]. Lithos, 2010, 116: 35-52. doi: 10.1016/j.lithos.2010.01.001

    洪大卫,黄怀曾,肖宜君,等. 内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J]. 地质学报,1994,68(3):219-230. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199403002.htm
    陈彦,张志诚,李可,等. 内蒙古西乌旗地区二叠纪双峰式火山岩的年代学、地球化学特征和地质意义[J]. 北京大学学报(自然科学版),2014,50(5):843-858. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201405008.htm
    徐佳佳,赖勇,崔栋,等. 内蒙古前进场岩体岩石学与锆石U-Pb年代学研究[J]. 北京大学学报(自然科学版),2012,48(4):617-628. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201204011.htm
    施光海,苗来成,张福勤,等. 内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J]. 科学通报,2004,49(4):384-389. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200404015.htm

    Chen C, Zhang Z C, Li K, et al. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block[J]. Journal of Asian Earth Sciences, 2015, 97: 307-319. doi: 10.1016/j.jseaes.2014.06.024

    蒋孝君,刘正宏,徐仲元,等. 内蒙古镶黄旗乌兰哈达中二叠世碱长花岗岩LA-ICP-MS锆石U-Pb年龄和地球化学特征[J]. 地质通报,2013,32(11):1760-1768. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20131108&journal_id=gbc
图(6)  /  表(2)
计量
  • 文章访问数:  2698
  • HTML全文浏览量:  283
  • PDF下载量:  226
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-23
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2017-02-28

目录

/

返回文章
返回