Geochemical characteristics, formation age and tectonic environment of the Mankeyidingsayi rocks in the Wuxilike area of Altay
-
摘要:
阿尔泰乌希里克地区位于西伯利亚板块阿尔泰陆缘活动带的阿尔泰古生代深成岩浆弧内,花岗岩广泛分布。通过对满克依顶萨依岩体进行LA-ICP-MS锆石U-Pb测年和岩石地球化学分析,探讨该岩体形成的时代及构造环境。乌希里克南部满克依顶萨依岩体中细粒白云母二长花岗岩的LA-ICP-MS锆石U-Pb年龄为217.9±2.3Ma,表明岩体侵位于早中生代晚三叠世早期。岩石具有高的SiO2(70.86%~74.32%)和Al2O3(14.51%~14.96%)含量,低P2O5(0.24%~0.33%)和MgO+FeO(0.39%~1.25%)含量,富碱(K2O+Na2O=8.07%~8.29%),具有低的CaO/Na2O值(0.13~0.30,≤0.3)。以上特征表明,该岩体属高钾钙碱性过铝质岩类,具有S型花岗岩的典型特征。结合前人研究成果综合分析,推测岩体形成于板内(陆内)环境,与地幔柱有关。岩体主要由源自地壳的泥质沉积物部分熔融形成,在部分熔融过程中有富钙的斜长石、钛铁矿等矿物的残留。
Abstract:The Wuxilike area of Altay is located in Siberian Altay terrigenous mobile belt and the Altay Paleozoic plutonic magmatic arc, where granite is widely distributed. By LA-ICP-MS zircon U-Pb dating and geochemical analysis, the authors studied the age and tectonic environment of the Makeyidingshayi granite body. The LA-ICP-MS zircon U-Pb age of the medium-fine grained muscovite adamellite of Mankeyidingsayi granite body in southern Wuxilike area is 217.9±2.3Ma, showing that the granite body was emplaced in the early Late Triassic of the early-Mesozoic. The rocks have high SiO2 (70.86%~74.32%) and Al2O3 (14.51%~14.96%), low P2O5 (0.24%~0.33%) and MgO+FeO (0.39%~1.25%) content, high alkali (K2O+Na2O=8.07%~8.29%), and low CaO/Na2O (0.13~0.30, ≤0.3) ratio. These characteristics indicate that the granite body belongs to high-K calc-alkaline peraluminous rocks, with the typical features of S-type granites. In combination with the work and the results from previous comprehensive analysis, the authors infer that the granite body was formed in an intercontinental (inland) environment, related to the mantle plume. The granite body was mainly derived from partial melting of argillaceous sediments in the crust, and during the partial melting process, residuals of calcium-rich plagioclase, ilmenite and other minerals were preserved.
-
Keywords:
- geochemical characteristics /
- formation age /
- tectonic environment /
- Mankeyidingsayi /
- Wuxilike /
- Altay
-
致谢: 成文过程中承蒙中国地质调查局西安地质调查中心贺永康高级工程师和该中心国土资源部岩浆作用成矿与找矿重点实验室李艳广工程师悉心指导和修改,中国地质大学(北京)地球科学与资源学院李大鹏博士进行指导,中国地质大学(武汉)地质过程与矿产资源国家重点实验室及中国冶金地质总局山东局测试中心提供测试数据,在此一并表示诚挚的谢意。
-
图 1 阿尔泰造山带区域地质及花岗岩分布略图(据参考文献[13]修改)
Figure 1. Geological sketch map of the Altay orogenic belt, showing the distribution of granites
图 2 研究区侵入岩分布简图
1—中细粒白云母二长花岗岩;2—粗中粒二长花岗岩;3—中粗粒似斑状二云母二长花岗岩;4—实测性质不明断层;5—推测性质不明断层;6—实测正断层;7—实测整合岩层界线;8—花岗岩体脉动接触界线;9—同位素样品采样点;Qhal+pl—全新统冲洪积;Qp3gl—上更新统冰碛堆积;Qp2+3gl—中-上更新统冰碛堆积;Z∈1k2—震旦系-寒武系喀纳斯群;ηγmT31—晚三叠世中细粒白云母二长花岗岩;ηγT31—晚三叠世粗中粒二长花岗岩;ηγβmT31—晚三叠世中粗粒似斑状二云母二长花岗岩;δψO2—中晚奥陶世变质角闪石闪长岩;Pt2S—中元古界苏普特岩群
Figure 2. The distribution of intrusive rocks in the study area
图 7 SiO2-K2O岩石系列判别图(底图据参考文献[21])
Figure 7. SiO2-K2O rock series discrimination diagram
图 8 花岗岩A/CNK-A/NK图解(底图据参考文献[22])
Figure 8. A/CNK-A/NK diagram of granite
图 10 花岗岩球粒陨石标准化稀土元素配分曲线图(标准化值据参考文献[23])
Figure 10. Chondrite-normalized REE patterns of granite
图 11 花岗岩微量元素蛛网图(标准化值据参考文献[23])
Figure 11. Primitive mantle-normalized trace element spidergrams of granites
图 12 花岗岩成因分类R1-R2构造判别图解(底图据参考文献[35])
①—地幔斜长花岗岩;②—破坏性活动板块边缘(板块碰撞前);③—板块碰撞后隆起期花岗岩;④—晚造山期花岗岩;⑤—非造山区A型花岗岩;⑥—同碰撞(S型)花岗岩;⑦—造山期后A型花岗岩
Figure 12. R1-R2 tectonic discrimination diagram for granite genetic classification
图 13 花岗岩Yb-Ta构造环境判别图解(底图据参考文献[36])
syn-COLG—同碰撞花岗岩;WPG—板内花岗岩;ORG—岛弧花岗岩;VAG—洋脊花岗岩
Figure 13. Yb-Ta tectonic environment discrimination diagram of granite
表 1 中细粒白云母二长花岗岩的LA-ICP-MS锆石U-Th-Pb年龄测试数据
Table 1 LA-ICP-MS zircon U-Th-Pb data of the medium-fine grained muscovite adamellite
测点号 Pb/10-6 Th/10-6 U/10-6 232Th/238U 同位素比值 年龄/Ma 207Pb/206Pb 1σ 207Pb/235Pb 1σ 206Pb/238Pb 1σ 207Pb/206Pb 1σ 207Pb/235Pb 1σ 206Pb/238Pb 1σ PM12-TW17-2 110 611 643 0.95 0.0522 0.0037 0.24 0.02 0.0342 0.0006 295 164 222 13 217 4 PM12-TW17-3 105 678 508 1.33 0.0494 0.0043 0.23 0.02 0.0335 0.0005 165 202 207 16 212 3 PM12-TW17-4 94 427 1256 0.34 0.0482 0.0026 0.23 0.01 0.0343 0.0005 109 122 208 10 218 3 PM12-TW17-5 57 365 331 1.10 0.0511 0.0058 0.24 0.03 0.0350 0.0007 256 231 216 21 221 4 PM12-TW17-6 101 618 572 1.08 0.0512 0.0039 0.24 0.02 0.0344 0.0006 256 178 216 14 218 4 PM12-TW17-7 294 514 2189 0.23 0.0567 0.0018 0.63 0.02 0.0795 0.0010 480 69 493 13 493 6 PM12-TW17-9 199 119 6894 0.02 0.0499 0.0015 0.24 0.01 0.0352 0.0004 191 70 222 6 223 2 PM12-TW17-10 613 1550 3920 0.40 0.0521 0.0015 0.35 0.01 0.0480 0.0006 300 60 302 8 302 4 PM12-TW17-11 14 89 67 1.33 0.0596 0.0180 0.25 0.07 0.0361 0.0013 587 550 229 54 229 8 PM12-TW17-16 99 515 1049 0.49 0.0478 0.0025 0.23 0.01 0.0349 0.0005 100 109 211 10 221 3 PM12-TW17-19 176 827 2568 0.32 0.0498 0.0018 0.24 0.01 0.0344 0.0004 183 118 216 7 218 3 PM12-TW17-21 148 992 689 1.44 0.0499 0.0030 0.24 0.01 0.0343 0.0005 191 136 215 12 217 3 PM12-TW17-22 111 417 1853 0.23 0.0507 0.0021 0.24 0.01 0.0336 0.0004 233 96 215 8 213 2 PM12-TW17-23 373 2484 1245 2.00 0.0523 0.0023 0.25 0.01 0.0343 0.0004 298 100 224 9 218 2 注:中国地质大学(武汉)地质过程与矿产资源国家重点实验室测试,2014 表 2 满克依顶萨依二长花岗岩类岩石主量、微量及稀土元素化学成分
Table 2 Abundances of major, trace and rare earth elements of the adamellite in Mankeyidingsayi
岩性 灰白色中细粒白云
母二长花岗岩灰白色粗中粒
二长花岗岩灰白色似斑状
二云母二长花岗岩样号 PM12-GS13 PM12-GS32 PM12-GS29 PM12-GS37 SiO2 73.08 74.32 72.9 70.86 TiO2 0.14 0.06 0.3 0.32 Al2O3 14.74 14.54 14.51 14.96 Fe2O3 1 0.48 1.72 1.77 FeO 0.37 0.18 0.65 0.74 MnO 0.05 0.04 0.07 0.05 MgO 0.34 0.21 0.57 0.51 CaO 0.55 0.55 0.92 0.96 Na2O 3.52 4.16 3.31 3.15 K2O 4.57 4.12 4.76 6.5 P2O5 0.33 0.24 0.32 0.29 LOI 1 0.87 0.83 0.63 Total 99.32 99.58 100.2 99.99 Na2O+K2O 8.09 8.29 8.07 9.65 K2O/Na2O 1.3 0.99 1.44 2.06 σ 2.18 2.19 2.18 3.34 AR 3.25 3.44 3.19 4.08 DI 92.38 94.14 89.63 90.64 SI 3.49 2.25 5.14 4 A/NK 1.37 1.28 1.37 1.22 A/CNK 1.26 1.18 1.18 1.07 Li 204 85.6 133 112 Be 9.02 11.1 20.6 12.1 Sc 2.85 2.06 4.99 4.62 V 9.17 3.03 22.4 22.6 Cr 2.11 0.61 2.82 4.67 Mn 347 272 483 352 Co 105 79.8 70.8 82.4 Ni 2.72 2.3 3.3 4.06 Cu 8.7 3.77 12.4 9.75 Zn 51.9 15.7 63.1 58 Ga 26.1 25.1 25.5 22.9 Ge 1.5 1.57 1.63 1.39 Rb 495 359 416 390 Sr 27 21.4 144 218 Y 7.74 6.79 15.2 16.9 Zr 70.9 20.7 152 188 Nb 25.6 24.8 31.3 22.3 Mo 0.23 0.16 0.51 0.8 Sn 3.79 1.93 4.16 3.73 Cs 25.5 13.4 26.6 17.8 Ba 53.6 21.1 278 585 Hf 2.53 1.01 4.48 5.14 Ta 4.6 4.05 6.21 2.82 Tl 3.2 2.11 2.59 2.63 Pb 19.3 21.4 27.9 43 Bi 7.88 0.17 0.62 0.35 Th 11.3 1.94 21.5 24.5 U 3.29 1.69 21.2 7.17 La 12.63 2.98 38.71 46.55 Ce 28.56 6.21 80.81 95.64 Pr 3.45 0.68 9.3 10.95 Nd 12.78 2.31 33.77 38.79 Sm 2.97 0.57 6.01 7.19 Eu 0.31 0.12 0.88 1.21 Gd 2.05 0.55 4.08 4.66 Tb 0.29 0.12 0.56 0.63 Dy 1.51 0.81 3 3.44 Ho 0.25 0.18 0.51 0.57 Er 0.63 0.68 1.39 1.57 Tm 0.09 0.14 0.21 0.23 Yb 0.63 1.17 1.5 1.62 Lu 0.09 0.19 0.2 0.23 ΣREE 66.25 16.72 180.94 213.28 LREE 60.7 12.87 169.47 200.32 HREE 5.55 3.85 11.46 12.95 LREE/HREE 10.95 3.34 14.78 15.46 LaN/YbN 14.45 1.82 18.48 20.57 δEu 0.36 0.62 0.51 0.6 注:主量元素含量单位为%;微量和稀土元素含量为10-6;由中国冶金地质总局山东局测试中心测试,2014 -
邹天人, 曹惠志, 吴柏青.新疆阿尔泰造山花岗和非造山花岗岩及其判别标志[J].地质学报, 1988, 62(3):228-234. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198803004.htm 王中刚, 赵振华.阿尔泰花岗岩类的成因与演化(新疆地质科学第1辑)[M].北京:地质出版社, 1990:66-67. 王中刚, 赵振华, 邹天人, 等.阿尔泰花岗岩类地球化学[M].北京:科学出版社, 1998:1-152. 刘伟.中国新疆阿尔泰花岗岩的时代及成因类型特征[J].大地构造与成矿学, 1990, 14(1):43-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK199001005.htm 肖序常, 汤耀庆, 冯益民.新疆北部及邻区大地构造[M].北京:地质出版社, 1992:1-169. 赵振华, 王中刚, 邹天人, 等.阿尔泰花岗岩类REE及O、Pb、Sr、Nd同位素组成及成岩模型[M].北京:科学出版社, 1993:239-266. 何国琦, 李茂松, 刘德权, 等.中国新疆古生代地壳演化及成矿[M].新疆人民出版社和香港文化教育出版社, 1994:1-437. 李华芹, 谢才富, 常海亮, 等.新疆北部有色金属矿床成矿作用年代学[M].北京:地质出版社, 1998:46-176. 王登红, 陈毓川, 徐志刚, 等.阿尔泰成矿省的成矿系列及成矿规律[M].北京:原子能出版社, 2002:1-498. Wang T,Hong D W,Jahn B M,et al.Timing,petrogenesis,and setting of Paleozoic synorogenic intrusions from the Altay Mountains,Northwest China:implications for the tectonic evolution of an accretionary orogen[J].The Journal of Geology,2006,114:735-751. doi: 10.1086/507617 Wang T, Hong D W, Jahn B M, et al.Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altay Mountains, Northwest China:implications for the tectonic evolution of an accretionary orogen[J].The Journal of Geology, 2006, 114:735-751. doi: 10.1086/507617
曾乔松, 陈广浩, 王核, 等.阿尔泰冲乎尔盆地花岗质岩体的锆石SHRIMP U-Pb定年及其构造意义[M].岩石学报, 2007, 23(8):1921-1932. http://mall.cnki.net/magazine/article/ysxb200708012.htm 何国琦, 成守德, 徐新, 等.中国新疆及邻区大地构造图(1:2500000)说明书[M].北京:地质出版社, 2004:1-65. 刘国仁, 董连慧, 高福平, 等.新疆阿尔泰克兰河中游泥盆纪花岗岩锆石LA-ICP-MS U-Pb年龄及地球化学特征[J].地球学报, 2010, 31(4):519-531. http://mall.cnki.net/magazine/article/dqxb201004005.htm Windley B F,Kroner A,Guo J H,et al.Neoproterozoic to palaeozoic geology of the Altay orogen,NW China:new zircon age data and tectonic evolution[J].The Journal of Geology,2002,110:719-737. doi: 10.1086/342866 Windley B F, Kroner A, Guo J H, et al.Neoproterozoic to palaeozoic geology of the Altay orogen, NW China:new zircon age data and tectonic evolution[J].The Journal of Geology, 2002, 110:719-737. doi: 10.1086/342866
Li J Y,Xiao W J,Wang K Z,et al.Neoproterozoic-Paleozoic tectonostratigraphy,magmatic activities and tectonic evolution of eastern Xinjiang,NW China[C]//Mao J W,Goldfarb S,Wang X,et al.Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan.IAGOD Guidebook Series,2003,10:31-74. Li J Y, Xiao W J, Wang K Z, et al.Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China[C]//Mao J W, Goldfarb S, Wang X, et al.Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan.IAGOD Guidebook Series, 2003, 10:31-74.
Xiao W,Windley B F,Badarch G,et al.Palaeozoic accretionary and convergent tectonics of the southern Altayds:implications for the growth of Central Asia[J].Journal of the Geological Society,2004,161:339-342. doi: 10.1144/0016-764903-165 Xiao W, Windley B F, Badarch G, et al.Palaeozoic accretionary and convergent tectonics of the southern Altayds:implications for the growth of Central Asia[J].Journal of the Geological Society, 2004, 161:339-342. doi: 10.1144/0016-764903-165
王涛, 童英, 李舢, 等.阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J].岩石矿物学杂志, 2010, 29(6):595-618. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006002.htm Liu Y,Hu Z,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology.2008,257(1/2):34-43. https://www.researchgate.net/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard Liu Y, Hu Z, Gao S, et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology.2008, 257(1/2):34-43. https://www.researchgate.net/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard
Ludwing K R.User's Manual for Isoplot3.6:a geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Centre Special Publications,2008. Ludwing K R.User's Manual for Isoplot3.6:a geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Centre Special Publications, 2008.
Yuan H L,Wu F Y,Gao S,et al.Determination of栠敕洭楐换愠污??攠潡汮潤朠祲???????????扬牥?孥??崠?偯敮慣牥据整??????慳爠牯楦猠?乩???坮?吠楦湲摯汭攠?????呯物慣挠敩?整汲敵浳敩湯瑮?搠楩獮挠牮楯浲楴湨慥晡楳潴湥?摮椠慃杨物慮浡猠?晹漠牬?瑳敥捲琠潡湢楬捡?楩湯瑮攠牉灃牐攭瑍慓瑛楊潝渮?潨晩?来牳慥渠楓瑣楩捥?牣潥挠歂獵孬?嵥?偩敮漮琲爰漰氳???????呼???????????扢牲?孛??嵝?偌潥琠獍敡汩畴敲癥??????慡扫歴楥湭??????潄瑵敤来潫瘠?嘬???呡桬攮??慃汬条畳瑳祩?捩潣浡灴汩敯确?摯敦瀠潉獧楮瑥?瑵桳攠??潣牫湳礠??汤琠慇祬?浳楳湡敲特愠汯潦朠楔捥慲汭?慛湍摝?杏數潦捯桲敤洺楂捬慡汣?捷桥慬牬愠捓瑣敩牥楮獴瑩楦捩獣?慐湵摢?晩汣畡楴摩?牮敳本椱洹攸?漺昱?漱爹攳?昼潢牲派慛琲椲潝渠孍?嵮??敲漠汐漠杄椬祐慩?剣畯摬湩礠歐栠??敔獥瑣潴牯潮穩档搠敤湩楳楣??ねど?????????????????扩牤?孛??崮?呥慯祬汯潧物?卡?删??捣汩敥湴慹渠湯?匠???呲桩散?挠潂湵瑬楬湥整湩瑮愠氱?挸爹甬猱琰?椺琶猳挵漭洶瀴漳献椼瑢楲漾湛′愳湝搠?敵癮漠汓甠瑓椬潍湣孄?嵮??汧慨挠歗眠敆氮汃?佥硭晩潣牡摬?偡牮敤猠獩?????????????扭牡?孩??嵯??捯摣潥湡潮畩杣栠?坡???却畳渺?卭?卬?呣桡整?捯潮浳瀠潦獯楲琠業潡湮?潬晥?瑣桯敭?敯慳物瑴桩孯?崠??桤攠浰楲捯慣汥??敥潳汛潊杝礮????????ち?㈠????????扌牯?孤?の崬?印祥汣癩敡獬琠敐牵?偬???側潩獯瑮?挬漱氹永椹猺椳漱渲愭氳?猵琮爼潢湲朾汛礲?灝攠犁憅氬留浏椬準澇疤献?朔狰慱湗椘璱斗玩宄?巳??楐瑢桴濣獦??????????????日?????岩石学与地球动力学研讨会论文摘要,2005:418. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW200322002.htm Yuan H L, Wu F Y, Gao S, et al.Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J].Chinese Science Bulletin.2003, 48(22):2411-2421. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW200322002.htm
童英,王涛,洪大卫,等.阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意义[J].地球学报,2005,26(增刊):74-77. Le Maitre R W, Baktemarr P, Dudek A, et al.A Classification of Igneous Rocks and Glossary of Terms[M].Oxford:Blackwell Scientific Publications, 1989:1-193.
童英,王涛,Kovach V P,等.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义[J].岩石学报,2006,22(5):1267-1278. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
童英,王涛,洪大卫,等.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J].岩石学报,2007,23(8):1933-1944. http://sp.lyellcollection.org/content/42/1/313.short Sun S S, McDonough W F.Chemical and isotopic systematic of oceanic basalts:implications for mantle composition and processes[J].Geological Society, London, Special Publications, 1989:312-345. http://sp.lyellcollection.org/content/42/1/313.short
袁超, 孙敏, 肖文交.阿尔泰山南缘花岗岩的锆石U-Pb年代学及其地球化学特征[C]//2005年全国岩石学与地球动力学研讨会论文摘要, 2005:418. 童英, 王涛, 洪大卫, 等.阿尔泰造山带西段同造山铁列克花岗岩体锆石U-Pb年龄及其构造意义[J].地球学报, 2005, 26(增刊):74-77. http://cpfd.cnki.com.cn/article/cpfdtotal-zgkd200510002026.htm 童英, 王涛, Kovach V P, 等.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义[J].岩石学报, 2006, 22(5):1267-1278. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605018.htm 童英, 王涛, 洪大卫, 等.中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J].岩石学报, 2007, 23(8):1933-1944. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708013.htm 周刚, 张招崇, 罗世宾, 等.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩:年龄、地球化学特征及其地质意义[J].岩石学报, 2007, 23(8):1909-1920. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708011.htm 周刚, 张招崇, 王新昆, 王祥, 罗世宾, 何斌, 张小林.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母40Ar-39Ar年龄及意义[J].地质学报, 2007, 81(3):359-369. 杨富全, 毛景文, 闫升好, 等.新疆阿尔泰蒙库同造山斜长花岗岩年代学、地球化学及其地质意义[J].地质学报, 2008, 82(4):485-499. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804006.htm Batchelor B,Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].C https://www.researchgate.net/publication/232387206_SHRIMP_U-Pb_Zircon_geochronology_of_the_Altai_No_3_Pegmatite_NW_China_and_its_implications_for_the_origin_and_tectonic_setting_of_the_pegmatite Wang T, Tong Y, Jahn B, et al.SHRIMP U-Pb Zircon geochronology of the Altai No.3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite[J].Ore Geology Reviews, 2007, 32(1/2):325-336. https://www.researchgate.net/publication/232387206_SHRIMP_U-Pb_Zircon_geochronology_of_the_Altai_No_3_Pegmatite_NW_China_and_its_implications_for_the_origin_and_tectonic_setting_of_the_pegmatite
Wang T, Jahn B M, Kovach V P, et al.Mesozoic anorogenic granitic magmatism in the Ahai Paleozoic accretionary orogen, NW China, and its Implications for crustal architecture and growth[C]//Abstract SE53-AO1O, AOGS 5th Annual General Meeting, Busan, Korea, 2008.
李舢, 王涛, 童英.中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J].岩石矿物学杂志, 2010, 29(6):642-662. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006004.htm 秦克章, 申茂德, 唐冬梅, 等.阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代[J].新疆地质, 2013, 31(增刊):1-7. http://www.cqvip.com/qk/82738x/2013f12/48424091.html Batchelor B, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 48:43-55. doi: 10.1016/0009-2541(85)90034-8
Pearce J A, Harris N B W, Tindle A G.Trace element discriminafion diagrams for tectonic interpretation of granitic rocks[J].Peotrol., 1984, 25:956-983. doi: 10.1093/petrology/25.4.956
Potseluev A A, Babkin D I, Kotegov V I.The Kalguty complex deposit, the Gorny Altay:mineralogical-and geochemical characteristics and fluid regime of ore formation[J].Geologiya Rudnykh Mestorozhdenii, 2006, 48(5):439-459. doi: 10.1134/S1075701506050047
Taylor S R, Mclenann S M.The continental crust:itscomposition and evolution[M].Blackwell:Oxford Press, 1985:1-312.
Mcdonough W F, Sun S S.The composition of the earth[J].Chemical Geology, 1995, 120:223-253. doi: 10.1016/0009-2541(94)00140-4
Sylvester P J.Post-collisional strongly peraluminous granites[J].Lithos, 1998, 45(1/4):29-44. https://www.researchgate.net/publication/223458063_Post-collisional_strongly_peraluminous_granites