Early Cretaceous magmatism in Dongqiao, Tibet: Implications for the evolution of the Bangong-Nujiang Ocean and crustal growth in a continent-continent collision zone
-
摘要:
对班公湖-怒江缝合带内的岩浆作用进行LA-ICP-MS锆石U-Pb测年和地球化学分析,在辉绿岩中获得138.7±1.0Ma的206Pb/238U年龄加权平均值,在流纹岩中获得了110.4±0.4Ma的谐和年龄,表明区内岩浆作用具有2期成因。地球化学研究认为,辉绿岩是地幔熔融的产物,花岗闪长岩为岩石圈地幔熔融的产物,而流纹岩显示2类不同的岩石地球化学特征,低Sr流纹岩为古老岩石圈地幔熔体经历分离结晶作用的产物,高Sr流纹岩具有埃达克岩的特征,为增厚下地壳熔融的产物。综合已有的研究,早白垩世岩浆作用在缝合带两侧均有展布,其中早期岩浆岩为班公湖-怒江洋双向俯冲的产物,末期岩浆岩是碰撞后俯冲洋壳前缘断离形成的。早白垩世班公湖-怒江洋经历了双向俯冲到大洋闭合的演化过程,并在早白垩世末期发生了俯冲洋壳的断离事件。同时,高Sr流纹岩的发现表明,早白垩世末期班公湖-怒江缝合带已经发生了明显的地壳增厚作用。
Abstract:The Dongqiao area is located across Bangong Co-Nujiang River suture zone (BNSZ) and the southern Qiangtang terrane. The study area has widely exposed diverse rock types such as diabases, rhyolites and granodiorites. In this paper, the authors report the LA-ICP-MS zircon U-Pb age and whole-rock major and trace element composition data of the diverse Early Cretaceous magmatic rocks from Dongqiao. The diabase sample yielded a zircon U-Pb age of 138.7±1.0Ma, and the zircons from rhyolite yielded an age of 110.4±0.4Ma, indicating that the magmatic rocks in Dongqiao formed in two periods of magmatism. According to geochemical characteristics of the rocks, the diabases were produced by partial melting of the mantle, and the granodiorites by partial melting of ancient lithospheric mantle that had been modified by subduction-related components. In addition, the geochemical data indicate that rhyolites can be divided into two types of high Sr and low Sr rhyolites. Low Sr rhyolites were formed by partial melting of ancient lithospheric mantle, and the melt subsequently underwent intense fractional crystallization. High Sr rhyolites had an affinity with adakites, which were derived from partial melting of thickened lower crust. The new data obtained by the authors, together with recently published data, led the authors to develop a model of bidirectional subduction and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean which can explain the two magmatic events in the region from BNSZ to the southern Qiangtang terrane. Research on high Sr rhyolites indicates that the extensive magmatism and continent-continent collision contributed significantly to the crustal growth after the closure of Bangong-Nujiang Ocean in Early Cretaceous.
-
致谢: 样品测试工作得到中国科学院广州地球化学研究所ICP-MS 实验室和西南冶金地质测试所老师和同学的大力支持,成文过程中得到吉林大学李才教授的指导和帮助,在此一并致以衷心的感谢。
-
图 1 拉萨地块构造划分图(a)和研究区地质简图(b)
拉萨地块在青藏高原中的位置及其构造单元划分图[8];b—东巧地区地质简图;BNSZ—班公湖-怒江缝合带;SNMZ—狮泉河-纳木错蛇绿岩混杂带;LMF—洛巴堆-米拉山断裂带;IYZSZ—雅鲁藏布缝合带
Figure 1. Tectonic subdivision of the Lhasa Terrane(a) and simplified geological map of the study area(b)
图 7 主量元素哈克图解(数据引用同图 4)
Figure 7. Harker diagrams showing the major element variations
图 8 La-La/Sm 图解[31]和SiO2-La/Yb 图解
Figure 8. La-La/Sm diagram and SiO2-La/Yb diagram
表 1 辉绿岩和流纹岩LA-ICP-MS 锆石U-Th-Pb 同位素分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb data of the Dongqiao magmatic rocks
测点 微量元素/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ TW4005(辉绿岩) 1 123 6886 3588 1.92 0.04999 0.00142 0.14985 0.00432 0.02156 0.00025 142 3.8 138 1.6 2 117 7034 3405 2.07 0.04810 0.00134 0.14395 0.00415 0.02147 0.00023 137 3.7 137 1.5 3 173 10493 4806 2.18 0.04738 0.00123 0.14419 0.00406 0.02182 0.00027 137 3.6 139 1.7 4 125 6906 3686 1.87 0.04676 0.00144 0.14159 0.00458 0.02171 0.00023 134 4.1 138 1.5 5 89.7 4535 2804 1.62 0.04768 0.00168 0.14499 0.00547 0.02176 0.00029 137 4.9 139 1.8 6 104 6178 2956 2.09 0.04687 0.00183 0.14517 0.00595 0.02224 0.00033 138 5.3 142 2.1 7 79.9 4247 2394 1.77 0.04561 0.00163 0.14191 0.00547 0.02230 0.00034 135 4.9 142 2.2 8 135 8045 3800 2.12 0.04624 0.00146 0.13946 0.00455 0.02163 0.00023 133 4.1 138 1.4 9 147 9648 3841 2.51 0.04731 0.00143 0.14298 0.00455 0.02164 0.00025 136 4.0 138 1.5 10 170 12088 4226 2.86 0.04863 0.00153 0.14312 0.00469 0.02110 0.00024 136 4.2 135 1.5 11 132 6888 4013 1.72 0.04775 0.00146 0.14165 0.00452 0.02133 0.00022 135 4.0 136 1.4 12 52.3 2602 1582 1.65 0.04633 0.00154 0.14390 0.00510 0.02263 0.00042 137 4.5 144 2.6 13 121 7164 3275 2.19 0.04690 0.00135 0.14131 0.00433 0.02172 0.00025 134 3.8 139 1.6 14 124 7188 3487 2.06 0.04692 0.00136 0.14132 0.00435 0.02174 0.00024 134 3.9 139 1.5 15 58.5 2781 1768 1.57 0.04884 0.00165 0.15286 0.00567 0.02263 0.00037 144 5.0 144 2.3 16 86.3 4781 2589 1.85 0.04887 0.00156 0.14613 0.00512 0.02162 0.00030 138 4.5 138 1.9 17 138 7473 3933 1.9 0.04814 0.00140 0.14661 0.00456 0.02197 0.00023 139 4.0 140 1.5 18 85.2 4721 2498 1.89 0.04697 0.00142 0.14709 0.00507 0.02264 0.00036 139 4.5 144 2.3 19 87.6 5219 2431 2.15 0.05051 0.00146 0.14887 0.00456 0.02124 0.00023 141 4.0 136 1.5 20 146 6608 4531 1.46 0.04867 0.00139 0.15054 0.00445 0.02233 0.00026 142 3.9 142 1.6 TW3803(流纹岩) 1 135 1260 1761 0.72 0.04650 0.00241 0.11027 0.00548 0.01736 0.00018 106 5.0 111 1.1 2125114812890.890.064400.003240.153300.007530.017360.000211456.61111.33 128 1211 1258 0.96 0.04501 0.00298 0.10894 0.00712 0.01774 0.00024 105 6.5 113 1.5 4 135 1327 1392 0.95 0.04985 0.00257 0.11675 0.00593 0.01706 0.00021 112 5.4 109 1.3 5202166713901.200.070450.0042910.73680.010830.017650.000251639.41131.66 127 1177 1290 0.91 0.04587 0.00308 0.10872 0.00713 0.01725 0.00024 105 6.5 110 1.5 7132119313040.920.056850.003710.136430.008690.017370.000231307.81111.58 186 1933 1637 1.18 0.04803 0.00244 0.11464 0.00605 0.01714 0.00020 110 5.5 110 1.3 9137127311701.090.058380.003520.140550.008730.017400.000211347.81111.410 134 1300 1368 0.95 0.04417 0.00258 0.10583 0.00613 0.01755 0.00026 102 5.6 112 1.6 11 158 1467 1476 0.99 0.05090 0.00249 0.12235 0.00611 0.01739 0.00023 117 5.5 111 1.4 12 128 1265 1402 0.90 0.04550 0.00266 0.10548 0.00608 0.01705 0.00022 102 5.6 109 1.4 13 181 1853 1268 1.46 0.04849 0.00348 0.11393 0.00825 0.01722 0.00022 110 7.5 110 1.4 14 255 2681 2303 1.16 0.04750 0.00191 0.11268 0.00444 0.01727 0.00018 108 4.0 110 1.1 15155144014461.000.056700.003580.136980.008870.017530.000261307.91121.616 142 1392 1452 0.96 0.04792 0.00330 0.11523 0.00799 0.01763 0.00046 111 7.3 113 2.9 17 159 1571 1908 0.82 0.05220 0.00262 0.12200 0.00607 0.01710 0.00020 117 5.5 109 1.3 18 402 4181 3236 1.29 0.05192 0.00172 0.12207 0.00409 0.01706 0.00015 117 3.7 109 1.0 19177139514080.990.088200.005210.219270.014220.017640.0002920111.81131.920 138 1290 1344 0.96 0.04993 0.00276 0.12087 0.00649 0.01761 0.00020 116 5.9 113 1.3 注:带删除线数据为未参与年龄计算的数据 表 2 东巧岩浆岩样品全岩地球化学元素分析结果
Table 2 Whole-rock compositions of the Dongqiao magmatic rocks
元素 PM006-11GXW1 PM006-9GXW1 GXW1027-3 GXW1027-2 GXW1027-4 GXW1027-4 GXW1027-6 GXW1028-1 GXW1028-3 GXW1028-4 高Sr 流纹岩 SiO2 77.1 76.1 76.9 73.3 72.8 72.9 73.1 74.8 74.8 75.0 TiO2 0.12 0.09 0.10 0.25 0.07 0.07 0.09 0.07 0.11 0.14 Al2O3 11.8 12.0 11.0 10.2 13.2 13.3 13.0 12.2 13.5 11.4 Fe2O3 1.02 1.57 2.18 3.92 1.15 1.24 1.20 1.94 2.33 2.59 FeO 0.68 0.27 1.46 2.43 0.75 0.81 0.72 1.46 1.70 1.34 MnO 0.02 0.02 0.04 0.07 0.02 0.03 0.03 0.03 0.03 0.03 MgO 0.53 0.22 0.51 0.95 0.56 0.60 0.55 0.65 0.51 0.66 CaO 0.56 0.90 1.13 1.92 0.95 0.71 0.96 0.99 1.24 1.50 Na2O 3.99 3.30 3.78 2.39 3.23 3.18 3.42 2.46 3.35 4.46 K2O 2.22 3.76 2.23 3.33 4.23 4.33 3.97 4.45 2.33 2.53 P2O5 0.05 0.05 0.11 0.09 0.04 0.05 0.05 0.16 0.05 0.08 烧失量 1.62 1.46 1.00 1.70 2.54 2.14 2.23 1.68 0.72 0.82 总量 99.71 99.74 100.44 100.55 99.54 99.36 99.32 100.89 100.67 100.55 Mg# 41 21 24 25 40 40 39 30 22 27 Cr 20.9 11.5 115 125 8.9 9.1 24.2 111 133 137 Ni 9.76 4.66 11.20 22.50 6.49 6.95 7.85 9.00 14.00 15.10 Co 3.81 1.38 8.40 14.20 1.82 1.92 2.12 8.70 5.10 5.70 Rb 60.5 114 84.2 114 190 182 185 161 93.8 97.3 W 2.85 7.62 2.45 3.80 1.53 1.37 2.10 1.21 2.94 5.12 Bi 0.51 0.49 0.28 0.35 0.45 0.41 0.56 0.41 0.52 0.54 Sr 256 292 233 235 202 192 207 266 314 289 Ba 872 898 424 2430 628 609 653 682 5350 3411 Sc 3.51 1.28 2.02 5.34 1.40 1.47 2.20 1.88 2.82 3.16 Nb 9.39 11.0 7.09 7.80 13.2 12.4 15.4 7.43 6.20 7.16 Ta 0.98 1.01 0.68 0.69 0.93 0.85 0.91 0.74 0.61 0.74 Zr 70.5 90.0 80.6 79.8 74.8 76.8 78.7 73.8 68.6 78.0 Hf 2.36 2.80 2.23 2.18 2.45 2.48 2.51 2.34 2.05 2.30 Ga 13.8 13.1 15.4 20.0 16.2 16.1 16.4 21.9 31.3 24.8 Sn 2.99 2.84 4.50 5.70 3.38 2.67 3.35 4.00 4.30 4.20 Ag 0.06 0.10 0.10 0.11 0.06 0.04 0.07 0.11 0.11 0.09 Au 0.91 0.46 1.10 1.35 0.93 0.29 0.31 1.02 1.02 1.07 Th 11.8 19.4 16.1 10.9 12.8 11.6 13.1 12.9 11.0 11.5 La 16.7 32.6 35.3 25.3 17.3 17.7 18.9 23.1 18.6 24.2 Ce 30.5 63.0 60.0 41.4 29.0 29.2 33.2 38.7 30.0 36.9 Pr 3.75 6.97 5.77 4.75 3.74 3.93 4.03 4.94 3.22 4.08 Nd 13.6 23.6 19.5 17.1 14.6 15.4 15.5 17.1 11.7 14.3 Sm 2.69 3.98 3.33 3.31 2.91 3.12 3.06 3.11 2.28 2.74 Eu 0.80 0.98 0.74 0.86 0.86 0.88 0.92 0.83 0.91 0.84 Gd 1.79 2.44 2.10 2.20 1.94 2.05 2.20 1.88 1.36 1.63 Tb 0.24 0.26 0.18 0.24 0.18 0.20 0.22 0.17 0.13 0.16 Dy 0.97 0.79 0.41 0.93 0.55 0.59 0.74 0.40 0.35 0.49 Ho 0.18 0.10 0.06 0.17 0.09 0.10 0.13 0.05 0.05 0.08 Er 0.55 0.33 0.17 0.52 0.30 0.32 0.40 0.18 0.18 0.26 Tm 0.09 0.04 0.02 0.07 0.03 0.04 0.05 0.02 0.03 0.04 Yb 0.55 0.28 0.16 0.54 0.22 0.23 0.31 0.19 0.35 0.34 Lu 0.08 0.04 0.05 0.11 0.03 0.03 0.05 0.06 0.10 0.09 Y 4.76 3.14 2.90 5.80 4.85 4.75 5.34 2.10 3.00 3.50 元素 GXW1028-5 GXW1028-5’ GXW1028-6 GXW1028-7 GXW1834-1 GXW1834-2 GXW4015-4 PM013-23Gxw1 PM013-6Gxw4 PM013-7Gxw1 高Sr 流纹岩 低Sr 流纹岩 SiO2 75.8 74.8 75.1 75.8 74.7 73.3 75.4 75.0 79.3 76.7 TiO2 0.08 0.06 0.06 0.07 0.08 0.08 0.27 0.18 0.20 0.25 Al2O3 11.3 12.1 12.2 12.2 12.2 12.4 10.5 11.3 8.1 9.3 Fe2O3 2.28 1.46 1.44 1.13 1.89 1.67 2.04 2.67 4.29 2.70 FeO 1.52 1.01 0.95 1.12 0.61 0.49 1.98 1.88 1.94 2.19 MnO 0.03 0.03 0.03 0.03 0.04 0.02 0.04 0.04 0.07 0.05 MgO 0.58 0.37 0.38 0.34 0.48 0.49 0.92 0.28 0.21 0.50 CaO 1.43 0.52 0.52 0.46 0.70 0.88 0.53 0.65 0.62 0.56 Na2O 4.86 4.98 5.00 5.09 4.06 4.07 3.42 3.43 1.92 3.60 K2O 1.71 1.93 1.96 1.92 2.86 3.02 2.16 4.47 3.71 3.26 P2O5 0.06 0.05 0.06 0.05 0.11 0.05 0.04 0.19 0.10 0.05 烧失量 1.00 1.98 1.66 1.45 1.76 2.90 2.34 0.43 0.07 0.21 总量 100.65 99.29 99.36 99.66 99.49 99.37 99.64 100.52 100.53 99.37 Mg# 25 25 26 25 30 34 34 12 7 18 Cr 128 11.5 10.6 11.7 7.9 9.1 6.0 175 144 140 Ni 14.1 8.74 9.70 10.4 5.78 5.89 8.34 10.6 9.10 8.00 Co 4.70 2.38 2.51 2.64 3.44 2.96 4.68 2.90 4.60 3.10 Rb 57.2 64.4 56.2 56.0 113 115 150 255 174 226 W 3.64 3.79 2.93 6.55 1.95 1.65 4.34 9.53 3.12 4.82 Bi 0.44 0.47 0.43 0.44 0.44 0.37 0.76 1.67 0.27 0.83 Sr 252 314 301 298 419 436 21.4 63.9 41.2 30.1 Ba 593 529 514 556 565 616 50.9 30.2 15.5 6.0 Sc 2.20 1.87 1.74 1.84 1.79 1.66 1.46 0.96 0.53 1.49 Nb 7.60 12.1 10.8 10.9 12.3 11.0 60.3 68.0 34.0 40.8 Ta 0.75 0.77 0.70 0.73 0.89 0.77 4.48 5.20 2.87 3.52 Zr 71.6 71.7 71.3 73.8 76.6 76.0 800 840 600 765 Hf 2.22 2.24 2.23 2.34 2.42 2.38 23.6 20.2 13.3 15.8 Ga 18.2 10.7 9.9 9.7 12.1 11.7 28.1 24.9 20.5 20.8 Sn 6.10 2.87 3.45 3.04 3.28 2.47 12.5 5.70 7.28 13.25 Ag 0.10 0.11 0.09 0.11 0.04 0.07 0.12 0.08 0.10 0.09 Au 1.33 0.40 0.40 0.37 0.81 0.71 0.74 1.32 1.58 1.63 Th 10.9 13.1 12.2 13.2 12.7 11.8 33.8 58.3 26.8 32.5 La 21.0 22.4 19.4 20.0 20.6 18.6 95.0 63.5 69.9 71.1 Ce 41.1 37.0 33.2 32.3 34.9 31.6 184 119 130 137 Pr 3.63 4.74 4.13 4.20 4.28 4.01 21.7 13.5 15.8 17.0 Nd 12.9 18.2 15.6 16.0 16.3 15.1 81.4 47.1 60.2 63.7 Sm 2.48 3.39 2.93 3.16 2.99 2.82 17.2 10.7 13.4 14.2 Eu 0.71 0.94 0.88 0.85 0.95 0.85 1.12 0.35 0.75 0.77 Gd 1.42 2.44 2.05 2.15 2.29 2.07 18.5 10.5 12.9 13.7 Tb 0.13 0.25 0.19 0.21 0.24 0.21 3.74 2.10 2.55 2.73 Dy 0.31 0.81 0.61 0.65 0.88 0.63 21.6 13.9 16.2 17.7 Ho 0.04 0.13 0.10 0.11 0.16 0.11 4.70 2.96 3.50 3.76 Er 0.15 0.38 0.32 0.33 0.48 0.33 13.2 9.06 10.7 11.0 Tm 0.02 0.04 0.04 0.04 0.05 0.04 2.17 1.57 1.80 1.85 Yb 0.20 0.29 0.24 0.26 0.34 0.26 14.5 10.2 11.7 11.6 Lu 0.05 0.04 0.03 0.04 0.05 0.04 2.38 1.51 1.80 1.73 Y 2.30 4.50 4.19 4.29 4.38 4.65 162 73.4 92.3 91.6 元素 PM013-22Gxw2 PM013-21Gxw1 PM013-1Gxw1 PM013-6Gxw3 PM013-8Gxw1 PM013-12Gxw1 PM013-12Gxw2 PM013-20Gxw1 PM001-29Gxw3 PM001-29Gxw5 低Sr 流纹岩 花岗闪长岩 SiO2 77.3 78.9 74.5 78.2 77.0 77.2 76.5 78.7 65.2 65.5 TiO2 0.18 0.19 0.30 0.26 0.24 0.23 0.26 0.17 0.79 0.76 Al2O3 10.0 9.3 10.3 8.9 9.0 9.0 9.9 9.2 15.7 15.7 Fe2O3 2.15 2.57 3.26 4.04 4.11 3.73 3.29 2.78 1.40 1.43 FeO 1.88 2.06 1.94 1.58 2.19 2.31 2.43 1.88 2.65 2.51 MnO 0.03 0.04 0.04 0.06 0.07 0.05 0.04 0.03 0.07 0.07 MgO 0.42 0.30 0.97 0.18 0.48 0.25 0.21 0.17 1.63 1.49 CaO 0.58 0.69 0.94 0.67 0.90 0.98 0.94 0.64 3.14 3.03 Na2O 1.07 2.23 1.40 2.08 2.65 3.32 4.10 2.56 3.74 3.90 K2O 6.27 4.09 4.18 4.35 3.26 3.04 2.22 3.40 4.20 4.28 P2O5 0.18 0.19 0.08 0.05 0.15 0.18 0.23 0.20 0.23 0.21 烧失量 0.56 0.14 2.14 0.21 0.50 0.32 0.33 0.92 0.88 0.77 总量 100.62 100.7 100.05 100.58 100.55 100.61 100.45 100.65 99.63 99.65 Mg# 19 13 29 7 15 8 8 8 45 47 Cr 150 132 103 154 162 187 162 158 29.2 33.8 Ni 9.20 11.80 9.90 8.10 9.80 11.00 12.60 10.50 16.2 13.3 Co 3.20 5.00 4.10 2.80 4.50 6.70 6.20 4.00 9.86 9.26 Rb 396 190 329 155 206 146 94.4 154 195 192 W 8.42 9.10 4.18 6.70 5.88 7.27 8.78 8.61 3.76 3.21 Bi 0.54 0.73 0.73 0.34 0.53 0.70 0.71 0.75 0.14 0.04 Sr 47.5 51.4 49.1 63.6 70.8 34.6 82.8 94.2 294 296 Ba 23.8 55.1 29.9 22.5 43.8 15.8 76.3 88.8 674 651 Sc 0.62 0.56 0.88 0.88 0.97 0.29 1.28 1.29 10.0 9.54 Nb 47.0 48.1 45.3 34.6 36.3 37.0 39.9 45.1 28.4 31.0 Ta 4.67 4.35 3.75 3.08 3.16 3.16 3.66 4.03 2.43 2.62 Zr 882 832 848 743 700 700 701 748 274 275 Hf 20.0 19.9 18.0 12.7 14.8 14.0 15.2 16.4 7.86 8.25 Ga 20.4 20.1 25.8 22.9 21.0 21.9 24.0 22.1 20.8 20.2 Sn 7.00 7.30 5.30 11.9 8.83 6.90 6.60 8.20 3.47 3.28 Ag 0.09 0.09 0.09 0.09 0.08 0.09 0.10 0.10 0.07 0.07 Au 1.12 1.22 5.66 1.52 2.35 1.05 1.50 1.35 0.36 0.36 Th 54.9 47.3 34.9 28.3 28.8 30.8 34.2 42.3 34.3 34.3 La 56.3 64.3 87.8 76.6 61.1 62.8 65.7 62.4 59.0 59.2 Ce 107 126 161 144 119 128 133 128 112 113 Pr 11.2 14.1 19.8 16.3 15.1 14.8 16.7 15.5 12.1 12.3 Nd 39.0 50.9 74.1 60.7 56.6 55.6 62.6 56.9 41.8 41.8 Sm 9.27 11.7 16.8 13.1 12.1 12.4 14.2 12.9 7.26 7.13 Eu 0.26 0.44 0.94 0.76 0.73 0.64 0.83 0.68 1.72 1.68 Gd 9.49 11.6 15.8 12.0 11.5 11.3 12.9 12.0 6.49 6.43 Tb 2.14 2.44 3.07 2.31 2.25 2.14 2.49 2.43 1.12 1.12 Dy 15.3 16.6 20.1 15.8 14.7 13.7 15.9 15.9 6.66 6.60 Ho 3.40 3.61 4.40 3.76 3.20 3.01 3.43 3.47 1.26 1.29 Er 10.5 11.0 13.2 12.5 9.92 9.59 10.7 10.8 3.78 3.86 Tm 1.84 1.96 2.27 2.30 1.72 1.75 1.91 1.91 0.58 0.59 Yb 12.0 12.9 14.4 15.7 11.5 11.9 12.9 12.8 3.58 3.78 Lu 1.80 1.90 2.11 2.43 1.79 1.92 2.06 1.96 0.50 0.55 Y 93.4 93.0 112 102 83.4 78.6 79.5 84.9 36.6 37.0 元素 PM001-42GXW1 PM001-43GXW1 PM001-53GXW1 PM008-3GXW2 PM008-5GXW1 PM007-0GXW2 GXW1018-3 GXW1018-4 GXW1019-1 GXW1019-3 花岗闪长岩 SiO2 64.8 59.5 62.2 61.4 66.6 66.9 63.3 63.5 61.5 59.7 TiO2 0.79 0.95 0.89 1.09 0.66 0.69 0.60 0.63 0.95 0.72 Al2O3 14.8 15.6 15.7 16.0 15.6 15.7 15.4 15.5 15.5 15.7 Fe2O3 2.06 2.47 2.48 0.78 0.89 1.07 0.53 0.86 0.35 0.98 FeO 1.90 3.26 2.38 4.16 2.45 2.08 3.05 2.87 4.30 4.16 MnO 0.06 0.10 0.06 0.08 0.06 0.05 0.06 0.06 0.08 0.09 MgO 2.41 4.21 3.36 2.89 1.56 1.26 2.53 2.26 3.18 4.40 CaO 3.21 5.40 3.36 4.28 3.00 2.12 3.20 2.70 4.40 4.10 Na2O 2.76 2.89 3.04 3.80 3.95 4.37 3.94 3.62 3.51 3.67 K2O 5.44 3.67 4.50 3.56 3.65 4.26 2.64 3.62 2.79 2.60 P2O5 0.18 0.28 0.26 0.34 0.20 0.19 0.20 0.22 0.25 0.23 烧失量 1.23 1.30 1.30 1.31 1.07 1.02 4.31 3.93 2.93 3.52 总量 99.64 99.63 99.53 99.69 99.69 99.71 99.76 99.77 99.74 99.87 Mg# 57 62 60 55 50 46 60 57 59 65 Cr 76.9 140 102 95.2 21.8 11.8 65.6 51.2 85.2 185 Ni 37.7 45.5 41.4 45.7 13.8 8.0 35.6 22.0 52.4 82.6 Co 11.6 18.7 16.8 15.6 8.14 6.00 13.8 12.2 17.0 18.3 Rb 290 186 214 176 155 176 108 137 112 120 W 3.77 2.33 3.11 8.60 0.63 2.14 1.80 2.60 2.61 2.41 Bi 0.20 0.39 1.16 0.22 0.15 0.54 0.13 0.12 0.20 0.22 Sr 297 374 335 390 284 264 300 250 346 339 Ba 568 682 652 498 561 618 410 696 418 385 Sc 10.6 14.1 15.1 11.6 7.64 6.62 9.03 9.38 12.1 13.8 Nb 31.7 25.7 27.0 27.6 20.6 22.3 14.2 14.2 19.8 13.2 Ta 2.81 2.12 2.34 2.60 2.03 2.18 1.14 1.26 1.52 1.08 Zr 348 257 314 157 215 264 167 167 226 148 Hf 10.3 7.42 8.98 5.26 6.04 7.78 5.04 5.12 6.38 4.75 Ga 18.4 19.9 19.8 19.8 19.1 19.4 17.4 17.4 18.4 19.2 Sn 4.21 4.49 3.93 3.48 3.36 3.45 2.21 2.10 3.97 2.68 Ag 0.10 0.09 0.08 0.06 0.05 0.05 0.07 0.08 0.14 0.10 Au 0.36 0.29 0.48 0.73 0.46 0.61 0.56 0.41 0.60 0.47 Th 51.0 28.4 38.0 29.2 24.9 28.6 14.8 15.0 17.8 17.2 La 66.0 57.5 57.7 45.8 47.1 47.2 32.2 31.8 40.8 33.4 Ce 110 112 109 88.4 88.8 89.3 57.6 58.0 76.4 62.4 Pr 13.0 12.5 12.0 9.79 9.32 9.86 6.30 6.27 8.54 7.03 Nd 42.8 43.4 41.5 34.4 31.6 33.8 21.9 22.3 29.9 25.4 Sm 6.85 7.45 6.88 6.14 5.46 5.93 3.92 3.90 5.46 4.81 Eu 1.29 1.72 1.48 1.61 1.32 1.44 1.08 1.13 1.36 1.28 Gd 6.12 6.38 6.08 5.50 4.88 5.43 3.78 3.80 5.37 4.48 Tb 0.99 1.08 1.02 0.96 0.86 0.94 0.62 0.64 0.89 0.75 Dy 5.77 6.31 5.94 5.71 5.20 5.67 2.95 3.25 4.53 3.75 Ho 1.13 1.21 1.16 1.10 1.00 1.12 0.57 0.64 0.90 0.75 Er 3.35 3.65 3.48 3.26 3.04 3.32 1.44 1.69 2.37 1.91 Tm 0.51 0.55 0.53 0.51 0.48 0.52 0.22 0.26 0.36 0.30 Yb 3.36 3.54 3.38 3.25 2.96 3.36 1.49 1.82 2.41 1.98 Lu 0.48 0.52 0.49 0.47 0.42 0.47 0.23 0.28 0.37 0.32 Y 32.4 34.0 33.0 31.2 28.2 30.0 19.1 21.6 29.4 24.3 元素 GXW1424-1 GXW1424-2 GXW1059-2 GXW1059-3 GXW1091-1 GXW1091-2 GXW4005-0 GXW4008-1 GXW4009-1 GXW4814-1 花岗闪长岩 辉绿岩 SiO2 65.1 66.5 63.2 63.6 64.8 64.8 50.5 49.7 47.3 49.9 TiO2 0.67 0.58 0.79 0.78 0.70 0.70 1.16 1.35 1.59 1.18 Al2O3 15.4 15.2 15.5 15.5 15.5 15.4 15.9 16.6 16.1 16.5 Fe2O3 0.95 0.70 0.85 0.88 2.18 1.91 2.02 1.45 1.30 1.39 FeO 3.00 3.06 4.27 3.84 1.87 1.87 6.96 7.66 9.03 7.35 MnO 0.07 0.06 0.09 0.08 0.06 0.05 0.15 0.15 0.17 0.16 MgO 1.58 1.40 1.83 1.78 1.69 1.78 6.58 6.01 8.05 7.25 CaO 3.13 2.64 3.26 3.31 1.46 1.47 6.04 4.98 4.06 4.33 Na2O 3.92 3.86 3.91 3.86 5.06 4.84 4.02 4.71 4.14 5.24 K2O 3.65 3.64 3.99 3.98 3.77 3.93 1.54 1.16 0.39 0.22 P2O5 0.23 0.17 0.23 0.23 0.20 0.20 0.19 0.22 0.23 0.19 烧失量 1.65 1.61 1.42 1.53 2.18 2.42 4.73 5.72 7.40 6.07 总量 99.35 99.42 99.34 99.37 99.47 99.37 99.79 99.71 99.76 99.78 Mg# 46 44 43 45 48 51 61 58 62 64 Cr 22.6 20.3 36.5 33.6 30.5 26.1 181 137 193 196 Ni 14.7 13.2 20.7 18.7 18.4 18.3 89.8 68.6 95.8 98.0 Co 9.54 8.31 10.9 9.78 9.90 9.82 34.6 35.2 37.4 40.1 Rb 155 147 223 209 205 181 63.6 47.8 7.91 8.40 W 0.89 0.70 3.53 3.07 2.29 2.02 1.05 1.29 0.69 0.86 Bi 0.24 0.10 0.24 0.21 0.39 0.35 0.04 0.06 0.03 0.03 Sr 312 288 296 288 275 272 248 518 496 444 Ba 569 526 630 589 518 466 286 330 826 109 Sc 6.68 6.11 10.9 10.4 6.65 6.74 25.4 26.0 31.6 27.9 Nb 24.0 22.5 36.1 35.2 27.0 29.3 10.4 13.2 7.66 10.0 Ta 1.36 1.43 2.03 2.11 1.75 2.08 0.75 0.92 0.54 0.74 Zr 248 223 305 295 292 274 132 150 102 116 Hf 7.45 6.61 9.20 8.94 8.57 8.17 3.84 4.84 3.14 3.34 Ga 19.4 17.6 20.5 19.4 19.5 17.0 19.0 18.5 18.2 18.4 Sn 2.88 2.83 4.65 4.48 4.45 3.69 2.12 2.29 1.51 1.19 Ag 0.05 0.04 0.07 0.06 0.05 0.06 0.09 0.08 0.07 0.09 Au 0.32 0.46 0.84 0.63 0.29 0.30 0.42 0.48 0.58 0.37 Th 21.9 19.8 32.5 29.5 21.8 21.1 9.2 6.8 2.9 5.8 La 51.2 45.3 56.6 57.8 46.3 51.7 24.4 19.7 11.4 15.6 Ce 84.3 76.1 96.3 97.1 80.3 91.1 48.2 39.8 23.4 31.4 Pr 9.81 8.52 11.6 11.60 9.08 10.3 5.79 4.87 3.17 3.91 Nd 36.3 31.2 42.5 42.8 32.7 37.1 22.0 19.4 14.3 16.1 Sm 6.17 5.28 7.04 7.01 5.37 6.08 4.81 4.68 3.78 3.75 Eu 1.73 1.44 1.93 1.86 1.52 1.64 1.44 1.54 1.68 1.20 Gd 6.22 5.45 7.15 6.92 5.48 5.97 5.33 5.33 4.72 4.46 Tb 0.91 0.77 1.02 0.97 0.78 0.84 1.07 1.14 1.04 0.96 Dy 4.55 4.01 5.05 4.91 3.89 4.28 6.14 6.92 6.25 5.70 Ho 0.91 0.79 1.01 0.98 0.79 0.85 1.32 1.45 1.34 1.22 Er 2.57 2.26 2.88 2.78 2.23 2.48 3.48 3.88 3.49 3.32 Tm 0.37 0.33 0.41 0.40 0.32 0.36 0.55 0.62 0.56 0.53 Yb 2.31 2.02 2.60 2.54 2.05 2.21 3.64 3.97 3.58 3.50 Lu 0.35 0.32 0.41 0.39 0.31 0.35 0.61 0.66 0.56 0.57 Y 21.0 20.9 26.2 24.8 20.2 20.1 43.4 46.6 43.0 37.4 注:主量元素含量单位为%,稀土和微量元素含量为10-6 -
孙立新. 班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应[D].中国地质大学博士学位论文(北京),2005. 朱弟成, 潘桂棠,莫宣学,等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J]. 岩石学报,2006,22(3):534-546. 吴浩,李才,胡培远,等. 西藏尼玛县塔色普勒地区去申拉组火山岩的发现及其地质意义[J]. 地质通报,2013,7:1014-1026. 谌微微. 羌塘地块白垩纪火山岩和红层古地磁学和年代学新结果及其大地构造意义[D].中国地质大学(北京)博士学位论文,2014. 潘桂棠,莫宣学,侯增谦,等. 冈底斯造山带的时空结构及演化[J]. 岩石学报. 2006,3:521-533. 朱弟成,莫宣学,赵志丹,等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报,2008,24(3):401-412. Zhu D C,Mo X X,Niu Y L,et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology,2009, 268:298-312. Zhu D C,Mo X X,Niu Y L,et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology,2009, 268:298-312.
Zhu D C,Zhao Z D,Niu Y L,et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,2011, 301:241-255. Zhu D C,Zhao Z D,Niu Y L,et al. The Lhasa Terrane:record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,2011, 301:241-255.
常青松,朱弟成,赵志丹,等. 西藏羌塘南缘热那错早白垩世流纹岩锆石U-Pb年代学和Hf同位素及其意义[J]. 岩石学报,2011,7:2034-2044. 常青松. 西藏羌塘地块南缘热那错火山岩的岩石学、年代学和地球化学[D].中国地质大学(北京)硕士学位论文,2012. Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198:77-91. Li J X,Qin K Z,Li G M,et al. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet:Petrogenetic and tectonic implications[J]. Lithos,2014,198:77-91.
吴浩, 李才, 胡培远, 等. 藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义[J]. 地质通报,2014,11:1804-1814. 涂湘林,张红,邓文峰,等. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用[J]. 地球化学,2011,1:83-98. Yuan H,Gao S,Liu X,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards & Geoanalytical Research,2004,28(3):353-370. Yuan H,Gao S,Liu X,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards &Geoanalytical Research,2004,28(3):353-370.
Winchester J A,Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977, 20:325-343. Winchester J A,Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,1977, 20:325-343.
Hastie A R,Kerr A C,Pearce J A,et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007,48:2341-2357. Hastie A R,Kerr A C,Pearce J A,et al. Classification of altered volcanic island arc rocks using immobile trace elements:development of the Th-Co discrimination diagram[J]. Journal of Petrology, 2007,48:2341-2357.
Defant M,Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990, 347:662-665. Defant M,Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,1990, 347:662-665.
黄玉,朱弟成,赵志丹,等. 西藏北部拉萨地块那曲地区约113Ma安山岩岩石成因与意义[J]. 岩石学报,2012,5:1603-1614. Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society, London Special Publications,1989,42:313-345 Sun S S,Mc Donough W F. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geological Society, London Special Publications,1989,42:313-345
Chung S L,Liu D Y,Ji J Q,et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31:1021-1024. Chung S L,Liu D Y,Ji J Q,et al. Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J]. Geology,2003,31:1021-1024.
Hou Z Q,Gao Y F,Qu X M,et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139-155. Hou Z Q,Gao Y F,Qu X M,et al. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters,2004,220:139-155.
Guo Z F,Wilson M,Liu J Q. Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust[J]. Lithos,2007,96:205-224. Guo Z F,Wilson M,Liu J Q. Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust[J]. Lithos,2007,96:205-224.
张玉修. 班公湖-怒江缝合带中西段构造演化[D].中国科学院研究生院(广州地球化学研究所)博士学位论文,2007. Kapp P,Yin A,Harrison T M,et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J].Geological Society of America Bulletin,2005,117:865-878. Kapp P,Yin A,Harrison T M,et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J].Geological Society of America Bulletin,2005,117:865-878.
Zhang K J,Zhang Y X,Tang X C,et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews,2012,14:236-249. Zhang K J,Zhang Y X,Tang X C,et al. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision[J]. Earth-Science Reviews,2012,14:236-249.
Zhu D C,Zhao Z D,Niu Y L,et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,2013, 23:1430-1455. Zhu D C,Zhao Z D,Niu Y L,et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research,2013, 23:1430-1455.
Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50:11-30. Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,1980,50:11-30.
Meschede M A. Method of discriminating between different types of mid-ocean Basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,1986,56:207-218. Meschede M A. Method of discriminating between different types of mid-ocean Basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,1986,56:207-218.
Verma S P,Pandarinath K,Verma S K,et al. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks[J]. Lithos,2013, 168/169:113-123. Verma S P,Pandarinath K,Verma S K,et al. Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks[J]. Lithos,2013, 168/169:113-123.
Fan J J,Li C,Xie C M,et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:Implications for the evolution of the Banggongco-Nujiang oceanic arm of Neo-Tethys[J]. International Geology Review,2014,56:1504-1520. Fan J J,Li C,Xie C M,et al. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet:Implications for the evolution of the Banggongco-Nujiang oceanic arm of Neo-Tethys[J]. International Geology Review,2014,56:1504-1520.
Allegre C J,Minster J F. Quantitative method of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38:1-25. Allegre C J,Minster J F. Quantitative method of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38:1-25.
Atherton M P,Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146. Atherton M P,Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature,1993,362:144-146.
Rapp R P,Shimizu N,Norman M D,et al. Reaction between slabderived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa[J]. Chemical Geology,1999,160:335-356. Rapp R P,Shimizu N,Norman M D,et al. Reaction between slabderived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa[J]. Chemical Geology,1999,160:335-356.
Wang Q,Wyman D A,Zhao Z H,et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology,2007,236:42-64. Wang Q,Wyman D A,Zhao Z H,et al. Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China):implications for Phanerozoic crustal growth in the Central Asia orogenic belt[J]. Chemical Geology,2007,236:42-64.
Zhu D C,Pan G T,Zhao Z D,et al. Early Cretaceous subductionrelated adakite-like rocks in the Gangdese, south Tibet:products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34:298-309. Zhu D C,Pan G T,Zhao Z D,et al. Early Cretaceous subductionrelated adakite-like rocks in the Gangdese, south Tibet:products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences,2009,34:298-309.
Castillo P R,Janney P E,Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology,1999,134:33-51. Castillo P R,Janney P E,Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology,1999,134:33-51.
王强,赵振华,许继峰,等. 鄂东南铜山日、殷祖埃达克质(adakilic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J]. 岩石学报,2004,20(2):351-360. Sui Q L,Wang Q,Zhu D C,et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos,2013,168/169:144-159. Sui Q L,Wang Q,Zhu D C,et al. Compositional diversity of ca. 110 Ma magmatism in the northern Lhasa Terrane, Tibet:implications for the magmatic origin and crustal growth in a continentcontinent collision zone[J]. Lithos,2013,168/169:144-159.
Wang Q,Zhu D C,Zhao Z D,et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,2014,198/199:24-37. Wang Q,Zhu D C,Zhao Z D,et al. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet:Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone[J]. Lithos,2014,198/199:24-37.
吴福元,葛文春,孙德有. 中国东部燕山期"埃达克质岩":问题与意义[C]//埃达克质岩及其地球动力学意义学术研讨会论文摘要. 北京. 2001:53-55. Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos,1999,46:411-429. Martin H. Adakitic magmas:Modern analogues of Archaean granitoids[J]. Lithos,1999,46:411-429.
Benoit M,Aguillón-Robles A,Calmus T,et al. Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology,2002,110:627-648. Benoit M,Aguillón-Robles A,Calmus T,et al. Geochemical diversity of Late Miocene volcanism in Southern Baja California, Mexico:implication of mantle and crustal sources during the opening of an asthenospheric window[J]. Journal of Geology,2002,110:627-648.
Barth M G,McDonough W F,Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,2000, 165(3):197-213. Barth M G,McDonough W F,Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,2000, 165(3):197-213.
朱弟成,莫宣学,赵志丹,等. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘,2009,16(2):1-19. 杜德道,曲晓明,王根厚,等. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报,2011,7:1993-2002. 杜德道. 西藏班公湖-怒江缝合带(中段和西段)的花岗岩地球化学特征及其构造环境[D]. 中国地质大学(北京)硕士学位论文, 2012. 隋清霖. 西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义[D].中国地质大学(北京)硕士学位论文,2014. Fan J J,Li C,Xie C M,et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the Banggongco-Nujiang Neo-Tethys Ocean[J]. Lithos,2015,227:148-160. Fan J J,Li C,Xie C M,et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the Banggongco-Nujiang Neo-Tethys Ocean[J]. Lithos,2015,227:148-160.
Qu X M,Wang R J,Xin H B,et al. Age and petrogenesis of Atype granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos,2012,146/147:264-275. Qu X M,Wang R J,Xin H B,et al. Age and petrogenesis of Atype granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau[J]. Lithos,2012,146/147:264-275.
Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research,2014, 26(2):449-463. Chen Y,Zhu D C,Zhao Z D,et al. Slab breakoff triggered ca. 113 Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research,2014, 26(2):449-463.
吴浩,李才,胡培远. 西藏班公湖-怒江缝合带中段达查沟地区三期埃达克质侵入岩的特征及构造-成矿意义[J]. 大地构造与成矿学. 2016. 已接受. Wu H,Li C,Hu P Y,et al. Early Cretaceous (100-105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review,2015,57:1172-1188. Wu H,Li C,Hu P Y,et al. Early Cretaceous (100-105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review,2015,57:1172-1188.
Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66. Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97:51-66.
Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico[J]. Geology,2004,32:77-80. Ferrari L. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico[J]. Geology,2004,32:77-80.
Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics,2011,2:244-256. Duretz T, Gerya T V, May D A. Numerical modelling of spontaneous slab breakoff and subsequent topographic response[J]. Tectonophysics,2011,2:244-256.
Davies J H, von Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters,1995, 129:85-102. Davies J H, von Blanckenburg F. Slab breakoff:a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters,1995, 129:85-102.
Van de Zedde D M A,Wortel M R J. Shallow slab detachment as a transient source of heat at mid lithospheric levels[J]. Tectonics, 2001,20:868-882. Van de Zedde D M A,Wortel M R J. Shallow slab detachment as a transient source of heat at mid lithospheric levels[J]. Tectonics, 2001,20:868-882.
任海东,颜茂都,孟庆泉,等. 羌塘盆地磁倾角浅化校正及其在构造上的应用——中侏罗纪以来约1000km的南北向缩短[J]. 地质科学,2013,02:543-556. 刘治博. 南羌塘盆地西部上古生界-中生界构造变形特征及演化[D].中国地质大学(北京)博士学位论文,2014.