• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
MA Shouxian, LI Houmin, SUN Yan, CHEN Lei, PANG Xuyong, ZHANG Yingli, ZHANG Peng. 2021: Controls on crystallization of cassiterite from the southern Hunan: Evidence from cathodoluminescence, trace elements and geochronology. Geological Bulletin of China, 40(10): 1737-1756.
Citation: MA Shouxian, LI Houmin, SUN Yan, CHEN Lei, PANG Xuyong, ZHANG Yingli, ZHANG Peng. 2021: Controls on crystallization of cassiterite from the southern Hunan: Evidence from cathodoluminescence, trace elements and geochronology. Geological Bulletin of China, 40(10): 1737-1756.

Controls on crystallization of cassiterite from the southern Hunan: Evidence from cathodoluminescence, trace elements and geochronology

More Information
  • Received Date: August 11, 2021
  • Revised Date: August 24, 2021
  • Available Online: August 15, 2023
  • Distinct types of tin polymetallic mineral deposits were formed in the southern Hunan as an important section of the Nanling non-ferrous and rare metallogenic belt. It is still not fully understood about the fluid source, composition and physicochemical state of various tin deposits. Five types of tin ores, including proximal skarn, distal skarn, greisen, chlorite vein and quartz vein from the Xianghualing, Furong and Hongqiling deposits, were taken as the cases to discuss controls on the crystallization process of cassiterite based on the analysis of microstructure, chronology and in-situ trace element.LA-ICP-MS cassiterite U-Pb dating of in the Hongqiling tungsten-tin deposit yielded an age of 153.7±2.4 Ma. The color change of CL images of different types of cassiterite from southern Hunan is mainly related to the relative content of Ti, Nb and Ta. The color of CL images is lighter when the content of Ti is high, while the color of CL images is darker when the content of Nb and Ta is high. The Zr/Hf ratio of cassiterite is interpreted as assimilation of wall rock and fractional degree of the ore-forming fluid. Cassiterites from skarn and chlorite vein have a higher Zr/Hf ratio than its ore-bearing granite, which is related to the strata. On the contrary, cassiterites from greisen and chlorite vein show a low Zr/Hf ratio indicating a highly fractionated fluid. The primary and secondary texture developed in cassiterites from chlorite veins and quartz veins demonstrates an opposite change of Fe, W, U content and Zr/Hf ratio, probably implying addition of meteoric water and plused magmatic fluid, respectively.

  • 陈毓川, 裴荣富, 张宏良. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M]. 北京: 地质出版社, 1989.
    黄革非, 龚述清, 蒋希伟, 等. 湘南骑田岭锡矿成矿规律探讨[J]. 地质通报, 2003, 22(6): 445-451. doi: 10.3969/j.issn.1671-2552.2003.06.010
    Yuan S D, Peng J T, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43(1): 235-242. doi: 10.1016/j.oregeorev.2011.08.002
    王志强, 陈斌, 马星华. 南岭芙蓉锡矿田锡石原位LA-ICP-MS U-Pb年代学及地球化学研究: 对成矿流体来源和演化的意义[J]. 科学通报, 2014, 59(25): 2505-2519. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425009.htm
    Yuan S D, Peng J T, Hu R Z, et al. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit(Hunan, South China)[J]. Mineralium Deposita, 2008, 43(4): 375-382. doi: 10.1007/s00126-007-0166-y
    毕献武, 李鸿莉, 双燕, 等. 骑田岭A型花岗岩流体包裹体地球化学——对芙蓉超大型锡矿成矿流体来源的指示[J]. 高校地质学报, 2008, 14(4): 539-548. doi: 10.3969/j.issn.1006-7493.2008.04.007
    陈斌, 马星华, 王志强, 等. 南岭地区千里山复式岩体中补体与主体成因联系及其成矿意义[J]. 矿物学报, 2011, (S1): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1005.htm
    来守华. 湖南香花岭锡多金属矿床成矿作用研究[D]. 中国地质大学(北京) 硕士学位论文, 2014.
    轩一撒, 袁顺达, 原垭斌, 等. 湘南尖峰岭岩体锆石U-Pb年龄、地球化学特征及成因[J]. 矿床地质, 2014, 33(6): 1379-1390. doi: 10.3969/j.issn.0258-7106.2014.06.015
    Guo C L, Wang R C, Yuan S D, et al. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China[J]. Mineralogy and Petrology, 2015, 109(2): 253-282. doi: 10.1007/s00710-014-0355-1
    Chen S C, Yu J J, Bi M. Extraction of fractionated interstitial melt from a crystal mush system generating the Late Jurassic high-silica granites from the Qitianling composite pluton, South China: Implications for greisen-type tin mineralization[J]. Lithos, 2021, 382/383: 105952. doi: 10.1016/j.lithos.2020.105952
    王汝成, 谢磊, 陆建军, 等. 南岭及邻区中生代含锡花岗岩的多样性: 显著的矿物特征差异[J]. 中国科学: 地球科学, 2017, 47(11): 1257-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201711001.htm
    Mao J W, Li H Y, Hidehiko S, et al. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China[J]. International Geology Review, 1996, 38(11): 1020-1039. doi: 10.1080/00206819709465379
    Lu H Z, Liu Yi M, Wang C L, et al. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 2003, 98(5): 955-974. doi: 10.2113/gsecongeo.98.5.955
    蒋少涌, 赵葵东, 姜耀辉, 等. 华南与花岗岩有关的一种新类型的锡成矿作用: 矿物化学、元素和同位素地球化学证据[J]. 岩石学报, 2006, 22(10): 2509-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610010.htm
    付建明, 马丽艳, 程顺波, 等. 南岭地区锡(钨) 矿成矿规律及找矿[J]. 高校地质学报, 2013, 19(2): 202-212. doi: 10.3969/j.issn.1006-7493.2013.02.005
    祝新友, 王京彬, 王艳丽, 等. 浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例[J]. 岩石学报, 2015, 31(3): 891-905. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503020.htm
    毛景文, 李晓峰, Lehmann B, 等. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义[J]. 矿床地质, 2004, 23(2): 164-175. doi: 10.3969/j.issn.0258-7106.2004.02.005
    Cao J Y, Yang X Y, Du J G, et al. Formation and geodynamic implication of the Early Yanshanian granites associated with W-Sn mineralization in the Nanling range, South China: an overview[J]. International Geology Review, 2018, 60(11/14): 1744-1771.
    陈骏, 王汝成, 朱金初, 等. 南岭多时代花岗岩的钨锡成矿作用[J]. 中国科学: 地球科学, 2014, 44(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201401012.htm
    袁顺达. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示[J]. 矿物岩石地球化学通报, 2017, 36(5): 736-749. doi: 10.3969/j.issn.1007-2802.2017.05.004
    Lehmann B. Metallogeny of Tin[M]. Springer Verlag, 1990: 1-210.
    Linnen R L, Pichavant M, Holtz F, et al. The effect of fO2 source on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2 kbar[J]. Geochimica et Cosmochimica Acta, 1995, 59(8): 1579-1588. doi: 10.1016/0016-7037(95)00064-7
    Linnen R L, Pichavant M, Holtz F. The combined effects of fo2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts[J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 4965-4976. doi: 10.1016/S0016-7037(96)00295-5
    Mao J W, Cheng Y B, Chen M H, et al. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 2013, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z
    Romer R L, Kroner U. Phanerozoic tin and tungsten mineralization-Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting[J]. Gondwana research, 2016, 31(1): 60-95.
    付建明, 陈希清, 马丽艳, 等. 南岭成矿带锡多金属找矿成果及找矿方向[J]. 矿床地质, 2010, 29(S1): 181-182. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1095.htm
    Moore F, Howie R A. Geochemistry of some Cornubian cassiterites[J]. Mineralium Deposita, 1979, 14(1): 103-107.
    Schneider H J, Dulski P, Luck J, et al. Correlation of trace element distribution in cassiterites and geotectonic position of their deposits in Bolivia[J]. Mineralium Deposita, 1978, 13(1): 119-122.
    Möller P, Dulski P, Szacki W, et al. Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese[J]. Geochimica et Cosmochimica Acta, 1988, 52(6): 1497-1503. doi: 10.1016/0016-7037(88)90220-7
    Hennigh Q, Hutchinson R. Cassiterite at Kidd Creeek: an example of volcanogenic massive sulfide-hosted tin mineralization[J]. Economic Geology, 1999, 10(3): 431-440.
    单强, 曾乔松, 李建康, 等. 骑田岭芙蓉锡矿的成岩和成矿物质来源: 锆石Lu-Hf同位素和矿物裹体He-Ar同位素证据[J]. 地质学报, 2014, 88(4): 704-715. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201404023.htm
    苏咏梅. 湖南郴县红旗岭锡多金属矿床地质特征及成因[J]. 四川地质学报, 2007, 127(4): 274-278. doi: 10.3969/j.issn.1006-0995.2007.04.010
    袁顺达, 刘晓菲, 王旭东, 等. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究[J]. 岩石学报, 2012, 28(12): 3787-3797. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201212001.htm
    陈靖, 侯可军, 王倩, 等. 非基体匹配分馏校正的LA-ICP-MS锡石微区U-Pb定年方法研究[J]. 岩石学报, 2021, 37(3): 943-955. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103018.htm
    Yuan S D, Mao J W, Cook N J, et al. A Late Cretaceous tin metallogenic event in Nanling W-Sn metallogenic province: Constraints from U-Pb, Ar-Ar geochronology at the Jiepailing Sn-Be-F deposit, Hunan, China[J]. Ore Geology Reviews, 2015, 65(3): 283-293.
    Chen S C, Yu J J, Bi M, et al. Cassiterite U-Pb, mica 40Ar-39Ar dating and cassiterite trace element compostion of the Furong tin deposit in the Nanling Range, South China[J]. Ore Geology Reviews, In press, doi.org/10.1016/j.lithos.2020.105952.
    Chen B, Ma X H, Wang Q. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons(South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 2014, 93(2): 301-314.
    Chen Y X, Li H, Sun W D, et al. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution[J]. Lithos, 2016, 266/267(3): 435-452.
    张岳桥, 徐先兵, 贾东, 等. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录[J]. 地学前缘, 2009, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
    Plimer I R, Lu J, Kleeman J D. Trace and rare earth elements in cassiterite: sources of components for the tin deposits of the Mole Granite, Australia[J]. Mineralium Deposita, 1991, 26(4): 267-274.
    Farmer C B, Searl A, Halls C. Cathodoluminescence and Growth of Cassiterite in the Composite Lodes at South Crofty Mine, Cornwall, England[J]. Mineralogical Magazine, 1991, 55(3): 447-458.
    Hall M R, Ribbe P H. An electron microprobe study of luminescence centers in cassiterite[J]. American Mineralogist, 1971, 56(1/2): 31-45.
    Wille G, Lerouge C, Schmidt U. A multimodal microcharacterisation of trace-element zonation and crystallographic orientation in natural cassiterite by combining cathodoluminescence, EBSD, EPMA and contribution of confocal Raman in SEM imaging[J]. Journal of Microscopy, 2018, 270(3): 309-317. doi: 10.1111/jmi.12684
    Bennett J M, Kemp A I S, Roberts M P. Microstructural controls on the chemical heterogeneity of cassiterite revealed by cathodoluminescence and elemental X-ray mapping[J]. American Mineralogist, 2020, 105(1): 58-76. doi: 10.2138/am-2020-6964
    Murciego A, Garcla Sanchez A, Dusausoy Y, et al. Geochemistry and EPR of cassiterites from the Iberian Hercynian Massif[J]. Mineralogical Magazine, 1997, 61(4): 357-365.
    Steveson B G, Taylor R. Trace element content of some cassiterites from Eastern Australia[J]. Proceeding of the Royal Society of Queensland, 1973, 84(1): 43-54.
    Rapp J F, Klemme S, Butler I B, et al. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation[J]. Geology, 2010, 38(4): 323-326. doi: 10.1130/G30753.1
    郑基俭, 贾宝华. 骑田岭岩体的基本特征及其与锡多金属成矿作用关系[J]. 华南地质与矿产, 2001, (4): 50-57. doi: 10.3969/j.issn.1007-3701.2001.04.011
    Hoskin, Wo P. The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 2003, 53(1): 27-62.
    Dupuy C, Liotard J M, Dostal J. Zr/hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source[J]. Geochimica et Cosmochimica Acta, 1992, 56(6): 2417-2423. doi: 10.1016/0016-7037(92)90198-R
    Linnen R L. The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites[J]. Economic Geology, 1998, 93(7): 1013-1025. doi: 10.2113/gsecongeo.93.7.1013
    Jiang S Y, Wang R C, Xu X S, et al. Mobility of high field strength elements(HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2005, 30(17/18): 1020-1029.
    Rubin J N, Henry C D, Price J G. The mobility of zirconium and other 'immobile' elements during hydrothermal alteration[J]. Chemical Geology, 1993, 110(1): 29-47.
    Chen L L, Ni P, Dai B Z, et al. The Genetic Association between Quartz Vein-and Greisen-Type Mineralization at the Maoping W-Sn Deposit, Southern Jiangxi, China: Insights from Zircon and Cassiterite U-Pb Ages and Cassiterite Trace Element Composition[J]. Minerals, 2019, 411(9): 1-24.
    Cheng Y B, Spandler C, Kemp A, et al. Controls on cassiterite(SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District[J]. American Mineralogist, 2019, 104(1): 118-129. doi: 10.2138/am-2019-6466
    隋清霖, 祝红丽, 孙赛军, 等. 锡的地球化学性质与华南晚白垩世锡矿成因[J]. 岩石学报, 2020, 36(1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001004.htm
    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47(7): 745-765. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201707001.htm
    付旭, 吕古贤, 寇利民, 等. 内蒙古维拉斯托锂锡多金属矿含矿构造变形岩相分带和分布[J]. 地质通报, 2020, 39(11): 1752-1758. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201107&flag=1
    Möller P, Dulski P. Fractionation of Zr and Hf in cassiterite[J]. Chemical Geology, 1983, 40(1): 1-12.
    招湛杰, 陆建军, 姚远, 等. 与湘南白腊水锡矿床有关的骑田岭花岗岩的绿泥石化研究[J]. 高校地质学报, 2011, 17(4): 531-545. doi: 10.3969/j.issn.1006-7493.2011.04.005
    Parsons I, Lee M R. Minerals are not just chemical compounds[J]. Canadian Mineralogist, 2007, 43(6): 1959-1992.
    Putnis A. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms[J]. Mineralogical Magazine, 2002, 66(5): 689-708. doi: 10.1180/0026461026650056
    Gemmrich L, Torró L, Melgarejo J C, et al. Trace element composition and U-Pb ages of cassiterite from the Bolivian tin belt[J]. Mineralium Deposita, In press, doi.org/10.1007/s00126-020-01030-3: 1-30.
    张必敏. 湖南千里山-骑田岭芙蓉锡矿田锡石的成因矿物学及流体包裹体研究[D]. 中国地质大学(北京) 硕士学位论文, 2006.
    Heinrich C A. The chemistry of tin(-tungsten) ore deposition[J]. Economic Geology, 1990, 85(4): 529-550.
    胡晓燕, 毕献武, 胡瑞忠, 等. 锡在花岗质熔体和流体中的性质及分配行为研究进展[J]. 地球科学进展, 2007, 22(3): 281-289. doi: 10.3321/j.issn:1001-8166.2007.03.008
    Korges M, Weis P, Lüders V, et al. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation[J]. Geology, 2018, 46(1): 75-78. doi: 10.1130/G39601.1

Catalog

    Article views (2327) PDF downloads (1788) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return