• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. 2021: Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent. Geological Bulletin of China, 40(7): 1084-1093.
Citation: WANG Xiaofeng, XIONG Bo, QI Ronghui, LIU Junping, GUAN Xueqing, WU Jialin. 2021: Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent. Geological Bulletin of China, 40(7): 1084-1093.

Nd-Sr-Pb isotopes of Emeishan basalt in the Zhaotong area of northeastern Yunnan—Coupling relationship between source of Emeishan mantle plume and Rodinia supercontinent

More Information
  • Received Date: July 10, 2019
  • Revised Date: April 15, 2020
  • Available Online: August 15, 2023
  • The latest Nd-Sr-Pb isotopes study of Emeishan basalt in the Zhaotong area of northeastern Yunnan Province shows that the basalt samples generally have a 1000~900 Ma Nd model age of depleted mantle. The source could be generated by mixing of different proportions of a recycled ancient oceanic crust component(EM1-like, 60%~90%) and a peridotite component from the lower mantle(FOZO-like component, 10%~40%). The sample satisfies the Dupal anomaly boundary condition, suggesting that the latitude of Emeishan basalt magma formation and emplacement is quite different from the current latitude, and there may exist a large space distance between them. Therefore, a new model for the formation of the Emeishan mantle plume is proposed. During 1000~900 Ma, the oceanic crust derived from the Rodinia supercontinent event subducted and subsided, and the remnants of the oceanic crust piled on the 660 km mantle transition zone to form relatively cold refractory megaliths. In the Late Permian(~260 Ma), these megaliths(probably eclogite facies super-compressive metamorphic rocks) further subsided down to the "D" layer of the core-mantle transition, and resulted in the transformation from perovskite to post-perovskite, which was a strong exothermic reaction resulting in partial melting of lower mantle and subducting plate accumulations themselves, leading to upwelling of high temperature iron and titanium to form the mantle plume. The large scale upwelling and eruption of these magmas formed the large-scale Emeishan Igneous Province(LIPs) in the west of Yangtze block. At this time, the paleogeographic location was still in a certain position in the southern hemisphere. After the closure of the Paleotethys, these basalts bearing the unique geochemical imprint of the southern hemisphere(Dupal anomaly) drifted northward along with the Yangtze plate and reached the present position.

  • Morgan W J. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0
    White R S, Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts[J]. Geophys. Res., 1989, 94: 7685-7729.
    Hill R I. Starting pIume and continentaI break-up[J]. Earth Planet. Sci. Lett., 1991, 104: 398-416. doi: 10.1016/0012-821X(91)90218-7
    Chung S L, Jahn B M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary[J]. Geology, 1995, 23(10): 889-892. doi: 10.1130/0091-7613(1995)023<0889:PLIIGO>2.3.CO;2
    Courtillot V, Jaupart C, Manighetti I, et al. On causal links between flood basalts and continental breakup[J]. Earth and Planetary Science Letters, 1999, 166(3): 177-195. http://www.researchgate.net/profile/V_Courtillot/publication/222496393_On_causal_links_between_flood_basalts_and_continental_breakup/links/02bfe514738443c7a3000000
    张招崇. 关于峨眉山大火成岩省一些重要问题的讨论[J]. 中国地质, 2009, 36(3): 634-646. doi: 10.3969/j.issn.1000-3657.2009.03.010
    Wignall P B. Large Igneous Provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1/2): 1-33. http://www.sciencedirect.com/science/article/pii/S0012825200000374
    何冰辉. 关于峨眉山大火成岩省一些问题的研究现状[J]. 地球科学进展, 2016, 31(1): 23-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201601003.htm
    侯增谦, 卢记仁, 林盛中. 峨眉山地幔柱轴部的榴辉岩-地幔岩源区: 主元素、恒量元素及Sr、Nd、Pb同位素证据[J]. 岩石学报, 2005, 79(2): 200-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200502009.htm
    张招崇, John J Mahoney, 王福生, 等. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学: 地幔柱头部分熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606012.htm
    夏林圻, 徐学义, 李向民, 等. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质, 2012, 45(2): 1-26. doi: 10.3969/j.issn.1009-6248.2012.02.001
    李宏博, 张招崇, 李永生, 等. 峨眉山地幔柱轴部位置的讨论[J]. 地质评论, 2013, 59(2): 201-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201302002.htm
    姜寒冰. 峨眉山高钛和低钛玄武岩的岩石成因[D]. 长安大学硕士学位论文, 2006.
    朱炳泉. 全球幔源岩Pb-Sr-Nd同位素体系[J]. 地学前缘, 2007, 14(2): 24-36. doi: 10.3321/j.issn:1005-2321.2007.02.003
    周德进, 沈丽璞, 张旗, 等. 滇西古特提斯构造带玄武岩的Dupar异常[J]. 地球物理学进展, 1995, 10(2): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ502.003.htm
    刘成英. 峨眉山玄武岩的古地磁研究[D]. 中国科学院大学博士学位论文, 2012.
    Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events[J]. Earth and Planetary Science Letters, 2002, 198(3): 449-458. http://www.sciencedirect.com/science/article/pii/S0012821X02005356
    赖旭龙, 孙亚东, 江海水. 峨眉山大火成岩省火山活动与中晚二叠世之交生物大灭绝[J]. 中国科学基金, 2009, (6): 353-356. doi: 10.3969/j.issn.1000-8217.2009.06.007
    朱江, 张招崇, 侯通, 等. 贵州盘县峨眉山玄武岩系顶部凝灰岩LA-ICP-MS锆石U-Pb年龄: 对峨眉山大火成岩省与生物大规模灭绝关系的约束[J]. 岩石学报, 2011, 27(9): 2743-2751. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109023.htm
    朱江, 张招崇. 大火成岩省与二叠纪两次生物灭绝关系研究进展[J]. 地质论评, 2013, 59(1): 137-148. doi: 10.3969/j.issn.0371-5736.2013.01.015
    Ali J R, Thompson G M, Zhou M F, et al. Emeishan Large Igneous Province, SW China[J]. Lithos, 2005, 79(3/4): 475-489. http://www.sciencedirect.com/science/article/pii/S0024493704003196
    Zhang Z C, Mao J W, Saunders A D, et al. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan Large Igneous Province, SW China, based on isotopic and bulk chemical constraints[J]. Lithos, 2009, 113(3/4): 369-392. http://www.sciencedirect.com/science/article/pii/S0024493709001650
    Ren Z Y, Wu Y D, Le Zhang, et al. Primary magmas and mantle sources of Emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions[J]. Geochimica et Cosmochimica Acta, 2017, 208: 63-85. doi: 10.1016/j.gca.2017.01.054
    Ernst R E, Buchan K L, Campbell Ian H. Frontiers in Large Igneous Province research[J]. Lithos, 2005, 79(3/4): 271-297. http://www.sciencedirect.com/science/article/pii/S0024493704003093
    Bryan S E, Ernst R E. Revised definition of Large Igneous Province research (LIPs)[J]. Earth-Science Reviews, 2008, 86(1/4): 175-201. http://www.sciencedirect.com/science/article/pii/S0012825207001201
    Zhong Y T, He B, Mundil R, et al. CA-TIMS zircon U-Pb dating of felsic ignimbrite from the Bingchuan section: Implications for the termination age of Emeishan Large Igneous Province[J]. Lithos, 2014, 204(3): 14-19. http://www.sciencedirect.com/science/article/pii/S0024493714000863
    徐义刚, 钟孙霖. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地质化学, 2001, 30(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101001.htm
    徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014
    Zhou M F, Zhao J H, Qi L, et al. Zircon U-Pb geochronology and elemental and Sr-Nd isotope geochemistry of Permian mafic rocks in the Funing area, SW China[J]. Contrib Mineral Petrol., 2006, 151: 1-19. doi: 10.1007/s00410-005-0030-y
    Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantel[J]. Nature, 1984, 309: 753-757 doi: 10.1038/309753a0
    邢光福. Dupal同位素异常的概念、成因及其地质意义[J]. 火山地质与矿产, 1997, 18(4): 281-291. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199704003.htm
    Dupre B, Allegre C J. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomema[J]. Nature, 1983, 303: 142-149. doi: 10.1038/303142a0
    Xu Y, Chung S, Jahn B, et al. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southern China[J]. Lithos, 2001, 58: 145-168. doi: 10.1016/S0024-4937(01)00055-X
    张招崇, 王福生. 峨眉山玄武岩Sr-Nd-Pb同位素特征及其物源[J]. 地球科学, 2003, 28(4): 431-439. doi: 10.3321/j.issn:1000-2383.2003.04.012
    Peng Z, Mahoney J J. Drilling lavas from the northwestern Deccan traps, and the evolution of Reunion hotspot mantle[J]. Earth Planet. Sci. Lett., 1995, 134: 169-185. doi: 10.1016/0012-821X(95)00110-X
    Sharma M A, Basu R, Nesternko G V. Temporal Sr-Nd-and Pb-isotopic variations in the Siberian flood basalts: implications for the plume-source characteristics[J]. Earth Planet. Sci. Lett., 1992, 113: 365-381. doi: 10.1016/0012-821X(92)90139-M
    De Paolo D J. Inferences about magma sources and mantle structures using variations of 143Nd/144Nd[J]. Geophys Res Lett.. 1976, 3: 743-746. doi: 10.1029/GL003i012p00743
    Mc Culloch M T, Wasserbug G J. Sm-Nd and Rb-Sr chronslogy of continental crust formation[J]. Science, 1978, 200: 1003-1011. doi: 10.1126/science.200.4345.1003
    沈渭洲, 朱金初. 从Nd模式年龄谈华南地壳的形成时间[J]. 南京大学学报(地球科学版), 1990, 3: 82-92.
    李献华, 赵振华. 华南前寒武纪地壳形成的Sm-Nd和U-Pb同位素制约[J]. 地球化学, 1991, 6: 353-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199103006.htm
    宋谢炎, 侯增谦, 汪云亮, 等. 峨眉山玄武岩的地幔热柱成因[J]. 矿物岩石, 2002, 22(4): 27-32. doi: 10.3969/j.issn.1001-6872.2002.04.006
    Shellnutt J G, Jahn B M. Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous comlex: Implications of the genesis of Fe-Ti oxide deposits and A-type granites of SW China[J]. Earth Planet. Sci. Lett., 2010, 289(3): 509-519. http://www.sciencedirect.com/science/article/pii/S0012821X09007067
    Kamenetsky V S, Chuan S L, Kamentsky M B, et al. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources[J]. Journal of Petrology, 2012, 53(10): 2095-2113. doi: 10.1093/petrology/egs045
    Lassiter J C, Depaolo D J. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: chemical and isotope constraints[C]//M ahoney J. Large igneous provinces: continental, oceanic, and planetary flood volcanism. American Geophysical Union, 1997: 335-355.
    Mahoney J J. An isotopic survey of Pacific oceanic plateaus: Implications for their nature and origin[C]//Keating B H, Fryer P, Batiza R, et al. American Geophysical Union Monograph 43, Washington, DC, 1987: 207-220.
    Mahoney J J, Storey M, Duncan R A, et al. Geochemistry and age of the Ontong Java Plateau[C]//Pringle M S, Sager W W, Sliter W V, et al. Geophysical Monograph. American Geophysical Union, Washington, 1993, 77: 233-261.
    Tejada M L G, Mahoney J J, Castillo P R, et al. Pin-pricking the elephant: Evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts[C]//Fitton J G, Mahoney J J, Wallace P J, et al. Origin and Evolution of the Ontong Java Plateau. Geological Society Special Publication, Geological Society of London, 2004, 229: 133-150.
    Weaver B L. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth Planet. Sci. Lett., 1991, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6
    Hauri E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382: 415-419. doi: 10.1038/382415a0
    Hofmann A W. Mantle geochemistry: the message from oceanic volcanism[J]. Nature, 1997, 385: 219-229. doi: 10.1038/385219a0
    Lassiter J C, Hauri E H. Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume[J]. Earth Planet. Sci. Lett., 1998, 164: 483-496. doi: 10.1016/S0012-821X(98)00240-4
    Hart S R, Hauri E H, Oschmann L A. Mantle plumes and entrainment: isotope evidence[J]. Science, 1992, 256: 517-520. doi: 10.1126/science.256.5056.517
    Lee C T, Luffi P, Hoink T, et al. Upside-down differentiation and generation of a 'primordial' lower mantle[J]. Nature, 2010, 463: 930-935. doi: 10.1038/nature08824
    Hanan B B, Graham D W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes[J]. Science, 1996, 272: 991-995. doi: 10.1126/science.272.5264.991
    Farley K A, Natland J H, Craig H. Binary mixing of enriched and undegassed (primitive) mantle components (He, Sr, Nd, Pb) in Samoan lavas[J]. Earth Planet. Sci. Lett., 1992, 111: 183-199. http://www.sciencedirect.com/science/article/pii/0012821X9290178X
    杨晓松, 胡家杰. 二元混合体系的端元Sm-Nd模式年龄计算方法[J]. 地质科学, 1993, 28(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199301004.htm
    刘兵, 李小军, 关奇, 等. 滇东南富宁地区基性侵入岩及喷出岩时代[J]. 地质通报, 2018, 37(11): 2021-2031. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20181108&flag=1
    Ringwood A E. Phase transformations and differentiation in subducted lithosphere; implications for mantle dynanmics, basalt petrogenesis and crustal evolusion[J]. Journal of Geology, 1982, 314: 611-643. http://www.onacademic.com/detail/journal_1000034872571210_342f.html
    Zhao G C, Sun M. A palo-mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth-Science Review, 2004, 67: 91-123.
    Maruyama S, Santosh M. Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary[J]. Gondwana Research, 2007, 11: 7-73. http://www.sciencedirect.com/science/article/pii/S1342937X06002012
    夏林圻. 超大陆构造、地幔动力学和岩浆-成矿相应[J]. 西北地质, 2013, 46(3): 1-45. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201303001.htm
    Santosh M A. Synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment[J]. Journal of Geodynamics, 2010, 50: 11-133. http://www.sciencedirect.com/science/article/pii/S0264370710000700
  • Related Articles

Catalog

    Article views (2718) PDF downloads (2000) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return