• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
GENG Ting, ZHOU Yongzhang, LI Xingyuan, WANG Jun, CHEN Chuan, WANG Kunyi, HAN Ziqi. 2019: The discrimination between ore-forming and barren granites based on zircon REE compositions: Insights from big data mining. Geological Bulletin of China, 38(12): 1992-1998.
Citation: GENG Ting, ZHOU Yongzhang, LI Xingyuan, WANG Jun, CHEN Chuan, WANG Kunyi, HAN Ziqi. 2019: The discrimination between ore-forming and barren granites based on zircon REE compositions: Insights from big data mining. Geological Bulletin of China, 38(12): 1992-1998.

The discrimination between ore-forming and barren granites based on zircon REE compositions: Insights from big data mining

More Information
  • Received Date: April 22, 2019
  • Revised Date: July 24, 2019
  • Available Online: August 15, 2023
  • Yanshanian magmatism is well developed and has obvious metallogenic specificity in Qinzhou-Hangzhou Bays of South China. With the development of in-situ zircon analysis technology, a huge number of zircon composition data has been accumulated in recent years. On the basis of collecting data published by previous researchers, the authors determined the ore-forming potential of rock masses by using zircon REE compositions through big data thinking method, and explored effective geochemical indicators for ore prospecting. Python language was used to program arbitrary combination of elements. A total of 4095 binary diagrams and 121485 ternary diagrams were obtained, and diagrams that could effectively distinguish zircon parent rock metallogenic types were automatically screened out. The results show that different types of ore-forming rocks have different degrees of differentiation. Geochemical indices related to Ce and Eu can be well distinguished, which may result from the oxygen fugacity and water content of magma. Additionally, it is observed that some new element association diagrams (i.e., Dy/Lu-Er/Lu, Gd/Dy-Er/Yb) can distinguish ore-forming types of rock bodies effectively, but the underlying geochemical mechanism has not been fully understood. In brief, the results of geochemical data mining in this paper can be used as the prospecting indicators, which can provide scientific basis for the study and prospecting of Yanshanian hydrothermal deposits in South China, and can also be used to actively explore the application of big data technology in mineralogy.

  • Grimes C B, Wooden J L, Cheadle M J, et al."Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contrib. Mineral. Petrol., 2015, 170(46):1-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a25a5ed3f86737db4c5947bc56e2f0f
    赵振华, 严爽.矿物——找矿与成矿[J].岩石学报, 2019, 35(1):31-68. http://d.old.wanfangdata.com.cn/Periodical/ytgcj201505012
    Blevin P L. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia:implications for gold-rich ore systems[J]. Resource Geology, 2004, 54:241-252. http://cn.bing.com/academic/profile?id=14f40b483c12cb0e4f82f6c4aca93b24&encoded=0&v=paper_preview&mkt=zh-cn
    Li X, Chi G, Zhou Y, et al. Oxygen fugacity of Yanshanian granites in South China and implications for metallogeny[J]. Ore Geology Reviews, 2017, 88:690-701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28dc77d4ffaa488e323eea0fbf67ce44
    Shen P, Hattori K, Pan H, et al. Oxidation condition and metal fertility of granitic magmas:zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt[J]. Economic Geology, 2015, 110:1861-1878. http://cn.bing.com/academic/profile?id=f6fe3a0644a46c40571f18991dd6433b&encoded=0&v=paper_preview&mkt=zh-cn
    Ballard J R, Palin J M, Campbell I H. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:application to porphyry copper deposits of northern Chile[J]. Contrib. Mineral. Petrol., 2002, 144(3):347-364.
    Dilles J H, Kent A J R, Wooden J L, et al. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas[J]. Economic Geology, 2015, 110:241-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01d5461b6497e27f7f847d3a07569570
    周永章, 王俊, 左仁广, 等.地质领域机器学习、深度学习及Python语言[J].岩石学报, 2018, 34(11):3173-3178. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20181102&flag=1
    周永章, 陈烁, 张旗, 等.大数据与数学地球科学研究进展——大数据与数学地球科学专题代序[J].岩石学报, 2018, 34(1):256-263. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201802001
    王金荣, 潘振杰, 张旗, 等.大陆板内玄武岩数据挖掘——成分多样性及在判别图中的表现[J].岩石学报, 2016, 32(7):1919-1933. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201607001
    杨婧, 王金荣, 张旗, 等.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J].地质通报, 2016, 35(12):1937-1949. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20161201&flag=1
    Liu X L, Zhang Q, Li W C, et al. Applicability of large-ion lithophile and high field strength element basalt discrimination diagrams[J]. International Journal of Digital Earth, 2017, 11(7):752-760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/17538947.2017.1365959
    Lu Y J, Loucks R R, Fiorentini M. Zircon Compositions as a Pathfinder for Porphyry Cu ±Mo ±Au Deposits[J]. Economic Geology, 2016, 19:329-347.
    李晓峰, 易先奎, 朱和平.德兴金山金矿床成矿流体来源:小尺度构造和同位素地球化学证据[J].矿床地质, 2009, 28(1):42-52. http://d.old.wanfangdata.com.cn/Periodical/kcdz200901004
    Li Z. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 2003, 122(1/4):85-109. http://cn.bing.com/academic/profile?id=f37b2e324eb8eddd96446f3e3d501681&encoded=0&v=paper_preview&mkt=zh-cn
    Zhou X, Sun T, Shen W, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episode, 2006, 29:26-33. http://cn.bing.com/academic/profile?id=8265c4b55de950ade7768c2a1625f1f4&encoded=0&v=paper_preview&mkt=zh-cn
    Qiu J T, Yu X Q, Santosh M, et al. The Late Mesozoic tectonic evolution and magmatic history of west Zhejiang, SE China:implications for regional metallogeny[J]. International Journal of Earth Sciences, 2014, 103(3):713-735. http://cn.bing.com/academic/profile?id=6af7f92643c750951622bc56c1959602&encoded=0&v=paper_preview&mkt=zh-cn
    华仁民, 陈培荣, 张文兰, 等.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高校地质学报, 2005, 11(3):291-304. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503002
    毛景文, 张建东, 郭春丽.斑岩铜矿-浅成低温热液银铅锌-远接触带热液金矿矿床模型:一个新的矿床模型——以德兴地区为例[J].地球科学与环境学报, 2010, 32(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/xagcxyxb201001001
    张文兰, 华仁民, 王汝成, 等.赣南大吉山花岗岩成岩与钨矿成矿年龄的研究[J].地质学报, 2006, 80:956-962. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200607003
    Jie S X, Lei W X, Tao S, et al. Trace elements, U-Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China:Implications for petrogenesis and W-Sn mineralization[J]. Lithos, 2011, 127:468-482. http://cn.bing.com/academic/profile?id=1bbdda5cdb722807cff3877a1ec08cda&encoded=0&v=paper_preview&mkt=zh-cn
    Feng Z H, Wang C Z, Zhang M H, et al. Unusually dumbbellshaped Guposhan-Huashan twin granite plutons in Nanling Range of south China:Discussion on their incremental emplacement and growth mechanism[J]. ournal of Asian Earth Sciences, 2012, 48:9-23.
    Huang L C, Jiang S Y. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China:geochronology, petrogenesis and their relationship with Wmineralization[J]. Lithos, 2014, 202:207-226.
    Mao J, Zhang J, Pirajno F, et al. Porphyry Cu-Au-Moepithermal Ag-Pb-Zn-distal hydrothermal Au deposits in the Dexing area, Jiangxi province, East China-A linked ore system[J]. Ore Geology Reviews, 2011, 43(1):203-216. https://www.researchgate.net/publication/251527962_Porphyry_Cu-Au-Mo-epithermal_Ag-Pb-Zn-distal_hydrothermal_Au_deposits_in_the_Dexing_area_Jiangxi_province_East_China-A_linked_ore_system
    梁锦, 周永章, 李红中, 等.钦-杭结合带斑岩型铜矿的基本地质特征及成因分析[J].岩石学报, 2012, 28:3361-3372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201210022
    Hong J S, Liang Q L, Leon B, et al. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, SW Fujian Province, China:Constrains from the geochronology and geochemistry of the igneous rocks[J]. Ore Geology Reviews, 2013, 53:287-305. http://cn.bing.com/academic/profile?id=748aa61ce86af106fd73ea4526f66870&encoded=0&v=paper_preview&mkt=zh-cn
    Lukasik S, Kowalski P A, Charytanowicz M, et al. Clustering using Flower Pollination Algorithm and Calinski-Harabasz Index[C]//Proceedings of the Evolutionary Computation, 2016.
    Trail D, Waston E B, Tailby N D. The oxidation state of Hadean magmas and implications for early earth's atmosphere[J]. nature, 2011, 480:79-82. http://cn.bing.com/academic/profile?id=55f78fa37ccec499191a9f40eae3056a&encoded=0&v=paper_preview&mkt=zh-cn
    Liang H Y, Sun W, Su W, et al. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Economic Geology, 2009, 104:587-596.
    Qiu J T, Yu X Q, M S, et al. Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China[J]. Miner Deposita, 2013, 48:545-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66e856d30056778c64815686d10931ab
    Richards J P. The oxidation state, and sulfur and Cu contents of arc magmas:implications for metallogeny[J]. Lithos, 2015, 233:27-45. http://cn.bing.com/academic/profile?id=d6ace9938c4126c1a011f15825a9f8e3&encoded=0&v=paper_preview&mkt=zh-cn
    Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37:247-250. http://cn.bing.com/academic/profile?id=9ef8e00f52e3a033669633c7a970991c&encoded=0&v=paper_preview&mkt=zh-cn
    Sun W, Huang R F, Li H, et al. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews, 2015, 65:97-131. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232405025/
    Sun W, Arculus R J, Kamenetsky V S, et al. Release of goldbearing fluids in convergent margin magmas prompted by magnetite crystallization[J]. nature, 2004, 431:975-978. http://cn.bing.com/academic/profile?id=764e89b5fb7f5c7efbe5aa6c1790b9f6&encoded=0&v=paper_preview&mkt=zh-cn
    Liang H Y, Campbell I H, Allen C. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet[J]. Miner Deposita, 2006, 41:152-159.
    辛洪波, 曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束[J].矿物学报, 2008, 28:152-160. http://d.old.wanfangdata.com.cn/Periodical/kwxb200802007
    Li C Y, Zhang H, Wang F Y, et al. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback[J]. Lithos, 2012, 150:101-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27f880c3bd8b822458f3a45b3f2b5e3c
    胥磊落, 毕献武, 陈佑纬, 等.云南金平铜厂斑岩铜钼矿区岩体锆石Ce4+/Ce3+比值及其对成矿的指示意义[J].矿物学报, 2012, 32:74-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb201201011
    黄文婷, 李晶, 梁华英, 等.福建紫金山矿田罗卜岭铜钼矿化斑岩锆石LA-ICPMS U-Pb年龄及成矿岩浆高氧化特征研究[J].岩石学报, 2013, 29:283-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201301022
    Hou Z, Zhang H, Pan X, et al. Porphyry (Cu-Mo-Au) deposits related to melting of thickened mafic lower crust:examples from the eastern Tethyan metallogenic domain[J]. Ore Geology Reviews, 2011, 39:21-45. doi: 10.1016-j.oregeorev.2010.09.002/
  • Related Articles

Catalog

    Article views (3162) PDF downloads (2245) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return