• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
LIU Qingquan, SHAO Yongjun, CHEN Xinmeng, ZHANG Zhe, LI Yongfeng, HUANG Xiaoxi. 2017: Geochemistry of the Yaochong granite in Dabie orogenic belt and its geological implications. Geological Bulletin of China, 36(2-3): 429-444. DOI: 10.12097/gbc.dztb-36-2-3-429
Citation: LIU Qingquan, SHAO Yongjun, CHEN Xinmeng, ZHANG Zhe, LI Yongfeng, HUANG Xiaoxi. 2017: Geochemistry of the Yaochong granite in Dabie orogenic belt and its geological implications. Geological Bulletin of China, 36(2-3): 429-444. DOI: 10.12097/gbc.dztb-36-2-3-429

Geochemistry of the Yaochong granite in Dabie orogenic belt and its geological implications

More Information
  • Received Date: December 03, 2015
  • Revised Date: December 11, 2016
  • Available Online: August 15, 2023
  • Located in the Qinling-Dabie orogenic belt, the Yaochong granite body mainly consists of biotite granite and granite porphyry. According to the geochemical analysis, Yaochong granites have the following data: SiO2=71.28%~77.24%, K2O=3.81%~5.28%, Na2O=3.76%~5.03%, Al2O3=11.61%~14.6%, and A/CNK=0.96~1.03. The rocks are enriched in LREE, depleted in HREE with negative Eu anomalies, enriched in Rb, U, Hf, Y and depleted in Ba, Nb, Ta, Ti, which indicates that Yaochong granites belong to metaluminous to peraluminous, high-K calc-alkaline I-type granite. According to zircon Hf isotope analysis, the εHf(t) values of the granite range from-30 to-22.8, lying below the depleted mantle line. The tDM2 values range from 2.21Ga to 2.60Ga, which indicates that the granite resulted from the lower crust of Yangtze block. The components of the granite porphyry are similar to those of Neoproterozoic TTG magmatic rocks. Yaochong granites were emplaced after the major collisional period of the North China block and Yangtze block, in a post-collisional tectonic setting under the regional extension mechanism. The geodynamic setting was the transformation of the tectonic regime of the late Jurassic-Early Cretaceous period.

  • 汤加富, 侯明金, 李怀坤, 等.扬子地块东北缘多期叠加变形及形成演化[J].大地构造与成矿学, 2003, 27(4): 313-326. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200304002.htm
    王勇生, 朱光, 王道轩, 等.大别山东缘郯庐两期走滑剪切带形成的温压条件与造山带折返的关系[J].大地构造与成矿学, 2004, 28(3): 228-238. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200403001.htm
    徐树桐, 江来利, 刘贻灿, 等.大别山区 (安徽部分) 的构造格局和演化过程[J].地质学报, 1992, 66(1): 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199201000.htm
    杨巍然, 杨坤光, 刘忠明, 等.桐柏-大别造山带加里东期构造热事件及其意义[J].地学前缘, 1999, 6(4): 247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199904011.htm
    翟明国.华北克拉通破坏前的状态——对讨论华北克拉通破坏问题的一个建议[J].大地构造与成矿学, 2008, 32(4): 516-520. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200804017.htm
    Mao J W, Pirajno F, Xiang J F, et al. Mesozoic molybdenum deposits in the east Qinlin-Dabie orogenic belt: Characteristics and tectonic settings[J]. Ore Geology Reviews, 2011, 43: 264-293. doi: 10.1016/j.oregeorev.2011.07.009
    毛景文, 华仁民, 李晓波.浅议大规模成矿作用与矿集区[J].矿床地质, 1999, 18(4): 291-299. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199904000.htm
    毛景文, 王志良.中国东部大规模成矿时限及其动力学背景的初步初探[J].矿床地质, 2000, 19(4): 289-296. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200004000.htm
    李毅, 胡海珠, 陈丽娟, 等.大别山北麓姚冲钼矿床地质特征及找矿标志[J].地质与勘探, 2013, 49(2): 280-288. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302013.htm
    陶继华, 李武显, 李献华, 等.赣南龙源坝地区燕山期高分异花岗岩年代学、地球化学及锆石Hf-O同位素研究[J].中国科学 (D辑), 2013, 43(5): 760-778. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201305008.htm
    高山, 张本仁, 金振民.秦岭-大别造山带下地壳拆沉作用[J].中国科学 (D辑), 1999, 29(6): 532-541. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199906007.htm
    王清晨, 丛柏林.大别山超高压变质带的大地构造框架[J].岩石学报, 1998, 14(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB804.006.htm
    杨泽强.河南商城县汤家坪钼矿辉钼矿铼锇同位素年龄及地质意义[J].矿床地质, 2007, 26(3): 289-295. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200703004.htm
    李俊平, 李永峰, 罗正传, 等.大别山北麓钼矿找矿重大进展及其矿床地质特征研究[J].大地构造与成矿学, 2011, 35(4): 576-586. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201104014.htm
    刘清泉, 柳玉虎, 李永峰, 等.大别山北麓斑岩型钼矿床成矿地质条件及矿床成因[J].地质找矿论丛, 2013, 28(1): 27-33. http://www.cnki.com.cn/Article/CJFDTOTAL-DZZK201301004.htm
    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and Jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27:1391-1399. doi: 10.1039/c2ja30078h
    Geolaerts A, Mattielli N, Dejong J, et al. Hf and Lu isotopic reference values for zircon standard 91500 by MC-ICP-MS[J]. Chemical Geology, 2004, 206: 1-9. doi: 10.1016/j.chemgeo.2004.01.008
    Liu Y S, Gao S, Hu Z C. Continental and oceanic crust recyclinginduced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zicons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. https://www.researchgate.net/publication/268411794_Continental_and_Oceanic_Crust_Recycling-induced_MeltPeridotite_Interactions_in_the_Trans-North_China_Orogen_UPb_Dating_Hf_Isotopes_and_Trace_Elements_in_Zircons_from_Mantle_Xenoliths
    Streckeisen A, Maitre R W. A chemical approximation to the modal QAPF classification of the igneous rocks[J]. Neues Jahrb Mineral Abh, 1979, 136: 169-206. http://www.oalib.com/references/9045201
    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Watson E B, Harrison T M. Zircon saturation revisited: Temperature and compositional effects in variety of crustal magma types[J]. Eeath and Planetaty Science Letters, 1983, 64(2): 295-304. doi: 10.1016/0012-821X(83)90211-X
    张旗, 潘国强, 李承东, 等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报, 2007, 23(11): 2683-2698. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711003.htm
    Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatie from the North Dabie terrane in China: Constrains on partial melting[J]. Journal of Metamorphic Geology, 2007, 25(9): 991-1009. doi: 10.1111/j.1525-1314.2007.00738.x
    Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by IOM microprobe: Some examples from the western Alps[C]//Cathodoluminescence in Geoscience. Heidelberg, Germany: Springer-Verlag, 2000: 373-400.
    Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LA-MC-ICP-MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
    朱弟成, 莫宣学, 王立全, 等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束[J].中国科学 (D辑), 2009, 39(7): 833-848. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907001.htm
    吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(2): 185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706000.htm
    Chappell B W. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 46(3): 533-551. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1169996
    Wu F Y, Wilder S A, Lo C H, et al. Highly fractionated I-type granites in NE China (Ⅰ): Geochronology and petrogenesis[J]. Lithos, 2003, 66(3/4): 241-273. http://www.academia.edu/13669525/Highly_fractionated_I-type_granites_in_NE_China_I_geochronology_and_petrogenesis
    Li X H, Li Z X, Li W X, et al. U-Pb zicron, geochemical and Sr-Nd-Hf isotopic constrains on age and origin of Jurassic I-and Stype granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab[J]. Lithos, 2007, 96(1/2): 186-204.
    Whalen J B, Currie K L, Chappell B W, et al. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contribution to Mineralogy and Petrology, 1987, 95: 407-419. doi: 10.1007/BF00402202
    Sylvester P J. Post-collisional alkaline granites[J]. Geology, 1989, 97: 261-280. doi: 10.1086/629302
    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial of hydrous basalt: Implications for TTG genesis[J]. Chemical Geology, 2005, 218(3/4): 339-359. http://gemoc.mq.edu.au/Abstracts/Abs2006/XiongIAVCEI06.pdf
    Janousek V Finger F, Roberts M, et al. Deciphering the petrogenesis of deeply buried granites: Whole-rock geochemical constraints on the origin of largely undepleted granulites from the Moldanubian Zone of the Bohemian Massif[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95: 141-159. doi: 10.1017/S0263593300000985
    Arth J G. Behaviour of trace elements during magmatic processes: A summary of theoretical models and their applications[J]. Journal of Research of the Us Geological Survey, 1976, 4: 41-47. http://www.academia.edu/3420784/Behavior_of_trace_elements_during_magmatic_processes_a_summary_of_theoretical_models_and_their_applications
    Mahood G, Hildreth W. Large partition coefficients for trace elements in high-silica rhyolithes[J]. Geochimica et Cosmochimica Acta, 1983, 47: 11-30. doi: 10.1016/0016-7037(83)90087-X
    Green T H, Pearson N J. Rare earth element partitioning between titanite and coexisting silicate liquid at high pressure and temperature[J]. Chemical Geology, 1986, 74: 201-216. doi: 10.1007%2FBF00429424
    Yurimoto H, Duck E F, Papike J J, et al. Are discontinuous chondrite-normalized REE pattern in pegmatitic granites systems the results of monazite fractionation?[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2141-2145. doi: 10.1016/0016-7037(90)90277-R
    Wedepohl K H. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232. doi: 10.1016/0016-7037(95)00038-2
    Blichert J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148: 243-258. doi: 10.1016/S0012-821X(97)00040-X
    Patchett P J, Kouvo O, Hedge C E, et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy Petrology, 1981, 78(3): 279-297. https://www.researchgate.net/publication/225258212_Evolution_of_continental_crust_and_mantle_heterogeneity_Evidence_from_Hf_isotopes
    Nowell G M, Kempton P D, Noble S R, et al. High precision Hf isotope measurements of MORB and OIB by thermal ionization mass spectronmetry: Insights into the depleted mantle[J]. Chemical Geology, 1998, 149: 211-233. doi: 10.1016/S0009-2541(98)00036-9
    Zhao Z F, Zheng Y F, Wei C S, et al., Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China[J]. Chemical Geology, 2008, 253: 222-242. doi: 10.1016/j.chemgeo.2008.05.011
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for≥3.5Ga continental crust in the Yangtze craton of China[J]. Precambrian Research, 2006, 146: 16-34. doi: 10.1016/j.precamres.2006.01.002
    Zheng J P, Griffin W L, O'Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 2006, 34: 417-420. doi: 10.1130/G22282.1
    Xiong Q, Zheng J P, Yu C M, et al. Zircon U-Pb age and Hf isotope of Quanyishang A-type granite in Yichang: signification for the Yangtze continental cratonization in Paleoproterozoic[J]. Chinese Science Bulletin, 2008, 54: 436-446. http://www.oalib.com/paper/1673813
    Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62(1/2): 105-161. https://www.researchgate.net/profile/Long_Li10/publication/223673324_Stable_isotope_geochemistry_of_ultrahigh_pressure_metamorphic_rocks_from_the_Dabie-Sulu_orogen_in_China_Implications_for_geodynamics_and_fluid_regime/links/0deec5254230e4dad5000000.pdf?origin=publication_list
    Zheng Y F, Zhang S B. Formation and evolution of Precambrian continental crust in southern China[J]. Chinese Science Bulletin, 2007, 52(1): 1-10. doi: 10.1007/s11434-007-0015-5
    Zhao Z F, Zheng Y F, Wei C S, et al. Post-collisional granitoids from the Dabie orogen in China: Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust[J]. Lithos, 2007, 93(3/4): 248-272.
    Zhao Z F, Zheng Y F. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt[J]. Science in China (Series D), 2009, 52(9): 1295-1318. doi: 10.1007/s11430-009-0134-8
    Zhang S B, Zheng Y F, Zhao Z F, et al. Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic instrusions at Xiaofeng in the Yangtze Gorge, South China[J]. Precambrian Research, 2008, 163: 210-238. doi: 10.1016/j.precamres.2007.12.003
    Zhang S B, Zheng Y F, Zhao Z F, et al. Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in South China[J]. Lithos, 2009, 113: 347-368. doi: 10.1016/j.lithos.2009.04.024
    续海金, 叶凯, 马昌前.北大别早白垩世花岗岩类Sm-Nd和锆石Hf同位素及其构造意义[J].岩石学报, 2008, 24(1): 87-103. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801008.htm
    陈伟, 徐兆文, 李红超, 等.河南新县花岗岩岩基的岩石成因、来源及对西大别构造演化的启示[J].地质学报, 2013, 87(10): 1510-1524. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201310003.htm
    Zhao Z F, Zheng Y F, Wei C S, et al. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecrure of the ultrahigh-pressure Dabie orogen in China[J]. Chemical Geology, 2008, 253: 222-242. doi: 10.1016/j.chemgeo.2008.05.011
    Liu F L, Xue H M. Review and prospect of SHRIMP U-Pb dating on zircons from Sulu-Dabie UHP metamorphic rocks[J]. Acta Petrologica Sinica, 2007, 23(11): 2737-2756. https://www.researchgate.net/publication/285632071_Review_and_prospect_of_SHRIMP_U-Pb_dating_on_zircons_from_Sulu-Dabie_UHP_metamorphic_rocks
    Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 2003, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2
    He Y S, Li S G, Hoefs J, et al. Post-collisional granitoids from the Dabie orogen: new evidence for partial melting of a thickened continental crust[J]. Geochimica et Cosmochimica Acta, 2011, 75: 3815-3838. doi: 10.1016/j.gca.2011.04.011
    He, Y S, Li S G, Hoefs J, et al. Sr-Nd-Pb isotopic compositions of Early Cretaceous granitoids from the Dabie orogen: Constraints on the recycled lower continental crust[J]. Lithos, 2013, 156(2): 156-159.
    Wang Q, Wyman D A, Xu J F, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust[J]. Geochimica et Cosmochimica Acta, 2007, 71: 2609-2636. doi: 10.1016/j.gca.2007.03.008
    Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtze cratons: U-Pb zircon dating of coesite-bearing eclogites[J]. Geology, 1993, 21: 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2
    李锦轶.中朝地块与扬子地块碰撞的时限与方式——长江中下游地区震旦纪-侏罗纪沉积环境的演变[J].地质学报, 2001, 75(1): 25-34. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101004.htm
    张国伟, 张本仁, 袁学诚, 等.秦岭造山带与大陆动力学[M].北京:科学出版社, 2001: 1-855.
    Leech M L. Arrested orogenic development: Eclogitization, delamination, and tectonic collapse[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 149-159. http://www.academia.edu/7686502/Arrested_orogenic_development_eclogitization_delamination_and_tectonic_collapse
    Vanderhaeghe O, Teyssier C. Partial melting and flow of orogens[J]. Tectonophysics, 2001, 342(3/4): 451-472. https://www.researchgate.net/profile/Christian_Teyssier/publication/223623194_Partial_melting_and_flow_of_orogens/links/02e7e51624e80e25b4000000.pdf
    Btyant D L, Ayers J C, Gao S. Geochemical, age, and isotopic constraints on the northern Dabie comples, east central China[J]. Geological Society of America Bulletin, 2004, 116(5/6): 698-717. https://www.researchgate.net/profile/John_Ayers/publication/230839344_Geochemical_Age_and_Isotopic_Constraints_on_the_Location_of_the_Sino-KoreanYangtze_Suture_and_Evolution_of_the_Northern_Dabie_Complex_East_Central_China/links/00b7d51840418141d7000000.pdf?origin=publication_list
    Hacher B R, Ratachbacher L, Liu J G. Subduction, collision and exhumation in the ultrahigh-pressure Qin-ling-Dabie orogen[C]// Malpas J, Fletcher C, Ali J R. Aspects of the Tectonic Evolution of China. Geological Society, Special Publication, London, 2004, 226: 157-175.
    Liu X C, Jahn B M, Liu D Y, et al. SHRIMP U-Pb dating on zircon of a metagabbro and eclogites from western Dabieshan (Hong' an Block), China, and its tectonic implications[J]. Tectonophysics, 2004, 394(3/4): 171-192. https://www.researchgate.net/publication/222696716_SHRIMP_U-Pb_zircon_dating_of_a_metagabbro_and_eclogites_from_western_Dabieshan_Hong%27an_Block_China_and_its_tectonic_implications
    高阳, 叶会寿, 李永峰, 等.大别山千鹅冲钼矿区花岗岩的SHRIMP锆石U-Pb年龄、Hf同位素组成及微量元素特征[J].岩石学报, 2014, 30(1): 49-63. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401004.htm
    徐克勤, 胡受奚, 孙明志, 等.华南两个成因系列花岗岩及其成矿特征[J].矿床地质, 1982, 2: 1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198202000.htm
    卢欣祥.秦岭花岗岩揭示的秦岭构造演化过程[J].地球科学进展, 1998, 13(2): 213-214. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ802.018.htm
    任纪舜.论中国大陆岩石圈构造的基本特征[J].中国区域地质, 1991, 2: 289-293. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199104000.htm
    李永峰. 豫西熊耳山地区中生代花岗岩类时空演化与钼 (金) 成矿作用[D]. 中国地质大学 (北京) 博士学位论文, 2005: 1-143.
    河南省地质矿产局.河南省区域地质志[M].北京:地质出版社, 1989: 1-689.
    毛景文, 张作衡, 余金杰, 等.华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学 (D辑), 2003, 33(4): 289-299. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304000.htm
    刘清泉, 邵拥军, 张智慧, 等.大别山姚冲花岗岩锆石U-Pb年龄、Hf同位素及地质意义[J].中国有色金属学报, 2015, 25(2): 479-491. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201502027.htm
    刘清泉, 张智慧, 李永峰, 等.大别山北麓斑岩型钼矿床地质特征、成矿时代及其成矿构造背景[J].地质与勘探, 2014, 50(2): 199-215. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201402001.htm
  • Related Articles

Catalog

    Article views (2243) PDF downloads (386) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return