• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
WU Hao, LIN Zhaoxu, JIANG Ziqi, WANG Chonghao, ZHENG Xin, YANG Rui. 2022: Zircon U-Pb ages and geochemical characteristics of basalts in Zhongcang area, central Tibet: constraints on the evolution of Shiquan River-Namu Co back-arc basin. Geological Bulletin of China, 41(10): 1728-1739. DOI: 10.12097/j.issn.1671-2552.2022.10.003
Citation: WU Hao, LIN Zhaoxu, JIANG Ziqi, WANG Chonghao, ZHENG Xin, YANG Rui. 2022: Zircon U-Pb ages and geochemical characteristics of basalts in Zhongcang area, central Tibet: constraints on the evolution of Shiquan River-Namu Co back-arc basin. Geological Bulletin of China, 41(10): 1728-1739. DOI: 10.12097/j.issn.1671-2552.2022.10.003

Zircon U-Pb ages and geochemical characteristics of basalts in Zhongcang area, central Tibet: constraints on the evolution of Shiquan River-Namu Co back-arc basin

More Information
  • Received Date: November 02, 2020
  • Revised Date: June 24, 2021
  • Available Online: August 15, 2023
  • Tectonic attribute and evolution history of Shiquan River-Namu Co mélange zone have been controversial for a long time.This paper deals with the petrology, geochronology, and geochemistry of the basalts from the Zhongcang ophiolite mélange, in order to reveal its formation age, petrogenesis and tectonic significance.LA-ICP-MS zircon U-Pb age of Zhongcang basalt is 115.7±2.0 Ma, which is consistent with the formation age of gabbro in the region.The Zhongcang basalts have a relatively flat REE distribution curve, similar to the mid-ocean ridge basalt(MORB).Furthermore, these samples show Th enrichment and Nb, Ta depletion.It is proposed that the Zhongcang basalts were derived by partial melting of the spinel peridotite mantle, which was modified by subduction sediments, in the back-arc basin spreading center.Combined with the study of the regional gabbros, our research favors that the Shiquan River-Namu Co mélange zone represents the remnant of a Mesozoic back-arc basin, which was produced by the back-arc rifting in response to the southward oceanic subduction of Bangong-Nujiang Tethyan Ocean.

  • Coleman R G. Ophiolite[M]. New York: Springer Verlag, 1977.
    Coleman R G. The ophiolite concept evolves[J]. Elements, 2014, 10(2): 82-84. doi: 10.2113/gselements.10.2.82
    唐跃, 翟庆国, 胡培远, 等. 班公湖-怒江缝合带西段拉果错蛇绿岩中斜长岩成因及其对中特提斯洋演化的制约[J]. 地质通报, 2021, 40(8): 1265-1278. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210805&flag=1
    Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and Geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307(5946): 27-31. doi: 10.1038/307027a0
    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of Western Tibet[J]. Tectonics, 2003, 22(4): 1029.
    Xu M, Li C, Xu W, et al. Petrology, geochemistry and geochronology of gabbros from the Zhongcang ophiolitic mélange, central Tibet: Implications for an intra-oceanic subduction zone within the Neo-Tethys Ocean[J]. Journal of Earth Science, 2014, 25(2): 224-240. doi: 10.1007/s12583-014-0419-5
    徐梦婧, 兰锐, 王沛, 等. 西藏中仓蛇绿混杂岩中辉长岩锆石U-Pb定年及其地质意义[J]. 天津城建大学学报, 2019, 25(2): 128-132. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCS201902008.htm
    Zeng Y C, Xu J F, Chen J L, et al. Geochronological and geochemical constraints on the origin of the Yunzhug ophiolite in the Shiquanhe-YunzhugNamu Tso ophiolite belt, Lhasa Terrane, Tibetan Plateau[J]. Lithos, 2018, 300/301: 250-260. doi: 10.1016/j.lithos.2017.11.025
    曾孝文, 王明, 范建军, 等. 青藏高原中部阿索蛇绿岩岩石学与同位素年龄[J]. 地质通报, 2018, 37(8): 1492-1502. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180813&flag=1
    王保弟, 刘函, 王立全, 等. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化[J]. 地球科学, 2020, 45(8): 2764-2784. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202008002.htm
    Zhu D C, Zhao Z D, Niu Y, et al. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005
    Ludwig K R. Isoplot/Ex, version 3, a geochronological toolkit for microsoft excel[M]. Berkeley: Berkeley Geochronological Center Special Public, 2003.
    于红. 陕西商南松树沟橄榄岩矿物地球化学特征及成因机理示踪[D]. 中国地质大学(北京)硕士学位论文, 2011.
    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin 2010, 55: 1535-1546. doi: 10.1007/s11434-010-3052-4
    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 8: 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    Winchester J A, Floyd P A. Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks[J]. Earth and Planetary Science Letters, 1976, 28(3): 459-469. doi: 10.1016/0012-821X(76)90207-7
    Irvine T N, Baragar W R. A Guide to the Chemical Classification of the Common Igneous Rocks[J]. Canadian Journal of Earth Sciences, 1971, 8: 523-548. doi: 10.1139/e71-055
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society London Special Publications, 1989, 42: 313-345.
    吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
    Elburg M A, van Bergen M, Hoogewerff J, et al. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia[J]. Geochimica et Cosmochimica Acta, 2002, 66: 2771-2789. doi: 10.1016/S0016-7037(02)00868-2
    Guo Z F, Hertogen J, Liu J Q, et al. Potassic magmatism in western Sichun and Yunnan Provinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis[J]. Journal of Petrology, 2005, 46: 33-78. doi: 10.1093/petrology/egh061
    Hawkesworth C, Turner S, Peate D, et al. Elemental U and Th variations in island arc rocks: implications for U-series isotopes[J]. Chemical Geology, 1997, 139: 207-221. doi: 10.1016/S0009-2541(97)00036-3
    Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet: products of partial melting of subduction-modified lower crust[J]. Lithos, 2007: 96: 205-224. doi: 10.1016/j.lithos.2006.09.011
    Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008, 100(1/4): 14-48.
    Frey F A, Green D H, Roy S D. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology, 1978, 19(3): 463-513. doi: 10.1093/petrology/19.3.463
    Wilkinson J F G, Le Maitre R W. Upper mantle amphiboles and micas and TiO2, K2O, and P2O5 abundances and 100Mg/(Mg + Fe2+)ratios of common basalts and andesites: Implications for modal mantle metasomatism and undepleted mantle compositions[J]. Journal of Petrology, 1987, 28(1): 37-73. doi: 10.1093/petrology/28.1.37
    Ellam R M. Lithospheric thickness as a control on basalt geochemistry[J]. Geology, 1992, 20(2): 153-156. doi: 10.1130/0091-7613(1992)020<0153:LTAACO>2.3.CO;2
    Xu Y G, Ma J L, Frey F A, et al. Role of lithosphere asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton[J]. Chemical Geology, 2005, 224(4): 247-271. doi: 10.1016/j.chemgeo.2005.08.004
    Aldanma Z E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of Late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.
    Fretzdorff S, Livermore R A, Devey C W, et al. Petrogenesis of the back-arc east scotia ridge, south Atlantic ocean[J]. Journal of Petrology, 2002, 43(8): 1435-1467. doi: 10.1093/petrology/43.8.1435
    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3/4): 207-218.
    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth & Planetary Sciences, 1995, 23: 251-285.
    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
    Hollings P, Kerrich R. Geochemical systematics of tholeiites from the 2.86 Ga Pickle Crow Assemblage, northwestern Ontario: arc basalts with positive and negative Nb-Hf anomalies[J]. Precambrian Research, 2004, 134: 1-20.
    Cabanis B, Lecolle M. The La/10-Y/15-Nb/8 Diagram: A Tool for Discrimination Volcanic Series and Evidencing Continental Crust Magmatic Mixtures and/or Contamination[J]. Compte Rendus de l'Academie des Sciences, Seris Ⅱ, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 1989, 309(20): 2023-2029(in French).
    王永胜, 曲永贵, 吕鹏, 等. 西藏永珠蛇绿岩带地质特征[J]. 吉林地质, 2003, 22(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ200302001.htm
    朱志勇. 西藏永珠-纳木错蛇绿岩地球化学特征及其构造环境[D]. 吉林大学硕士学位论文, 2014.
    曾孝文, 王明, 李航, 等. 西藏中部狮泉河-纳木错蛇绿岩带的构造属性——来自阿索混杂岩带岛弧玄武岩的地球化学制约[J]. 地质通报, 2021, 40(8): 1291-1301. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210807&flag=1
    唐峰林, 黄建村, 罗小川, 等. 藏北阿索构造混杂岩的发现及其地质意义[J]. 东华理工学院学报, 2004, 27(3): 245-250. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ200403008.htm
    张璋, 周诗, 耿全如, 等. 狮泉河蛇绿混杂岩带早侏罗世辉长岩锆石年代学及地质意义[J]. 科学技术与工程, 2020, 20(19): 7579-7588. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202019002.htm
    康晓波, 冯士彬, 刘世朝, 等. 西藏日土县狮泉河蛇绿混杂岩锆石U-Pb年龄及构造意义[J]. 四川有色金属, 2019, 4: 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ACJS201904006.htm
    Ma Y L, Zhong Y, Furnes H, et al. Origin and tectonic implications of boninite dikes in the Shiquanhe ophiolite, western Bangong Suture, Tibet[J]. Journal of Asian Earth Sciences, 2021, 205: 104594.
    Liu W L, Huang Q T, Gu M, et al. Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet[J]. Gondwana Research, 2018, 60: 1-14.
    Li H, Wang M, Zeng X W, et al. Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean[J]. Lithos, 2020, 362/363: 105481.
    李志军, 李晨伟, 高一鸣, 等. 西藏狮泉河蛇绿岩中侏罗世晚期(ca. 163Ma)OIB型辉绿岩及高镁闪长岩年代学及地球化学特征: 早期洋壳俯冲产物?[J]. 岩石学报, 2019, 35(3): 816-832. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201903012.htm
    Stern R J, Bloomer S H. Subduction zone infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs[J]. Geological Society of America Bulletin, 1992, 104: 1621-1636.
    Stern R J, Reagan M, Ishizuka O, et al. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites[J]. Lithosphere, 2013, 4(6): 469-483.
    Ishizuka O, Tani K, Reagan M K. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue[J]. Elements, 2014, 10: 115-120.
    Wu H, Fan J J, Jiang Z Q, et al. Late Jurassic-Early Cretaceous magmatic activity in the Central Lhasa Terrane: Petrogenesis and implications for the initial subduction of the Slainajap oceanic lithosphere[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 573: 110438.
    赵守仁, 岳鋆璋, 吴喆. 西藏麻米地区晚侏罗世—早白垩世侵入岩锆石U-Pb年龄、地球化学特征及其对班-怒特提斯洋俯冲过程的制约[J]. 地质通报, 2022, 41(8): 1342-1357. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20220803&flag=1
    Wu H, Sun S, Liu H, et al. An Early Cretaceous slab window beneath central Tibet, SW China: Evidence from OIB‐like alkaline gabbros in the Duolong area[J]. Terra Nova, 2019, 31(1): 67-75.
    Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319(2): 105-121.

Catalog

    Article views (2105) PDF downloads (1898) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return