• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
LI Huaqi, LI Tianfu, JI Fengbao. 2021: Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt. Geological Bulletin of China, 40(8): 1279-1290. DOI: 10.12097/gbc.dztb-40-8-1279
Citation: LI Huaqi, LI Tianfu, JI Fengbao. 2021: Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt. Geological Bulletin of China, 40(8): 1279-1290. DOI: 10.12097/gbc.dztb-40-8-1279

Geochemical analysis and amphibole 40Ar-39Ar dating for meta-basalts from Tongka ophiolitic mélange, eastern Nujiang belt

More Information
  • Received Date: February 10, 2021
  • Revised Date: June 24, 2021
  • Available Online: August 15, 2023
  • The nature and early evolution of the ancient ocean basin represented by the Bangongco-Nujiang suture zone in the central Qinghai-Tibetan Plateau are still controversial.To identify the nature of the Early Jurassic tectono-magmatic events and micro-continental tectonics and orogenic processes along the mid-eastern Nujiang suture, geochemical study on meta-basaltic rocks and 40Ar-39Ar dating of amphibole from the Tongka ophiolitic mélange, eastern Nujiang belt, were conducted.The meta-basalts in the Tongka ophiolitic mélange witnessed strong metamorphic deformation, indicating the mineralogical composition of the epidote-amphibolite facies.Rare earth element(REE) patterns of the meta-basaltic rocks on the chondrite-normalized REE diagram display LREE depletions indicative of N-MORB, whereas on the N-MORB-normalized spider diagram, the samples indicate Rb, Ba, Th, U, Pb and Sr enrichments and Nb and Ta depletions, which suggest a mixing characteristic of arc and N-MORB, and an origin from back-arc basin spreading center, indicating a SSZ affinity.The 40Ar-39Ar dating of the amphibole from a meta-basalt sample yields a plateau age of 161 ±2 Ma, analogous to 40Ar-39Ar cooling ages(165~167 Ma) of biotite from the Tongka and Amdo gneisses, which provides direct evidence from ophiolite emplacement for local closure of the eastern Nujiang Ocean and Early Jurassic collision along the Tongka-Exue suture between the Jiayuqiao and Tongka micro-blocks.On the basis of comprehensive analyses of the early and late Jurassic magmatic rocks north of the Bangong-Nujiang belt, the Bangong-Nujiang belt is assumed to have distinct evolutionary histories, subduction polarities and collisional timing at different segments and ophiolitic branches.The multi-island-accretive orogeny model suggests that the orogeny in the hinterland of the Qinghai-Tibet Plateau might be the result of varying level convergences by diverse-sized terranes/blocks with consumption of different oceanic basins, rather than the re-opening process of the Meso-Tethyan Ocean after the closure of the Paleo-Tethyan Ocean.

  • Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22(4): 1029-1052.
    许志琴, 李海兵, 杨经绥. 造山的高原——青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006, 13(4): 1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002
    Allegre C J, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J]. Nature, 1984, 307: 17-22. doi: 10.1038/307017a0
    Girardeau J, Marcoux J, Allkgre C J, et al. Tectonic environment and geodynamic significance of the Neo Cimmerian Dongqiao ophiolite, Bangong-Nujiang suture zone, Tibet[J]. Nature, 1984, 307: 27-31. doi: 10.1038/307027a0
    赵文津, 刘葵, 蒋忠惕, 等. 西藏班公湖-怒江缝合带——深部地球物理给出的启示[J]. 地质通报, 2004, 23(7): 623-635. doi: 10.3969/j.issn.1671-2552.2004.07.001
    夏斌, 刘维亮, 周国庆, 等. 西藏蓬湖西镁质榴辉岩中的出溶物及其地质意义[J]. 南京大学学报(自然科学), 2013, 49(3): 356-386.
    Zhu D C, Li S M, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023
    王希斌, 鲍佩声, 邓万明, 等. 西藏蛇绿岩[M]. 北京: 地质出版社, 1987.
    史仁灯. 班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约[J]. 科学通报, 2007, 52(2): 223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
    Dewey J F, Shackelton R M, Chang C F, et al. The tectonic development of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London, 1988, A327: 379-413.
    Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268(3/4): 298-312. http://www.sciencedirect.com/science/article/pii/S0009254109003878
    Matte P, Taponnie P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarims andIndus[J]. Earth and Planetary Science Letters, 1996, 142: 311-330. doi: 10.1016/0012-821X(96)00086-6
    雍永源, 贾宝江. 板块剪式汇聚加地体拼贴——中特提斯消亡的新模式[J]. 沉积与特提斯地质, 2000, 20(1): 85-89. doi: 10.3969/j.issn.1009-3850.2000.01.007
    Wang W L, Aitchison J C, Lo C H, et al. Geochemistry and geochronology of the amphibolite blocks in ophiolitic melanges along Bangong-Nujiang suture, centralTibet[J]. Journal of Asian Earth Science, 2008, 33: 122-138. doi: 10.1016/j.jseaes.2007.10.022
    Zhang Z M, Dong X, Liu F, et al. Tectonic evolution of the Amdo terrane, central Tibet: petrochemistry and zircon U-Pb geochronology[J]. Journal of Geology, 2012, 120: 431-451. doi: 10.1086/665799
    Chen S S, Shi R D, Zou H B, et al. Late Triassic island-arc-back-arc basin development along the Bangong-Nujiang suture zone(centralTibet): Geological, geochemical and chronological evidence from volcanic rocks[J]. Lithos, 2015, 230: 30-45. doi: 10.1016/j.lithos.2015.05.009
    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533.
    邓万明, Pearce J A. 拉萨至格尔木(1985) 和拉萨至加德曼都(1986) 的蛇绿岩[C]//中-英青藏高原综合科学考察队, 青藏高原地质演化. 北京: 科学出版社, 1990: 175-241.
    Xu R H, Schärer U, Allègre C J. Magmatism and metamorphism in theLhasa block(Tibet): A geochronological study[J]. Journal of Geology, 1985, 93: 41-57. doi: 10.1086/628918
    Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211
    Guynn J H, Kapp P, Pullen A, et al. Tibetan terranerocks near Amdo reveal "missing" Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 2006, 34: 505-508. doi: 10.1130/G22453.1
    Zhang X R, Shi R D, Huang Q S, et al. Early Jurassic high-pressure metamorphism of the Amdo terrane, Tibet: Constraints from zircon U-Pb geochronology of mafic granulites[J]. Gondwana Research, 2014, 26: 975-985. doi: 10.1016/j.gr.2013.08.003
    张修政, 董永胜, 解超明, 等. 安多地区高压麻粒岩的发现及其意义[J]. 岩石学报, 2010, 26(7): 2106-2112.
    解超明, 李才, 苏犁, 等. 青藏高原安多高压麻粒岩同位素年代学研究[J]. 岩石学报, 2013, 29(3): 912-922.
    Li H Q, Xu Z Q, Webb A A G, et al. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: implications for an archipelago-accretion orogenic model[J]. Tectonophysics, 2017, 702: 29-41. doi: 10.1016/j.tecto.2017.02.016
    Tao Y, Bi X W, Li C S, et al. Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China[J]. Lithos, 2014, 184/187: 314-323. doi: 10.1016/j.lithos.2013.10.031
    谢尧武, 李林庆, 强巴扎西, 等. 藏东八宿地区朱村组火山岩地球化学、同位素年代学及其构造意义[J]. 地质通报, 2009, 28(9): 1244-1252. doi: 10.3969/j.issn.1671-2552.2009.09.012
    李才, 谢尧武, 董永胜, 等. 藏东类乌齐一带吉塘岩群时代讨论及初步认识[J]. 地质通报, 2009, 28(9): 1178-1180. doi: 10.3969/j.issn.1671-2552.2009.09.002
    周详, 王根厚, 普布次仁, 等. 西藏东部嘉玉桥拆离系核部杂岩构造特征及其大地构造意义[J]. 沉积和特提斯地质, 1997, 21: 56-61.
    王根厚. 藏东他念他翁山链变质杂岩系变形特征及表露机制[D]. 中国地质大学(北京) 博士学位论文, 2006.
    Zhang K J, Zhang Y X, Tang X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20: 302-308. doi: 10.1111/j.1365-3121.2008.00821.x
    张玉修. 班公湖-怒江缝合带中西段构造演化[D]. 中国科学院研究生院博士学位论文, 2007.
    董永胜, 谢尧武, 李才, 等. 西藏东部八宿地区发现退变质榴辉岩[J]. 地质通报, 2007, 26(8): 1018-1020. doi: 10.3969/j.issn.1671-2552.2007.08.015
    李才, 谢尧武, 沙绍礼, 等. 藏东八宿地区泛非期花岗岩锆石SHRIMP U-Pb定年[J]. 地质通报, 2008, 27(1): 64-68. doi: 10.3969/j.issn.1671-2552.2008.01.005
    Xu W C, Zhang H F, Chen L R, et al. Transition from the lithospheric to asthenospheric mantle-derived magmatism in the Early Jurassic along eastern Bangong-Nujiang Suture, Tibet: Evidence for continental arc extension induced by slab rollback[J]. GSA Bulletin, 2021, 133(1/2): 134-148.
    陈文, 郭彦如, 崔彬, 等. 基于MM 1200B质谱系统的MDD模式40Ar-39Ar实验技术及其在阿尔金山中生代冷却中研究中的应用[J]. 质谱学报, 2001, 22(3): 7-14.
    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
    Müller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings: a pilot study[J]. Mineralogy and Petrology, 1992, 46: 259-289. doi: 10.1007/BF01173568
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological. Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 1982, 528-548.
    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectono-magmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30. doi: 10.1016/0012-821X(80)90116-8
    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69(1): 33-47. doi: 10.1007/BF00375192
    张旗, 周国庆. 中国蛇绿岩[M]. 北京: 科学出版社, 2001.
    史仁灯, 杨经绥, 许志琴, 等. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据[J]. 岩石矿物学杂志, 2005, 24(5): 397-408. doi: 10.3969/j.issn.1000-6524.2005.05.008
    韦振权, 夏斌, 徐力峰, 等. 西藏蓬湖西蛇绿岩地球化学及构造背景研究[J]. 地质论评, 2009, 55(6): 785-794. doi: 10.3321/j.issn:0371-5736.2009.06.003
    陈晓坚, 杨经绥, 董玉飞, 等. 西藏东巧蛇绿岩中玄武质岩石成因和构造背景探讨[J]. 地质学报, 2019, 93(10): 2509-2530.
    赖绍聪, 刘池阳. 青藏高原安多岛弧型蛇绿岩地球化学及成因[J]. 岩石学报, 2003, 19(4): 675-682.
    Zhou M F, Malpas J, Robinson P T, et al. The Dynamo-thermal aureole of the Donqiao ophiolite(northern Tibet)[J]. Canadian Journal of Earth Science, 1997, 34(1): 59-65. doi: 10.1139/e17-005
    Ma A, Hu X, Garzanti E, et al. Sedimentary and tectonic evolution of the southern Qiangtang basin: implications for the Lhasa-Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4790-4813. doi: 10.1002/2017JB014211
    Ma A, Hu X, Kapp P, et al. Pre-Oxfordian(>163 Ma) ophiolite obduction in Central Tibet[J]. Geophysical Research Letters, 2020, 47: https://doi.org/10.1029/2019GL086650.
    Chen S S, Shi R D, Fan W M, et al. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 4172-4190.
    Zhang X Z, Wang Q, Dong Y S, et al. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet: Link to flat-slab subduction[J]. Tectonics, 2017, 36: 2918-2935. doi: 10.1002/2017TC004774
    韦少港, 宋扬, 唐菊兴, 等. 西藏改则县多龙SSZ型蛇绿岩的锆石U-Pb年龄、岩石地球化学及Sr-Nd同位素特征: 班公湖-怒江洋晚二叠世洋内俯冲的证据[J]. 岩石学报, 2019, 35(2): 505-522.
    Fan J J, Niu Y L, Luo A B, et al. Timing of the Meso-Tethys Ocean opening: Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane, Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: https://doi.org/10.1016/j.palaeo.2021.110265
    Wu H, Xie C M, Li C, et al. Tectonic shortening and crustal thickening in subduction zones: Evidence from Middle-Late Jurassic magmatism in Southern Qiangtang, China[J]. Gondwana Research, 2016, 39: 1-13. http://www.sciencedirect.com/science/article/pii/S1342937X16301307
    Li S, Guilmette C, Yin C Q, et al. Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet[J]. Gondwana Research, 2019, 71: 179-193.
    Chen S S, Shi R D, Fan W M, et al. Middle Triassic ultrapotassic rhyolites from the Tanggula Pass, southern Qiangtang, China: A previously unrecognized stage of silicic magmatism[J]. Lithos, 2016, 264: 258-276. http://www.sciencedirect.com/science/article/pii/S0024493716302699
    张开均, 唐显春. 青藏高原腹地榴辉岩研究进展及其地球动力学意义[J]. 科学通报, 2009, 54(13): 1804-1814.
    曾庆高, 王保弟, 强巴扎西, 等. 藏东类乌齐地区花岗质片麻岩锆石Cameca U-Pb定年及其地质意义[J]. 地质通报, 2010, 29(8): 1123-1128. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20100803&flag=1
    王保弟, 王立全, 强巴扎西, 等. 早三叠世北澜沧江结合带碰撞作用: 类乌齐花岗质片麻岩年代学、地球化学及Hf同位素证据[J]. 岩石学报, 2011, 27(9): 2752-2762.
    Guynn J H, Kapp P, George E, et al. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications[J]. Journal of Asian Earth Science, 2012, 43: 23-50.
    Zhai Q G, Jahn B M, Wang J, et al. Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau[J]. GSA Bulletin, 2016, 128: 355-373.
    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet: petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chemical Geology, 2013, 349-350: 54-70.
    王嘉星, 刘治博, 李海峰, 等. 西藏班公湖-怒江结合带中段早白垩世花岗闪长斑岩年龄、Hf同位素及地球化学特征[J]. 地质通报, 2020, 39(5): 608-620. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200502&flag=1
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 尹峥,丁林,李金祥,王厚起,何振坤,次仁拉姆,赵晨圆,邓广隆,蔡福龙. 班公湖—怒江缝合带东段八宿地区古生代地层碎屑锆石U-Pb年龄:物源分析及构造意义. 地质科学. 2023(03): 945-964 .

    Other cited types(0)

Catalog

    Article views (2477) PDF downloads (1668) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return