• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
ZHANG Xiuzheng, DONG Yongsheng, WANG Qiang, DAN Wei. 2018: High pressure metamorphic belt in central Qiangtang, Tibetan Plateau: Progress and unsolved problems. Geological Bulletin of China, 37(8): 1406-1416. DOI: 10.12097/gbc.dztb-37-8-1406
Citation: ZHANG Xiuzheng, DONG Yongsheng, WANG Qiang, DAN Wei. 2018: High pressure metamorphic belt in central Qiangtang, Tibetan Plateau: Progress and unsolved problems. Geological Bulletin of China, 37(8): 1406-1416. DOI: 10.12097/gbc.dztb-37-8-1406

High pressure metamorphic belt in central Qiangtang, Tibetan Plateau: Progress and unsolved problems

More Information
  • Received Date: January 09, 2018
  • Revised Date: March 27, 2018
  • Available Online: August 15, 2023
  • A 500km-long high-pressure metamorphic belt has been documented in the central Qiangtang Block of northern Tibet, which is thought to have constituted the crucial geological archives of subduction and exhumation of Paleo-Tethys oceanic lithosphere. The high-pressure metamorphic rocks are mostly exposed along the Longmu Co-Shuanghu suture zone, and are composed of eclogites, blueschists, garnet-phengite-schists (Grt-Phn schists), and minor high-pressure mafic granulites. The eclogites in central Qiangtang are reported from Gemu, Guoganjianian Mt., Gangma Co, Baqing, and Mengku area, and occur mainly as blocks or small lenses in Grt-Phn schists. Apart from newly discovered Baqing eclogites, most eclogites from central Qiangtang Block are characterized by low peak temperatures and presence of lawsonite or pseudomorphs of epidote + paragonite, and their peak P-T results lie mainly in the lawsonite-eclogite field. The ages of most eclogites and blueschists from central Qiangtang block have been constrained as Late Triassic which are regarded as the results of closure of the Paleo-Tethys Ocean and following continental collision. Furthermore, the Permian high-pressure metamorphic rocks were also identified and their P-T-t paths revealed a complete evolutional history for the subduction erosion in response to the subduction of seamounts (or oceanic islands). Moreover, the discovery of Silurian high-pressure granulites in the central Qiangtang block indicates the existence of a previous collisional event on the northern margin of the Indo-Australian Gondwana. Hence, further comprehensive studies of the high-pressure metamorphic belt in central Qiangtang will provide valuable insights into the tectonic evolution of the north margin of Gondwana during the early Paleozoic and the opening and closure of the Paleo-Tethys Ocean.

  • Carswell D A. Eclogite Facies Rocks[M]. New York:Blackie, 1990.
    Carswell D A, O'brien P J. Thermobarometry and geotectonic significance of high-pressure granulites:examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria[J]. Journal of Petrology, 1993, 34(3):427-459. doi: 10.1093/petrology/34.3.427
    Ernst W G, Liou J G. Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts[J]. Geology, 1995, 23:353-356. doi: 10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
    Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton:petrology and tectonic implications[J]. Journal of Petrology, 2001, 42(6):1141-1170. doi: 10.1093/petrology/42.6.1141
    Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 2005, 136:177-202. doi: 10.1016/j.precamres.2004.10.002
    Zhai Q G, Zhang R Y, Jahn B M, et al. Triassic eclogites from central Qiangtang, northern Tibet, China:petrology, geochronology and metamorphic P-T path[J]. Lithos, 2011, 125:173-189. doi: 10.1016/j.lithos.2011.02.004
    陆济璞, 张能, 黄位鸿, 等.藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义[J].地质通报, 2006, 25(1):70-75. doi: 10.3969/j.issn.1671-2552.2006.01.012
    邓希光, 丁林, 刘小汉, 等.藏北羌塘中部冈玛日-桃形错蓝片岩的发现[J].地质科学, 2000, 35(2):227-232. doi: 10.3321/j.issn:0563-5020.2000.02.012
    邓希光, 丁林, 刘小汉, 等.青藏高原羌塘中部蓝片岩的地球化学特征及其构造意义[J].岩石学报, 2002, 18(4):517-525. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200204010
    翟庆国, 王军, 王永.西藏改则县冈玛错地区发现榴辉岩[J].地质通报, 2009, 28(12):1720-1724. doi: 10.3969/j.issn.1671-2552.2009.12.005
    翟庆国, 李才, 董永胜, 等.西藏羌塘中部荣玛地区蓝片岩岩石学、矿物学和Ar-Ar年代学[J].岩石学报, 2009, 25(9):2281-2288.
    董永胜, 李才.藏北羌塘中部果干加年山地区发现榴辉岩[J].地质通报, 2009, 28(9):1197-1200. doi: 10.3969/j.issn.1671-2552.2009.09.006
    李才, 翟庆国, 董永胜, 等.青藏高原羌塘中部发现榴辉岩及其意义[J].科学通报, 2006, 25(1/2):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200601014
    Zhai Q G, Jahn B M, Zhang R Y, et al. Triassic subduction of thePaleo-Tethys in northern Tibet, China:evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 2011, 42:1356-1370. doi: 10.1016/j.jseaes.2011.07.023
    张修政, 董永胜, 施建荣, 等.羌塘中部龙木错-双湖缝合带中硬玉石榴石二云母片岩的成因及意义[J].地学前缘, 2010, 17(1):93-103. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001008
    Kapp P, An Y, Manning C E, et al. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metermorphic belt, central Tibet[J]. Tectonics, 2003, 22(4). DOI: 10.1029/2001TC001332.
    鲍佩声, 肖序常, 王军, 等.西藏中北部双湖地区蓝片岩带及其构造涵义[J].地质学报, 1999, 73(4):302-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900084713
    Zhang Y X, Jin X, Zhang K J, et al. Newly discovered late triassic baqing eclogite in central tibet indicates an anticlockwise west-east qiangtang collision[J]. Scientific Reports, 2018, 8(1). DOI: 10.1038/s41598-018-19342-w.
    徐桂香, 曾文涛, 孙载波, 等.滇西双江县勐库地区(退变)榴辉岩的岩石学、矿物学特征[J].地质通报, 2016, 35(7):1035-1045. doi: 10.3969/j.issn.1671-2552.2016.07.001
    陈光艳, 徐桂香, 孙载波, 等.滇西双江县勐库地区退变质榴辉岩中闪石类矿物的成因研究[J].岩石矿物学杂志, 2017, 36(1):36-47. doi: 10.3969/j.issn.1000-6524.2017.01.003
    孙载波, 李静, 周坤, 等.滇西双江县勐库地区退变质榴辉岩的岩石地球化学特征及其地质意义[J].现代地质, 2017, 31(4):746-756. doi: 10.3969/j.issn.1000-8527.2017.04.009
    李静, 孙载波, 黄亮, 等.滇西勐库退变质榴辉岩的P-T-t轨迹及地质意义[J].岩石学报, 2017, 33(7):2285-2301. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201707022
    张修政, 董永胜, 李才, 等.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据[J].岩石学报, 2014, 30(10):2821-2834. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410003
    李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 1987, 17(2):155-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001164867
    李才.青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年[J].地质论评, 2008, 54(1):104-119. http://d.old.wanfangdata.com.cn/Periodical/dzlp200801012
    Metcalfe I. Origin and assembly of Southeast Asian continental terranes[C]//Audley-Charles M G, Hallam A. Gondwana and Tethys. Geological Society of London Special Publication, 1988, 37: 101-118. http: //adsabs.harvard.edu/abs/1988GSLSP..37..101M
    Metcalfe I. Gondwanaland origin, dispersion, and accretion of East and Southeast Asian continental terranes[J]. Journal of South American Earth Sciences, 1994, 7:333-347. doi: 10.1016/0895-9811(94)90019-1
    Metcalfe I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33. doi: 10.1016/j.jseaes.2012.12.020
    Zhang X Z, Dong Y S, Wang Q, et al. Carboniferous and Permian evolutionary records for the Paleo-Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet[J]. Tectonics, 2016, 35:1670-1686. doi: 10.1002/tect.v35.7
    Zhai Q G, Jahn B M, Wang J, et al. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet:SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics[J]. Lithos, 2013, 168/169:186-199. doi: 10.1016/j.lithos.2013.02.005
    李才, 翟庆国, 董永胜, 等.冈瓦纳大陆北缘早期洋壳信息——来自青藏高原羌塘中部早古生代蛇绿岩依据[J].地质通报, 2008, 27(10):1602-1612. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?file_no=20081003&flag=1
    Zhai Q G, Jahn B M, Wang J, et al. Oldest paleo-tethyan ophiolitic mélange in the Tibetan plateau[J]. Geological Society of America Bulletin, 2016, 128(3/4):355-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017030900015934
    Hu P Y, Li C, Wu Y W, et al. Opening of the Longmu Co-Shuanghu-Lancangjiang ocean:constraints from plagiogranites[J]. Chinese Science Bulletin, 2014, 59(25):3188-3199. doi: 10.1007/s11434-014-0434-z
    Zhang X Z, Dong Y S, Li C, et al. Silurian high-pressure granulites from Central Qiangtang, Tibet:Constraints on early Paleozoic collision along the northeastern margin of Gondwana[J]. Earth and Planetary Science Letters, 2014, 405:39-51. doi: 10.1016/j.epsl.2014.08.013
    Zhai Q G, Jahn B M, Su L, et al. Triassic arc magmatism in the qiangtang area, northern tibet:zircon u-pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2013, 63:162-178. doi: 10.1016/j.jseaes.2012.08.025
    Jiang Q Y, Li C, Su L, et al. Carboniferous arc magmatism in the Qiangtang area, Northern Tibet:Zircon U-Pb ages, geochemical and Lu-Hf isotopic characteristics, and tectonic implications[J]. Journal of Asian Earth Sciences, 2015, 100:132-144. doi: 10.1016/j.jseaes.2015.01.012
    Dan W, Wang Q, Zhang X Z, et al. Magmatic record of late devonian arc-continent collision in the northern qiangtang, Tibet:implications for the early evolution of east paleo-tethys ocean[J]. Lithos, 2018, 308/309:104-117. doi: 10.1016/j.lithos.2018.03.002
    Liu J H, Xie C M, Li C, et al. Early Carboniferous adakite-like and Ⅰ-type granites in central Qiangtang, northern Tibet:Implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean[J]. Lithos, 2018, 296/299:265-280. doi: 10.1016/j.lithos.2017.11.005
    董永胜, 李才, 施建荣, 等.羌塘中部高压变质带的退变质作用及其构造侵位[J].岩石学报, 2009, 25(9), 2303-2309. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200909022
    张修政, 董永胜, 李才, 等.青藏高原羌塘中部不同时代榴辉岩的识别及其意义——来自榴辉岩及其围岩40Ar-39Ar年代学的证据[J].地质通报, 2010, 29(12):1815-1824. doi: 10.3969/j.issn.1671-2552.2010.12.009
    张修政, 董永胜, 李才, 等.青藏高原羌塘中部榴辉岩地球化学特征及其大地构造意义[J].地质通报, 2010, 29(12):1804-1814. doi: 10.3969/j.issn.1671-2552.2010.12.008
    翟庆国, 李才, 黄小鹏.西藏羌塘中部角木日地区二叠纪玄武岩的地球化学特征及其构造意义[J].地质通报, 2006, 25(12):1419-1427. doi: 10.3969/j.issn.1671-2552.2006.12.010
    Fan J J, Li C, Xie C. et al. Remnants of Late Permian-Middle Triassic ocean islands in northern Tibet:implications for the late-stage evolution of the Paleo-Tethys ocean[J]. Gondwana Research, 2017, 44:7-21. doi: 10.1016/j.gr.2016.10.020
    朱同兴, 张启跃, 董瀚, 等.藏北双湖才多茶卡一带构造混杂岩中新发现晚泥盆世和晚二叠世放射虫硅质岩[J].地质通报, 2006, 25(12):1413-1418. doi: 10.3969/j.issn.1671-2552.2006.12.009
    张修政, 董永胜, 李才, 等.羌塘中部晚三叠世岩浆活动的构造背景及成因机制——以红脊山地区香桃湖花岗岩为例[J].岩石学报, 2014, 30(2):547-564. http://d.old.wanfangdata.com.cn/Conference/8248049
    Zhu D C, Zhao Z D, Niu Y, et al. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 2013, 23(4):1429-1454. doi: 10.1016/j.gr.2012.02.002
    李才, 黄小鹏, 翟庆国, 等.龙木错-双湖-吉塘板块缝合带与青藏高原冈瓦纳北界[J].地学前缘, 2006, 13(4):136-147. doi: 10.3321/j.issn:1005-2321.2006.04.011
    Li C, Zheng A. Paleozoic stratigraphy in the Qiangtang region of Tibet:relations of the Gondwana and Yangtze continents and ocean closure near the end of the Carboniferous[J]. International Geology Review, 1993, 35(9):797-804. doi: 10.1080/00206819309465558
    李才, 翟刚毅, 王立全, 等.认识青藏高原的重要窗口——羌塘地区近年来研究进展评述(代序)[J].地质通报, 2009, 28(9):1169-1177. doi: 10.3969/j.issn.1671-2552.2009.09.001
    彭虎, 李才, 解超明, 等.藏北羌塘中部日湾茶卡组物源——LAICP-MS锆石U-Pb年龄及稀土元素特征[J].地质通报, 2014, 23(11):1715-1727. doi: 10.3969/j.issn.1671-2552.2014.11.008
    Zhang X Z, Dong Y S, Wang Q, et al. Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet-staurolite-muscovite schists in central qiangtang, Tibet[J]. Geochemistry Geophysics Geosystems, 2017, 18:266-279. doi: 10.1002/2016GC006576
    Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10):875-878. doi: 10.1130/G32945.1
    Xu W, Dong Y, Zhang X, et al. Petrogenesis of high-timafic dykes from southern qiangtang, tibet:implications for a ca. 290Ma large igneous province related to the early permian rifting of gondwana[J]. Gondwana Research, 2016, 36:410-422. doi: 10.1016/j.gr.2015.07.016
    Zhai Q G, Jahn B M, Su L, et al. SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications[J]. Lithos, 2013, 174:28-43. doi: 10.1016/j.lithos.2012.10.018
    Hening A. Eur Petrographic and Geologie Von Sudwest Tibet[C]//Hedin S. Southern Tibet. Stockholm: Noratet, 1915, 5: 220. http: //www.mendeley.com/research/zur-petrographie-und-geologie-von-sudwest-tibet/
    李才.西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义[J].科学通报, 1997, 42:448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700343420
    Tang X C, Zhang K J. Lawsonite-and glaucophane-bearing blueschists from NW Qiangtang, northern Tibet, China:mineralogy, geochemistry, geochronology, and tectonic implications[J]. International Geology Review, 2014, 56(2):150-166. doi: 10.1080/00206814.2013.820866
    Zhai Q G, Jahn B M, Li X H, et al. Zircon U-Pb dating of eclogite from the Qiangtang terrane, north-central Tibet:a case of metamorphic zircon with magmatic geochemical features[J]. International Journal of Earth Sciences, 2016, 106:1-17. http://cn.bing.com/academic/profile?id=e93d47cc9a2e69380780ef55bbd60bb7&encoded=0&v=paper_preview&mkt=zh-cn
    Pullen A, Kapp P, Cehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the PaleoTethys Ocean[J]. Geology, 2008, 36:351-354. doi: 10.1130/G24435A.1
    Hermann J, Rubatto D, Korsakov A, et al. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan)[J]. Contributions to Mineralogy & Petrology, 2001, 141(1):66-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ023549516
    Liu F L, Xu Z Q, Xue H M. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusionbearing zircons[J]. Lithos, 2004, 78(4):411-429. doi: 10.1016/j.lithos.2004.08.001
    Dan W, Wang Q, White W M, et al. Rapid formation of eclogites during a nearly closed ocean:revisiting the Pianshishan eclogite in Qiangtang, central Tibetan Plateau[J]. Chemical Geology, 2018, 477:112-122. doi: 10.1016/j.chemgeo.2017.12.012
    Valley J W, Kinny P D, Schulze D J, et al. Zircon megacrysts from kimberlite:oxygen isotope variability among mantle melts[J]. Contrib. Mineral. Petrol., 1998, 133:1-11. doi: 10.1007/s004100050432
    Schmidt M W, Poli S. Devolatilization during subduction[C]//Treatise on geochemistry (Second Edition), 2013: 669-701.
    苑婷媛, 赵中宝, 曾庆高, 等.藏西北戈木日榴辉岩岩石学特征及其构造意义[J].岩石学报, 2016, 32(12):3729-3742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162017042100243938
    Cherniak D J. Pb diffusion in rutile[J]. Contributions to Mineralogy and Petrology, 2000, 139:198-207. doi: 10.1007/PL00007671
    Kooijman E, Mezger K, Berndt J. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICPMS analysis[J]. Earth and Planet Science Letters, 2010, 293:321-330. doi: 10.1016/j.epsl.2010.02.047
    程昊, 曹达迪.石榴石Lu-Hf年代学及其在大别造山带研究中的进展[J].科学通报, 2013, 58(23):2271-2278. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201323006.htm
    翟庆国.藏北羌塘中部榴辉岩岩石学、地球化学特征及构造演化过程[D].中国地质科学院博士学位论文, 2018. http: //cdmd.cnki.com.cn/Article/CDMD-82501-2008177391.htm
    Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile:empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 2004, 148:471-488. doi: 10.1007/s00410-004-0617-8
    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy and Petrology, 2006, 151:413-433. doi: 10.1007/s00410-006-0068-5
    Tomkins H S, Powell R, Ellis D J. The pressure dependence of the zirconium-in-rutile thermometer[J]. Journal of Metamorphic Geology, 2007, 25:703-713. doi: 10.1111/jmg.2007.25.issue-6
    Fialin M, Remy H, Richard C, et al. Trace element analysis with the electron microprobe:new data and perspectives[J]. American Mineralogist, 1999, 84:70-77. doi: 10.2138/am-1999-1-207
    王汝成, 王硕, 邱检生, 等. CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义[J].岩石学报, 2005, 21(2):465-474. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200502020
    Gao X Y, Zheng Y F, Xia X P, et al. U-Pb ages and trace elements of metamorphic rutile from ultrahigh-pressure quartzite in the Sulu orogeny[J]. Geochimica et Cosmochimica Acta, 2014, 143:87-114. doi: 10.1016/j.gca.2014.04.032
    Zheng Y F, Gao X Y, Chen R X, et al. Zr-in-rutile thermometry of eclogite in the Dabie orogen:Constraints on rutile growth during continental subduction-zone metamorphism[J]. Journal of Asian Earth Sciences, 2011, 40:427-451. doi: 10.1016/j.jseaes.2010.09.008
    Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinent assembly[J]. Earth-Science Reviews, 2007, 82:217-256. doi: 10.1016/j.earscirev.2007.03.003
    Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana:tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255:70-84. doi: 10.1016/j.epsl.2006.12.006
    Herwartz D, Nagel T J, Münker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4:178-183. doi: 10.1038/ngeo1060
    Root D, Corfu F. U-Pb geochronology of two discrete Ordovician high-pressure metamorphic events in the Seve Nappe Complex, Scandinavian Caledonides[J]. Contrib. Mineral Petrol., 2012, 163:769-788. doi: 10.1007/s00410-011-0698-0
    Kirchenbaur M, Pleuger J, Jahn-Awe S, et al. Timing of highpressure metamorphic events in the Bulgarian Rhodopes from LuHf garnet geochronology[J]. Contrib. Mineral Petrol., 2012, 163:897-921. doi: 10.1007/s00410-011-0705-5
    Agard P, Yamato P, Jolivet L, et al. Exhumation of oceanic blueschists and eclogites in subduction zones:timing and mechanisms[J]. Earth-Science Reviews, 2009, 92(1):53-79. http://cn.bing.com/academic/profile?id=33d0061b4ba5d96c69153786f7014be9&encoded=0&v=paper_preview&mkt=zh-cn
    Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. Tectonics, 2003, 22:3-23. doi: 10.1029-2001TC001332/
    Fan J J, Li C, Xie C M, et al. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet:Constraints on the timing of closure of the BanggongNujiang Ocean[J]. Lithos, 2015, 227:148-160. doi: 10.1016/j.lithos.2015.03.021
    Zhang X Z, Wang Q, Dong Y S, et al. High-pressure granulite facies overprinting during the exhumation of eclogites in the Bangong-Nujiang suture zone, central Tibet:Link to flat-slab subduction[J]. Tectonics, 2017, 36:2918-2935. doi: 10.1002/2017TC004774
    赵靖, 钟大赉, 王毅.滇西澜沧变质带的变质作用和变形的关系[J].岩石学报, 1994, 10(1):27-40. doi: 10.3321/j.issn:1000-0569.1994.01.003
  • Related Articles

Catalog

    Article views (3433) PDF downloads (2499) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return