• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
SHANG Zhen, ZENG Lingsen, GAO Li'e, GAO Jiahao, CHEN Fukun, HOU Kejun, WANG Qian, GUO Chunli. 2016: Formation mechanism of the Chengba high Sr/Y granodiorite and enclaves in southern Gangdise region, southern Tibet. Geological Bulletin of China, 35(1): 71-90. DOI: 10.12097/gbc.dztb-35-1-71
Citation: SHANG Zhen, ZENG Lingsen, GAO Li'e, GAO Jiahao, CHEN Fukun, HOU Kejun, WANG Qian, GUO Chunli. 2016: Formation mechanism of the Chengba high Sr/Y granodiorite and enclaves in southern Gangdise region, southern Tibet. Geological Bulletin of China, 35(1): 71-90. DOI: 10.12097/gbc.dztb-35-1-71

Formation mechanism of the Chengba high Sr/Y granodiorite and enclaves in southern Gangdise region, southern Tibet

More Information
  • Received Date: September 23, 2015
  • Revised Date: October 24, 2015
  • Available Online: August 16, 2023
  • The Chengba Complex on the southern margin of the Gangdise batholiths in southern Tibet comprises mainly granodio-rite and subordinately dioritic enclaves and leucogabbro. Zircon U-Pb analytical results demonstrate that the granodiorites formed at 29.40±0.18Ma to 29.42±0.25Ma, whereas the fine-grained dioritic enclaves formed at 30.02±0.15Ma. Bulk-rock major and trace el-ement and isotope(Sr-Nd-Hf) analyses indicate that the granodiorites are characterized by relatively high SiO2(65.2%~66.2%) and K2O(3.2%~4.0%) but low FeO and MgO, and high Sr(774×10-6~813×10-6), low Y(9.9×10-6~11.2×10-6), and hence high Sr/Y ratios(>60 and up to 82). In contrast, the dioritic enclaves are relatively low in SiO2(53%~56.1%) and K2O(1.5%~3.2%), but high in MgO and FeO with relatively high Na/K ratios(≥2). Both are enriched in LREE and LILE and depleted in HREE and HFSE and have similar relatively high zircon εHf(t) values(+1.1~+6.2) as well as negative whole-rock εNd(t) values(-2.9~-5.9). Combined with data available, the new results obtained by the authors suggest that the Chengba granodiorite and dioritic enclaves were formed within a time span of ca.1Ma. Similar isotopic characteristics imply that they were derived from similar sources. The high Sr/Y ratios in Chengba granodiorite, in contrast to low Sr/Y ratios in the mafic enclaves, possibly do not represent primary magma composition. Instead, the high Sr/Y and high Ba characteristics of the Chengba granodiorite might have resulted from fractional crystallization of parent magmas with low Sr/Y ratios and low Ba content like those mafic enclaves.

  • Scharer U, Xu R H, Allegre C J. U-Pb geochronology of Gangdese(Transhimalaya) plutonism in the Lhasa-Xigaxe region, Tibet[J]. Earth Planet. Sci. Lett., 1984, 69:311-320.

    Scharer U, Xu R H, Allegre C J. U-Pb geochronology of Gangdese(Transhimalaya) plutonism in the Lhasa-Xigaxe region, Tibet[J]. Earth Planet. Sci. Lett., 1984, 69:311-320.
    Le Fort P. Granites in the tectonic evolution of the Himalaya, Kara-koram and southern Tibet[J]. Phil. Trans. R. Soc. London 326(A), 1988, 281-299.

    Le Fort P. Granites in the tectonic evolution of the Himalaya, Kara-koram and southern Tibet[J]. Phil. Trans. R. Soc. London 326(A), 1988, 281-299.
    Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crust althickening in south Tibetin response to the India-Asia collision[J]. Lithos, 2007, 96:225-242.

    Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crust althickening in south Tibetin response to the India-Asia collision[J]. Lithos, 2007, 96:225-242.
    Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11):1021-1024.

    Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11):1021-1024.
    Hou Z Q, Gao Y F, Qu X M,et al. Origin of adakitic intrusives gen-erated during mid-Miocene east-west extension in southern Tibet[J]. Earth Planet. Sci. Lett., 2004, 220(1/2):139-155.

    Hou Z Q, Gao Y F, Qu X M, et al. Origin of adakitic intrusives gen-erated during mid-Miocene east-west extension in southern Tibet[J]. Earth Planet. Sci. Lett., 2004, 220(1/2):139-155.
    Zhu D C, Zhao Z D, Niu Y L,et al. The Lhasa Subterrane:record of a microcontinent and its histories of drift and growth[J]. Earth Planet. Sci. Lett., 2011, 301:241-255.

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Subterrane:record of a microcontinent and its histories of drift and growth[J]. Earth Planet. Sci. Lett., 2011, 301:241-255.
    Zhu D C, Zhao Z D, Niu Y L,et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic An-dean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chem. Geol., 2012, 328:290-308.

    Zhu D C, Zhao Z D, Niu Y L, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet:Record of an early Paleozoic An-dean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chem. Geol., 2012, 328:290-308.
    Zhang Z M, Dong X, Liu F, et al. Tectonic evolution of the Amdo Terrane, Central Tibet:Petrochemistry and zircon U-Pb geochronology[J]. The Journal of Geology, 2012, 120:431-451.

    Zhang Z M, Dong X, Liu F, et al. Tectonic evolution of the Amdo Terrane, Central Tibet:Petrochemistry and zircon U-Pb geochronology[J]. The Journal of Geology, 2012, 120:431-451.
    曾令森, 刘静, Saleeby J.大型花岗岩岩基形成和演化的深部动力学过程:滴水构造、钾质火山作用与地表地质过程[J].地质通报, 2006, 25(11):1257-1273.
    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chem. Ge-ol., 2013, 349:54-70.

    Ma L, Wang Q, Wyman D A, et al. Late Cretaceous crustal growth in the Gangdese area, southern Tibet:Petrological and Sr-Nd-Hf-O isotopic evidence from Zhengga diorite-gabbro[J]. Chem. Ge-ol., 2013, 349:54-70.
    Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogen-esis and tectonic implications[J]. Lithos, 2008, 105:1-11.

    Wen D R, Chung S L, Song B, et al. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet:Petrogen-esis and tectonic implications[J]. Lithos, 2008, 105:1-11.
    Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batho-lith, southern Tibet[J]. Chem. Geol., 2009, 262(3/4):229-245.

    Ji W Q, Wu F Y, Chung S L, et al. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batho-lith, southern Tibet[J]. Chem. Geol., 2009, 262(3/4):229-245.
    Chu M F, Chung S L, O'Reilly S Y, et al. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks[J]. Earth Planet. Sci. Lett., 2011,307:479-486.

    Chu M F, Chung S L, O'Reilly S Y, et al. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks[J]. Earth Planet. Sci. Lett., 2011, 307:479-486.
    王莉, 曾令森, 高利娥, 等.藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义[J].岩石学报, 2012, 28(6):1741-1754.
    王莉, 曾令森, 高利娥, 等.藏南冈底斯岩基东南缘早白垩纪高Sr/Y含单斜辉石花岗闪长岩[J].岩石学报, 2013, 29(6):1977-1994.
    Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision:Zir-con SHRIMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(1):66-76.

    Mo X X, Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision:Zir-con SHRIMP U-Pb dating[J]. Acta Geologica Sinica, 2005, 79(1):66-76.
    Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints by SHRIMP Ⅱ zircon U-Pb dating on magma underplating in the Gangdise belt following India-Eurasia collision[J]. Acta Geologica Sinica, 2005, 79(6):787-794.

    Dong G C, Mo X X, Zhao Z D, et al. Geochronologic constraints by SHRIMPⅡzircon U-Pb dating on magma underplating in the Gangdise belt following India-Eurasia collision[J]. Acta Geologica Sinica, 2005, 79(6):787-794.
    莫宣学, 赵志丹, 邓晋福, 等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘, 2003, 10:135-148.
    Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust 570 growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008,250:49-67.

    Mo X X, Niu Y L, Dong G C, et al. Contribution of syncollisional felsic magmatism to continental crust 570 growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J]. Chemical Geology, 2008, 250:49-67.
    Hou Z Q, Zheng Y C, Yang Z M, et al.Contribution of mantle components within juvenile lower-crust to collisional zone porphy-ry Cu systems in Tibet[J]. Miner Deposita, 2012, 48:173-192.

    Hou Z Q, Zheng Y C, Yang Z M, et al.Contribution of mantle components within juvenile lower-crust to collisional zone porphy-ry Cu systems in Tibet[J]. Miner Deposita, 2012, 48:173-192.
    Qu X M, Hou Z Q, Li Y G. Melt components derived from a sub-ducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau[J]. Lithos, 2004, 74(3/4):131-148.

    Qu X M, Hou Z Q, Li Y G. Melt components derived from a sub-ducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau[J]. Lithos, 2004, 74(3/4):131-148.
    Gao Y F, Hou Z Q, Kamber B S,et al. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism[J]. Contrib. Mineral. Petrol., 2007, 153(1):105-120.

    Gao Y F, Hou Z Q, Kamber B S, et al. Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism[J]. Contrib. Mineral. Petrol., 2007, 153(1):105-120.
    Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust[J]. Lithos, 2007, 96(1/2):205-224.

    Guo Z F, Wilson M, Liu J Q. Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust[J]. Lithos, 2007, 96(1/2):205-224.
    Xu W C, Zhang H F, Guo L,et al. Miocene high Sr/Y magma-tism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication[J]. Lithos, 2010, 114(3/4):293-306.

    Xu W C, Zhang H F, Guo L, et al. Miocene high Sr/Y magma-tism, south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication[J]. Lithos, 2010, 114(3/4):293-306.
    Ji W Q, Wu F Y, Chung S L, et al. Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Ter-rane Assembly Related to the Paleo-Tethyan Evolution[J]. The Journal of Geology, 2012,120:531-541.

    Ji W Q, Wu F Y, Chung S L, et al. Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Ter-rane Assembly Related to the Paleo-Tethyan Evolution[J]. The Journal of Geology, 2012, 120:531-541.
    Guan Q, Zhu D C, Zhao Z D, et al. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived ada-kitic magmatism in the Gangdese Batholith[J]. Gondwana Re-search, 2012, 21:1-12.

    Guan Q, Zhu D C, Zhao Z D, et al. Crustal thickening prior to 38Ma in southern Tibet:Evidence from lower crust-derived ada-kitic magmatism in the Gangdese Batholith[J]. Gondwana Re-search, 2012, 21:1-12.
    Turner S, Hawkesworth G, Liu J, et al. Timing of Tibet an uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364:50-54.

    Turner S, Hawkesworth G, Liu J, et al. Timing of Tibet an uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364:50-54.
    Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace ele-ment modelling[J]. J. Petrol., 2004, 45(3):555-607.

    Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace ele-ment modelling[J]. J. Petrol., 2004, 45(3):555-607.
    Miller C, Schuster R, Klötzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424.

    Miller C, Schuster R, Klötzli U, et al. Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and pet-rogenesis[J]. J. Petrol., 1999, 40(9):1399-1424.
    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolu-tion inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68:173-196.

    Chung S L, Chu M F, Zhang Y Q, et al. Tibetan tectonic evolu-tion inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 2005, 68:173-196.
    孙晨光, 赵志丹, 莫宣学, 朱弟成等.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同位素制约.岩石学报, 2008, 2:249-264.
    Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-matism in SW Tibet:Petrogenesis and implications for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113(1/2):190-212.

    Zhao Z D, Mo X X, Dilek Y, et al. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic mag-matism in SW Tibet:Petrogenesis and implications for India intracontinental subduction beneath southern Tibet[J]. Lithos, 2009, 113(1/2):190-212.
    Defant M J, Drummond M S. Derivation of some modern arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665.

    Defant M J, Drummond M S. Derivation of some modern arc mag-mas by melting of young subducted lithosphere[J]. Nature, 1990, 347:662-665.
    Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J]. Contrib. Mineral. Petrol., 1999, 134(1):33-51.

    Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J]. Contrib. Mineral. Petrol., 1999, 134(1):33-51.
    Castillo P R. An overview of adakite petrogenesis[J]. Chinese Sci. Bull., 2006, 51(3):258-268.

    Castillo P R. An overview of adakite petrogenesis[J]. Chinese Sci. Bull., 2006, 51(3):258-268.
    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12):1111-1114.

    Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 2002, 30(12):1111-1114.
    Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468.

    Wang Q, McDermott F, Xu J F, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6):465-468.
    Xu W L, Gao S, Wang Q H, et al.Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 2006, 34(9):721-724.

    Xu W L, Gao S, Wang Q H, et al.Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications[J]. Geology, 2006, 34(9):721-724.
    Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened low-er continental crust[J]. Earth Planet. Sci. Lett., 2011, 303(3/4):251-266.

    Zeng L S, Gao L E, Xie K J, et al. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened low-er continental crust[J]. Earth Planet. Sci. Lett., 2011, 303(3/4):251-266.
    Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications. doi 2014,10.1144/SP412.8.

    Zeng L S, Gao L E, Tang S H, et al. Eocene magmatism in the Tethyan Himalaya, southern Tibet[J]. Geological Society, London, Special Publications. doi2014, 10.1144/SP412.8.
    Martin H, Smithies R H, Rapp R P, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG) and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 2005, 79:1-24.

    Martin H, Smithies R H, Rapp R P, et al. An overview of adakite, tonalite-trondhjemite-granodiorite(TTG) and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos, 2005, 79:1-24.
    Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 2007, 35(4):351-354.

    Streck M J, Leeman W P, Chesley J. High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 2007, 35(4):351-354.
    Qin J F, Lai S C, Wang J, et al. High-Mg# adakitic tonalite from the Xichahe area, south Qinling Orogenic Belt(Central China):Petrogenesis and geological implications[J]. Int. Geol. Rev., 2007, 49(12):1145-1158.

    Qin J F, Lai S C, Wang J, et al. High-Mg# adakitic tonalite from the Xichahe area, south Qinling Orogenic Belt(Central China):Petrogenesis and geological implications[J]. Int. Geol. Rev., 2007, 49(12):1145-1158.
    Harrison T M, Yin A, Grove M, et al. The Zedong Window:A re-cord of superposed Tertiary convergence in southeastern Tibet[J]. J. Geophys. Res., 2000, 105(B8):19211-19230.

    Harrison T M, Yin A, Grove M, et al. The Zedong Window:A re-cord of superposed Tertiary convergence in southeastern Tibet[J]. J. Geophys. Res., 2000, 105(B8):19211-19230.
    Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constraints from post collisional adakites[J]. Tectonophysics, 2009, 477:36-49.

    Chung S L, Chu M F, Ji J Q, et al. The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constraints from post collisional adakites[J]. Tectonophysics, 2009, 477:36-49.
    姜子琦, 王强, Wyman D A, 等.西藏冈底斯南缘冲木达约30Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?[J].地球化学, 2011, 02:126-146.
    孙祥, 郑有业, 吴松, 等.冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因[J].岩石学报, 2013, 29(4):1392-1406.
    Li G M, Qin K Z, Ding K S, et al. Cenozoic skarn Cu-Au de-posites in SE Gangdese:Features, ages, mineral assemblages and ex-ploration signi-fance[C]//Mao J W, Bierlein F P. Mineral Depos-it Research:Meeting the Global Challenge(2). Heidelberg:Springer-Verlag, 2005:1239-1241.

    Li G M, Qin K Z, Ding K S, et al. Cenozoic skarn Cu-Au de-posites in SE Gangdese:Features, ages, mineral assemblages and ex-ploration signi-fance[C]//Mao J W, Bierlein F P. Mineral Depos-it Research:Meeting the Global Challenge(2). Heidelberg:Springer-Verlag, 2005:1239-1241.
    Li G M, Qin K Z, Ding K S, et al. Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu-Au ±Mo deposits in the South-eastern Gangdese arc, Southern Tibet:Implications for deep exploration[J]. Res. Geol., 2006, 56(3):315-336.

    Li G M, Qin K Z, Ding K S, et al. Geology, Ar-Ar age and mineral assemblage of Eocene skarn Cu-Au ±Mo deposits in the South-eastern Gangdese arc, Southern Tibet:Implications for deep exploration[J]. Res. Geol., 2006, 56(3):315-336.
    周利敏, 侯增谦, 郑远川, 等.藏南程巴岩体副矿物研究:岩浆源区的指示[J].岩石学报, 2011, 27(9):2786-2794.
    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chem. Geol., 2008,257(1/2):34-43.

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chem. Geol., 2008, 257(1/2):34-43.
    Sun S S, McDonough W F. Chemical and isotope systematic of oce-anic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in ocean Basins. Geological Society Publication, 1989, 42:313-345.

    Sun S S, McDonough W F. Chemical and isotope systematic of oce-anic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in ocean Basins. Geological Society Publication, 1989, 42:313-345.
    Gao Y F, Yang Z S, Santosh M, et al. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet[J]. Lithos, 2010,119:651-663.

    Gao Y F, Yang Z S, Santosh M, et al. Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet[J]. Lithos, 2010, 119:651-663.
    Richards J P. Postsubduction porphyry Cu-Au and epithermalAu deposits:products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37:247-250.

    Richards J P. Postsubduction porphyry Cu-Au and epithermalAu deposits:products of remelting of subduction-modified lithosphere[J]. Geology, 2009, 37:247-250.
    Bedard J H. Petrogenesis of boninites from the Betts Cove ophiolite, New Foundland,Canada:identification of subducted source-components[J]. J. Petrol., 1999, 40:1853-1889.

    Bedard J H. Petrogenesis of boninites from the Betts Cove ophiolite, New Foundland, Canada:identification of subducted source-components[J]. J. Petrol., 1999, 40:1853-1889.
    Seghedi I,Downes H,Peskay Z, et al. Magmagenesisin a subduc-tion-related post-collisional volcanic arc segment:The Ukraiman Carpathians[J]. Lithos, 2001, 57:237-262.

    Seghedi I, Downes H, Peskay Z, et al. Magmagenesisin a subduc-tion-related post-collisional volcanic arc segment:The Ukraiman Carpathians[J]. Lithos, 2001, 57:237-262.
    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chem. Geol., 2005, 218:339-359.

    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J]. Chem. Geol., 2005, 218:339-359.
    Xiong X L. Trace element evidence for the growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geolo-gy, 2006, 34:945-948.

    Xiong X L. Trace element evidence for the growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geolo-gy, 2006, 34:945-948.
    Xiong X. L, Keppler H, Audetat A,e t al. Experimental con-straints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications for TTG genesis[J].Am. Mineral, 2009, 94:1175-1186.

    Xiong X. L, Keppler H, Audetat A, et al. Experimental con-straints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications for TTG genesis[J].Am. Mineral, 2009, 94:1175-1186.
    Wu F Y, Ji W Q, Liu C Z, et al. Detrital zircon U-Pb and Hf iso-topic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chem. Geol., 2010,271:13-25.

    Wu F Y, Ji W Q, Liu C Z, et al. Detrital zircon U-Pb and Hf iso-topic data from the Xigaze fore-arc basin:Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chem. Geol., 2010, 271:13-25.
    Wolf M B, Wyllie P J. Garnet growth during amphiboliteanatexis:Implications of a garnetiferous restite[J]. The Journal of Geology, 1993, 101(3):357-373.

    Wolf M B, Wyllie P J. Garnet growth during amphiboliteanatexis:Implications of a garnetiferous restite[J]. The Journal of Geology, 1993, 101(3):357-373.
    Rapp R P,Watson E B. Dehydration melting of metabasalt at 8-32kbar:implications for continental growth and crust-mantle recy-cling[J]. J. Petrol. 1995, 36:891-931.

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32kbar:implications for continental growth and crust-mantle recy-cling[J]. J. Petrol. 1995, 36:891-931.
    Harrison T M, Watson E B. The behavior of apatite during crustal anatexis:Equilibrium and kinetic considerations[J].Geochimica et Cosmochimica Acta, 1984,48:1467-1477.

    Harrison T M, Watson E B. The behavior of apatite during crustal anatexis:Equilibrium and kinetic considerations[J].Geochimica et Cosmochimica Acta, 1984, 48:1467-1477.
    Romick J D, Kay S M, Kay R W. The influence of amphibole frac-tionation on the evolution of calc-alkaline andesite and dacite teph-ra from the Central Aleutians, Alaska[J]. Contrib. Mineral. Petrol., 1992, 112:101-118.

    Romick J D, Kay S M, Kay R W. The influence of amphibole frac-tionation on the evolution of calc-alkaline andesite and dacite teph-ra from the Central Aleutians, Alaska[J]. Contrib. Mineral. Petrol., 1992, 112:101-118.
    Davidson J, Turner S, Handley H, et al.Dosseto A. Amphibole "sponge" in arc crust?[J]. Geology, 2007, 35:787-790

    Davidson J, Turner S, Handley H, et al.Dosseto A. Amphibole "sponge" in arc crust?[J]. Geology, 2007, 35:787-790
    Davidson J, Wilson M. Differentiation and source processes at Mt Pelee and the Quill; active volcanoes in the Lesser Antilles Arc[J]. J. Petrol., 2011,52:1493-1531.

    Davidson J, Wilson M. Differentiation and source processes at Mt Pelee and the Quill; active volcanoes in the Lesser Antilles Arc[J]. J. Petrol., 2011, 52:1493-1531.
    Hidalgo P J, Rooney T O. Crystal fractionation processes at Baru volcano from the deep to shallow crust[J]. Geochemistry Geophys-ics Geosystems, 2010, 11:Q12S30.

    Hidalgo P J, Rooney T O. Crystal fractionation processes at Baru volcano from the deep to shallow crust[J]. Geochemistry Geophys-ics Geosystems, 2010, 11:Q12S30.
    Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia con-tact:paleomagnetic constraints from Ninetyeast Ridge, OD P Leg 121[J]. Geology, 1992, 20:395-398.

    Klootwijk C T, Gee J S, Peirce J W, et al. An early India-Asia con-tact:paleomagnetic constraints from Ninetyeast Ridge, OD P Leg 121[J]. Geology, 1992, 20:395-398.
    Klootwijk C T, Conaghan P J, Nazirullah R, et al. Further palaeo-magmatic data from Chitral(Eastern Hindukush):evidence for an early India-Asia contact[J]. Tectonophysics, 1994, 237:1-25.

    Klootwijk C T, Conaghan P J, Nazirullah R, et al. Further palaeo-magmatic data from Chitral(Eastern Hindukush):evidence for an early India-Asia contact[J]. Tectonophysics, 1994, 237:1-25.
    Patriat P, Achache J. Indian-Eurasia collision chronology has impli-cations for crustal shortening and driving mechanism of plates[J]. Nature, 1984, 311:615-621.

    Patriat P, Achache J. Indian-Eurasia collision chronology has impli-cations for crustal shortening and driving mechanism of plates[J]. Nature, 1984, 311:615-621.
    Yin A, Harrison T M. Geologic evolution of the Himalaya-Tibet-an orogen[J]. Annu. Rev. Earth and Planetary Science Letters, 2000, 28:211-280.

    Yin A, Harrison T M. Geologic evolution of the Himalaya-Tibet-an orogen[J]. Annu. Rev. Earth and Planetary Science Letters, 2000, 28:211-280.
    Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6):678-701.

    Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6):678-701.
    Dewey J F, Cande S, Pitman Ⅲ W C. Tectonic evolution of the India/Eurasia collision zone[J]. Eclogae. Geol. Helv., 1989, 82:717-734

    Dewey J F, Cande S, PitmanⅢW C. Tectonic evolution of the India/Eurasia collision zone[J]. Eclogae. Geol. Helv., 1989, 82:717-734
    Le Fort P. Evolution of the Himalaya s[C]//Yin A, Harrison T M. The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 1996:95-109.

    Le Fort P. Evolution of the Himalaya s[C]//Yin A, Harrison T M. The Tectonic Evolution of Asia. Cambridge:Cambridge University Press, 1996:95-109.
    Hou Z Q, Cook N J. Metallogenesis of the Tibetan Collisional Orogen:Areview and introduction to the special issue[J]. Ore Ge-ology Reviews, 2009, 36:2-24.

    Hou Z Q, Cook N J. Metallogenesis of the Tibetan Collisional Orogen:Areview and introduction to the special issue[J]. Ore Ge-ology Reviews, 2009, 36:2-24.
    Ji W Q, Wu F Y, Liu C Z, et al. Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith[J]. Journal of Asian Earth Sciences, 2012, 53:82-95.

    Ji W Q, Wu F Y, Liu C Z, et al. Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith[J]. Journal of Asian Earth Sciences, 2012, 53:82-95.
  • Related Articles

Catalog

    Article views (2079) PDF downloads (252) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return