• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
Han L L, Chen X H, Shao Z G, Ding W C, Zhang Y P, Li B, Xu S L, Wang Y, Liu K, Yang X R. Structural characteristics and time constraint of Late Mesozoic intracontinental deformation in Xishan meiyao area, south of Beishan. Geological Bulletin of China, 2024, 43(11): 1950−1969. DOI: 10.12097/gbc.2024.03.014
Citation: Han L L, Chen X H, Shao Z G, Ding W C, Zhang Y P, Li B, Xu S L, Wang Y, Liu K, Yang X R. Structural characteristics and time constraint of Late Mesozoic intracontinental deformation in Xishan meiyao area, south of Beishan. Geological Bulletin of China, 2024, 43(11): 1950−1969. DOI: 10.12097/gbc.2024.03.014

Structural characteristics and time constraint of Late Mesozoic intracontinental deformation in Xishan meiyao area, south of Beishan

More Information
  • Received Date: March 14, 2024
  • Revised Date: June 06, 2024
  • The Xishanmeiyao area of southeastern Beishan range, presents an opportunity for investigating the intracontinental deformation history of Central Asia region during the late Mesozoic era, which is of great significance to revealing the evolutionary history of Central Asian. Here, we conducted synthesis investigation of remote sensing image interpretation, field geological observation and structural analysis, and apatite (U−Th)/He (A−He) chronology to study the deformation characteristics and time in the Xishanmeiyao area. The study area exposes the Xishanmeiyao thrusts, which is characterized by the thrusted the late Carboniferous gabbro and Permian granite to the Middle Lower Jurassic Longfengshan Formation coal-bearing strata (J1-2ln). A series of the NE direction imbricated thrust faults were developed with fault dip is 40°~50° in the footwall. The gabbro and granite klippen forming on the hang wall with the thrust nappe distance of ~10 km. The AHe data of the late Carboniferous gabbro record the 160~130 Ma cooling event, it is indicated that the area experienced near NE compression deformation during the late Middle Jurassic to early stage of Early Cretaceous, which may be the coupling result of the closure of Bangong−Nujiang ocean final in the southern and the Mongolia−Okhotsk Ocean in the northern margin of Asia. The AHe data of deformed Jurassic record the 120~100 Ma cooling event related the footwall exhumation during subsequent normal faulting, which may be the caused by the collapse of thickened crust. The tectonic inversion of the near E−W normal fault causing that the deformed Jurassic and overlying rocks were overlayed to the Lower Cretaceous, indicative of the weak compressive deformation after Late Cretaceous in the southern part of Beishan and overprinted the pre-existing compressive and extensional structures.

  • Ao S J, Xiao W J, Han C M, et al. 2010. Geochronology and geochemistry of Early Permian mafic–ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 18(2/3): 466−478.
    Ao S J, Xiao W J, Han C M, et al. 2012. Cambrian to early Silurian ophiolite and accretionary processes in the Beishan collage, NW China: Implications for the architecture of the Southern Altaids[J]. Geological Magazine, 149(4): 606−625. doi: 10.1017/S0016756811000884
    Ao S J, Xiao W J, Windley B F, et al. 2016. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U−Pb and 40Ar/39Ar geochronology[J]. Gondwana Research, 30: 224−235. doi: 10.1016/j.gr.2015.03.004
    Bureau of Geology of Gansu Province (BGGP, Second Regional Geological Survey). 1971. Geologic Map of Jiusidun Region, scale 1: 200 000[R]. Beijing: Ministry of Geology of China (in Chinese).
    Chen B L, Dang G M, Cui W, et al. 2003. Advances in Study of Crustal Stability in Hexi Corridor Northwestern China[J]. Journal of Geomechanics, 9(1): 14−20 (in Chinese with English abstract).
    Chen S, Wang H, Wei J, et al. 2014. Sedimentation of the Lower Cretaceous Xiagou Formation and its response to regional tectonics in the Qingxi Sag, Jiuquan Basin, NW China[J]. Cretaceous Research, 47: 72−86. doi: 10.1016/j.cretres.2013.11.006
    Chen X H, Dong S W, Shi W, et al. 2022. Construction of the Continental Asia in Phanerozoic: A Review[J]. Acta Geologica Sinica (English Edition), 96(1): 26−51. doi: 10.1111/1755-6724.14867
    Chen X H, Shao Z G, Xiong X S, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).
    Chen Z P, Ren Z L. Qi K, et al. 2019. Zircon U−Pb chronology and geochemistry of volcanic rocks of early Cretaceous Bayingebi Formation in Suhongtu depression of the Ying'e basin, and their tectonic implications[J]. Acta Geologica Sinica, 93(2): 353−367 (in Chinese with English abstract).
    Chen Z Y, Xiao A C, Zhou S P, et al. 2005. The main control factor for Jurassic distribution in Qaidam Basin[J]. Earth Science Frontiers, 12(3): 149−155 (in Chinese with English abstract).
    Cheng F, Jolivet M, Guo Z J, et al. 2019. Jurassic–Early Cenozoic tectonic inversion in the Qilian Shan and Qaidam Basin, North Tibet: New insight from seismic reflection, isopach mapping, and drill core data[J]. Journal of Geophysical Research: Solid Earth, 124(11): 12077−12098. doi: 10.1029/2019JB018086
    Cheng X G, Lin X B, Wu L, et al. 2016. The exhumation history of north Qaidam thrust belt constrained by apatite fission track thermochronology: Implication for the evolution of the Tibetan plateau[J]. Acta Geologica Sinica (English Edition), 90(3): 870−883. doi: 10.1111/1755-6724.12730
    Cheng X G, Zheng D W, Yang S F, et al. 2006. A study on characteristics of the Late Cretaceous−Paleocene structures in Jiuquan Basin[J]. Oil & Gas Geology, 27(4): 522−527 (in Chinese with English abstract).
    Cogné J P, Kravchinsky V A, Halim N, et al. 2005. Late Jurassic–Early Cretaceous closure of the Mongol–Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans−Baïkal area (SE Siberia)[J]. Geophysical Journal International, 163: 813−832. doi: 10.1111/j.1365-246X.2005.02782.x
    Cogné N, Chew D M, Donelick R A, et al. 2020. LA−ICP−MS apatite fission track dating: A practical zeta−based approach[J]. Chemical Geology, 531: 119302.
    Cunningham D, Davies S, Mclean D. 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: Implications for the crustal evolution of the Gobi Altai region[J]. Journal of The Geological Society, 166(2): 321−333. doi: 10.1144/0016-76492008-082
    Cunningham D. 2013. Mountain building processes in intracontinental oblique deformation belts: Lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46: 255−282. doi: 10.1016/j.jsg.2012.08.010
    Cunningham D. 2017. Folded basinal compartments of the southern Mongolian borderland: A structural archive of the final consolidation of the Central Asian Orogenic Belt[J]. Geosciences, 7(2): 1−23.
    Davis G A, Darby B J, Zheng Y, et al. 2002. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China[J]. Geology, 30(11): 1003−1006. doi: 10.1130/0091-7613(2002)030<1003:GATEOA>2.0.CO;2
    Dewey J F, Shackleton R M, Chang C F, et al. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philos Trans Royal Society of London Series A, 327: 379−413. doi: 10.1098/rsta.1988.0135
    Dong S W, Zhang Y Q, Li H L, et al. 2018. The Yanshan orogeny and late Mesozoic multi−plate convergence in East Asia—Commemorating 90th years of the“Yanshan Orogeny”[J]. Science China Earth Sciences, 61: 1888−1909 (in Chinese with English abstract). doi: 10.1007/s11430-017-9297-y
    Dong S W, Zhang Y Q, Zhang F Q, et al. 2015. Late Jurassic−Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution[J]. Journal of Asian Earth Sciences, 114: 750−770. doi: 10.1016/j.jseaes.2015.08.011
    Dong S W, Zhang Y Q, Zhao Y, et al. 2016. Tectonic evolution and dynamic analysis of Meso−Cenozoic in Chinese Mainland[M]. Beijing: Science Press: 20−22 (in Chinese).
    Donskaya D P, Gladkochub A M, Mazukabzoy A V I. 2013. Late Paleozoic−Mesozoic subduction−related magmatism at the southern margin of the Siberian continent and the, 150 million−year history of the Mongol−Okhotsk Ocean[J]. Journal of Asian Earth Sciences, 62(30): 79−97.
    Donskaya T V, Windley B F, Mazukabzov A M, et al. 2008. Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia[J]. Journal of the Geological Society, 165: 405−421. doi: 10.1144/0016-76492006-162
    Dumitru T A, Hendrix M S. 2001. Fission−track constraints on Jurassic folding and thrusting in southern Mongolia and their relationship to the Beishan thrust belt of northern China[J]. Geological Society of America Memoir, 194: 215−229.
    Fan J J, Li C, Xie C M, et al. 2015. Petrology and U–Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong–Nujiang Ocean[J]. Lithos, 227: 148−160. doi: 10.1016/j.lithos.2015.03.021
    Fan, J J, Li C, Wang M. et al. 2018. Reconstructing in space and time the closure of the middle and western segments of the Bangong–Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 107: 231−249. doi: 10.1007/s00531-017-1487-4
    Flowers R M, Ketcham R A, Shuster D L, et al. 2009. Apatite (U−Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 73(8): 2347−2365. doi: 10.1016/j.gca.2009.01.015
    Gautheron C, Tassan−Got L, Barbarand J, et al. 2009. Effect of alpha−damage annealing on apatite (U−Th)/He thermochronology[J]. Chemical Geology, 266(3/4): 157−170. doi: 10.1016/j.chemgeo.2009.06.001
    George A D, Marshallsea S J, Wyrwoll K H, et al. 2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan plateau, revealed by apatite fission−track and vitrinite−reflectance analysis[J]. Geology, 29: 939−942.
    Graham S A, Hendrix M S, Johnson C L, et al. 2001. Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia[J]. Geological Society of America Bulletin, 113(12): 1560−1579. doi: 10.1130/0016-7606(2001)113<1560:SRATIO>2.0.CO;2
    Guo Q Q, Chung S L, Lee H Y, et al. 2023. Termination of the Paleo−Asian Ocean in the Beishan orogen, NW China: Constraints from detrital zircon U−Pb age and Hf isotope analysis of turbidites[J]. Geological Society of America Bulletin, 135(7/8): 1734−1746.
    Guo Z J, Lu J M, Zhang Z C. 2009. Cenozoic exhumation and thrusting in the Northern Qilian Shan northeastern margin of the Tibetan Plateau: Constraints from sedimentological and Apatite Fission−Track Data[J]. Acta Geologica Sinica (English Edition), 83(3): 562−579. doi: 10.1111/j.1755-6724.2009.00045.x
    Guo Z J, Zhang Z C, Zhang C, et al. 2008. Lateral growth of the Altyn Tagh strike−slip fault at the north margin of the Qinghai−Tibet Plateau: Late Cenozoic strike−slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 27(10): 1678−1686 (in Chinese with English abstract).
    Guynn J H, Kapp P, Pullen A, et al. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet[J]. Geology, 34(6): 505−508. doi: 10.1130/G22453.1
    He P J, Song C H, Wang Y D, et al. 2017. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin[J]. Journal of Geophysical Research: Solid Earth, 122: 6910−6927. doi: 10.1002/2017JB014216
    He Z Y, Klemd R, Yan L L, et al. 2018. The origin and crustal evolution of microcontinents in the Beishan orogen of the southern Central Asian Orogenic Belt[J]. Earth−Science Reviews, 185: 1−14. doi: 10.1016/j.earscirev.2018.05.012
    Hui J, Cheng H, Zhang J, et al. 2020. Early Cretaceous continent basalts in the Alxa Block, NW China: Geochronology, geochemistry, and tectonic implications[J]. International Geology Review, 63(7): 1−18.
    Jia J B, Zheng W J, Zhou R J, et al. 2024. Provenance and deformation style of lower Cretaceous sedimentary rocks in Huangcheng basin, northeastern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 263(15): 106046.
    Jiang R B, Chen X H, Dang Y Q, et al. 2008. Apatite fission track evidence for two phases Mesozoic−Cenozoic thrust faulting in eastern Qaidam Basin[J]. Journal of Geophysics, 51: 116−124 (in Chinese with English abstract).
    Johnson C L. Webb L E, Graham S A, et al. 2001. Sedimentary and structural records of late Mesozoic high−strain extension and strain partitioning, East Gobi basin, southern Mongolia[J]. Memoir of the Geological Society of America, 194: 413−433.
    Jolivet M, Brunel M D, Seward Z X, et al. 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission‒track constraints[J]. Tectonophysics, 343(1/2): 111−134. doi: 10.1016/S0040-1951(01)00196-2
    Jolivet M, Dominguez S, Charrea J, et al. 2010. Mesozoic and Cenozoic tectonic history of the Central Chinese Tian Shan: Reactivated tectonic structures and active deformation[J]. Tectonics, 29: TC6019.
    Jolivet, M. 2015. Mesozoic tectonic and topographic evolution of Central Asia and Tibet: A preliminary synthesis[J]. Geological Society, London, Special Publications, 427.
    Kapp P, DeCelles P G, Gehrels G E, et al. 2007. Geological records of the Lhasa−Qiangtang and Indo−Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 119(7/8): 917−933. doi: 10.1130/B26033.1
    Kapp P, Yin A, Harrison T M, et al. 2005. Cretaceous‒Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 117(7/8): 865−878.
    Kröner A, Windley B F, Badarch G, et al. 2007. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian−Nubian shield[J]. The Geological Society of America Memoir, 200: 181−209. doi: 10.1130/2007.1200(11)
    Li B, Chen X H, Zuza A V, et al. 2019. Cenozoic cooling history of the North Qilian Shan, northern Tibetan Plateau, and the initiation of the Haiyuan fault: Constraints from apatite−and zircon−fission track thermochronology[J]. Tectonophysics, 751: 109−124. doi: 10.1016/j.tecto.2018.12.005
    Li D, Cuo P, You H L, et al. 2007. A large Therizinosauroid (dinosauria: Theropoda) from the Early Cretaceous of northwestern China[J]. Acta Geologica Sinica (English Edition), 81(4): 539−549. doi: 10.1111/j.1755-6724.2007.tb00977.x
    Li F Q. 2003. New evidences for the presence of the NS−trending extensional structures in northwestern China: An example from the Early Cretaceous half graben fault depressions in Jiuquan Gansu[J]. Sedimentation and Tethys geology, 23(2): 35−42 (in Chinese with English abstract).
    Li J, Wu C, Chen X H. et al. 2023. Tectonic evolution of the Beishan orogen in central Asia: Subduction, accretion, and continent−continent collision during the closure of the Paleo−Asian Ocean[J]. Geological Society of America Bulletin, 135(3/4): 819−851. doi: 10.1130/B36451.1
    Li Q X, Pan B T, Hu X F, et al. 2013. Apatite fission track constraints on the pattern of faulting in the north Qilian Mountain[J]. Journal of Earth Science, 24(4): 569−578. doi: 10.1007/s12583-013-0350-1
    Lin W, Wei W. 2018. Late Mesozoic extensional tectonics in the North China Craton and its adjacent regions: A review and synthesis[J]. International Geology Review, 62(7/8): 811−839.
    Lin X, Tian Y T, Donelick R A, et al. 2019. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan plateau: evidence from modern river detrital apatite fission−track age constraints[J]. Journal of Asian Earth Sciences, 170: 84−95. doi: 10.1016/j.jseaes.2018.10.028
    Lin X, Wu L, Jolivet M, et al. 2022. Apatite (U−Th)/He thermochronology evidence for two cenozoic de nudation events in eastern part of Sulu Orogenic Belt[J]. Earth Science, 47(4): 1162−1176 (in Chinese with English abstract).
    Liu K, Chen X H, Wang D R, et al. 2024. The Early Cretaceous extensional deformation in the southeastern Beishan Range, central Asia: Constrains from 2D seismic reflection profile interpretation and apatite fission track thermochronology[J]. Journal of Geomechanics, 30(3): 377−393 (in Chinese with English abstract).
    Liu K, Chen X H, Zuza A V, et al. 2023. The late Mesozoic intracontinental contraction–extension transition in the Beishan fold−thrust belt, central Asia: Constraints from structural analysis and apatite (U–Th)/He thermochronology[J]. Tectonics, 42: e2022TC007532. doi: 10.1029/2022TC007532
    Liu X Y, Wang Q. 1995. Tectonics of orogenic belts in Beishan mts., western China and their evolution[C]//Proceedings of Institute of Geology. Chinese Academy of Geological Sciences, 28: 37−48 (in Chinese with English abstract).
    Lou Q Q, Xiao A C, Yang H, et al. 2009. Characteristics of Mesozoic basin of the northern Qaidam: A case study on Dachaidan depression[J]. Geological journal of universities, 15(13): 407−416 (in Chinese with English abstract).
    Ma A, Hu X, Garzanti E, et al. 2017. Sedimentary and tectonic evolution of the southern Qiangtang basin: Implications for the Lhasa−Qiangtang collision timing[J]. Journal of Geophysical Research: Solid Earth, 122(7): 4790−4813. doi: 10.1002/2017JB014211
    Ma Q, Xu Y G. 2021. Magmatic perspective on subduction of Paleo‒Pacific plate and initiation of big mantle wedge in East Asia[J]. Earth−Science Reviews, 213: 103473. doi: 10.1016/j.earscirev.2020.103473
    Meng Q R, Hu J M, Jin J Q, et al. 2003. Tectonics of the late Mesozoic wide extensional basin systemin the China−Mongolia border region[J]. Basin Research, 15: 397−415. doi: 10.1046/j.1365-2117.2003.00209.x
    Meng Q R. 2003. What drove late Mesozoic extension of the northern China−Mongolia tract?[J]. Tectonophysics, 369(3/4): 155−174.
    Metelkin D V, Vernikovsky V A, Kazansky A Yu, et al. 2010. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 18: 400−419. doi: 10.1016/j.gr.2009.12.008
    Miao L C, Zhu M S, Zhang F Q, et al. 2014. Tectonic setting of Mesozoic magmatism and associated metallogenesis in Beishan area[J]. Geology in China, 41(4): 1190−1204 (in Chinese with English abstract).
    Mock C, Arnaud N O, Cantagrel J M. 1999. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai NW China)[J]. Earth and Planetary Science Letters, 171: 107−122. doi: 10.1016/S0012-821X(99)00133-8
    Pan B T, Li Q Y, Hu X F, et al. 2013. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north−eastern margin of the Tibetan plateau: evidence from Apatite Fission−track analysis[J]. Terra Nova, 25(6): 431−438. doi: 10.1111/ter.12052
    Pang J Z, Yu J X, Zheng D W, et al. 2019. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan Plateau[J]. Tectonics, 38: 1018−1032. doi: 10.1029/2018TC005258
    Peng N. 2013. Basin Analysis and Paleogeography in North Qilian Mountain to Beishan Area, Early Cretaceous[D]. Doctoral Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
    Qi B S, Hu D G, Yang X X, et al. 2016. Apatite fission track evidence for the Cretaceous–Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene[J]. Journal of Asian Earth Sciences, 124: 28−41. doi: 10.1016/j.jseaes.2016.04.009
    Raimondo T, Hand M, Collins W. 2014. Compressional intracontinental orogens: Ancient and modern perspectives[J]. Earth−Science Reviews, 130: 128−153. doi: 10.1016/j.earscirev.2013.11.009
    Reiners P W, Farley K A. 2001. Influence of crystal size on apatite (U−Th)/He thermochronology: An example from the Bighorn Mountains, wyoming[J]. Earth and Planetary Science Letters, 188(3/4): 413−420.
    Ren Q, Zhang S, Wu Y, et al. 2018. New Late Jurassic to Early Cretaceous paleomagnetic results from North China and southern Mongolia and their implications for the evolution of the Mongol‒Okhotsk suture[J]. Journal of Geophysical Research: Solid Earth, 123(12): 10370−10398.
    Ren W X, Hu B, Tang D L, et al. 2022. Palynological assemblage and its significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan[J/OL]. Earth Science (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.
    Schettino A, Scotese C R. 2005. Apparent polar wander paths for the major continents (200 Ma to the present day): a palaeomagnetic reference frame for global plate tectonic reconstructions[J]. Geophysical Journal International, 163: 727−759. doi: 10.1111/j.1365-246X.2005.02638.x
    Shao H H, Chen X H, Zhang D, et al. 2019. The Lower Cretaceous tectonic deformation stages and detrital zircon U−Pb ages of Pingshanhu Basin in Hexi Corridor[J]. Geology in China, 46(5): 1079−1093 (in Chinese with English abstract).
    Shuster D L, Flowers R M, Farley K A. 2006. The Influence of Natural Radiation Damage on Helium Diffusion Kinetics in Apatite[J]. Earth and Planetary Science Letters, 249(3/4): 148−161.
    Song Y, Zeng Q G, Liu H Y, et al. 2019. An innovative perspective for the evolution of Bangong Nujiang Ocean: Also discussing the Paleo− and Neo−Tethys conversion[J]. Acta Petrologica Sinica, 35(3): 625−640 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.02
    Sun G Y, Hu X M, Xu Y W, et al. 2019. Discovery of Middle Jurassic trench deposits in the Bangong−Nujiang suture zone: Implications for the timing of Lhasa−Qiangtang initial collision[J]. Tectonophysics, 750: 344−358. doi: 10.1016/j.tecto.2018.12.001
    Tang W H, Zhang Z C, Li J F, et al. 2012. Geochemical characteristics and tectonic significance of the Cretaceous volcanic rocks in the Eastern Terminal of the Altyn Tagh fault zones[J]. Earth Science Frontiers, 19(4): 51−62 (in Chinese with English abstract).
    Tian J, Teng X J, Xin H T, Duan X L, et al. 2020. Structure, composition and ages of ophiolitic mélanges in the Baiyunshan area, Beishan Orogenic Beltp[J]. Acta Petrologica Sinica, 36(12): 3741−3756 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.12.11
    Tomurtogoo O, Windley B F, Kroner A, et al. 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone central Mongolia: constraints on the evolution of the Mongol−Okhotsk Ocean suture and orogen[J]. Journal of the Geological Society, 162: 125−134. doi: 10.1144/0016-764903-146
    Tong K, Li Z W, Zhu L D, et al. 2020. Fold−and−thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth[J]. Journal of Asian Earth Sciences, 198: 104131. doi: 10.1016/j.jseaes.2019.104131
    Vermeesch P. 2010. HelioPlot and the treatment of Over−dispersed (U−Th−Sm)/He Data[J]. Chemical Geology, 271(3/4): 108−111.
    Vincent S J, Allen M B. 1999. Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike−slip basin formation in Central Asia[J]. Geological Society of America Bulletin, 111: 725−742. doi: 10.1130/0016-7606(1999)111<0725:EOTMAC>2.3.CO;2
    Wang F J, Luo M, He Z Y, et al. 2024. Mid−Cretaceous accelerated cooling of the Beishan Orogen, NW China: Evidence from Apatite fission track thermochronolog[J]. Lithosphere, 2023: 1−20. doi: 10.2113/2023/lithosphere_2023_244
    Wang T, Guo L, Zhang L, et al. 2015. Timing and evolution of Jurassic–Cretaceous granitoid magmatisms in the Mongol–Okhotsk belt and adjacent areas, NE Asia: Implications for transition from contractional crustal thickening to extensional thinning and geodynamic settings[J]. Journal of Asian Earth Sciences, 97: 365−392. doi: 10.1016/j.jseaes.2014.10.005
    Wang T, Zheng Y D, Zhang J, et al. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 30: TC6007.
    Wang X X, Song C H, Zattin M, et al. 2016. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission−track thermochronology[J]. Tectonophysics, 672−673: 212−227. doi: 10.1016/j.tecto.2016.02.006
    Wang Y N, Zhang J, Qi W H, et al. 2015. Exhumation history of the Xining basin since the Mesozoic and its tectonic significance[J]. Acta Geologica Sinica (English Edition), 89(1): 145−162. doi: 10.1111/1755-6724.12401
    Wang Y, Chen X H, Zhang Y Y, et al. 2022. Superposition of Cretaceous and Cenozoic deformation in northern Tibet: A far−field response to the tectonic evolution of the Tethyan orogenic system[J]. Geological Society of America Bulletin, 134(1/2): 501−525. doi: 10.1130/B35944.1
    Wang Y, Luo Z H, Santosh M, et al. 2017. The Liuyuan volcanic belt in NW China revisited: Evidence for Permian rifting associated with the assembly of continental blocks in the Central Asian Orogenic Belt[J]. Geological Magazine, 154(2): 265−285. doi: 10.1017/S0016756815001077
    Webb L E, Johnson S A G, Badarch C L G, et al. 1999. Occurrence, age, and implications of the Yagan−Onch Hayrhan metamorphic core complex, southern Mongolia[J]. Geology, 27(2): 143−146. doi: 10.1130/0091-7613(1999)027<0143:OAAIOT>2.3.CO;2
    Wei Y F, Xiao Q R, Wu J X, et al. 2023. Genesis and constraints on the tectonic evolution of the Late Cretaceous peraluminous granite in the Namtso area, Xizang[J]. Geochimica, 52(4): 458−474 (in Chinese with English abstract).
    Wei Z J, Huang Z B, Jin X, et al. 2004. Geological characteristics of ophiolite migmatitic complex of Hongshishan region, Gans[J]. Northwestern Geology, 37(2): 13−18 (in Chinese with English abstract).
    Windley B F, Alexeiev D, Xiao W J, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1): 31−47. doi: 10.1144/0016-76492006-022
    Wu C, Zuza A V, Li J, et al. 2021. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low−temperature thermochronology[J]. Geological Society of America Bulletin, 133(11/12): 2393−2417. doi: 10.1130/B35879.1
    Xiao A C, Chen Z Y, Yang S F, et al. 2005. The study of Late Cretaceous paleo structural characteristics in northern Qaidam Basin[J]. Earth Science Frontiers, 12(4): 451−457 (in Chinese with English abstract).
    Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594. doi: 10.2475/10.2010.12
    Xin H T, Niu W C, Tian J, et al. 2020. Spatio−temporal structure of Beishan orogenic belt and evolution of Paleo Asian Ocean, Inner Mongolia[J]. Geological Bulletin of China, 39(9): 1297−1316 (in Chinese with English abstract).
    Yang B, Li S C, Wei N Y, et al. 2020. The discovery of ostracods assemblages from Early Cretaceous Chijinpu Formation in Tiancang area, Jiuquan, Gansu Province, and its geological significance[J]. Geological Bulletin of China, 39(4): 433−441 (in Chinese with English abstract).
    Yang H Q, Li Y, Zhao G B, et al. 2010. Character and structural attribute of the Beishan ophiolite[J]. Northwestern Geology, 43(1): 26−36 (in Chinese with English abstract).
    Yuan W M, Dong J Q, Carter A, et al. 2006. Mesozoic−Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: Constraints from apatite fission track data[J]. Tectonophysics, 412: 183−193. doi: 10.1016/j.tecto.2005.09.007
    Yun L, Zhang J, Wang J, et al. 2021. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics[J]. Journal of Geomechanics, 27(2): 195−207.
    Zhang B H, Zhang J, Wang Y N, et al. 2017. Late Mesozoic−Cenozoic exhumation of the northern Hexi Corridor: constrained by Apatite Fission Track Ages of the Longshoushan[J]. Acta Geologica Sinica (English Edition), 91(5): 1624−1643. doi: 10.1111/1755-6724.13402
    Zhang C Y. 2020. Late Mesozoic tectonic−sedimentary evolution of the northern Qaidam Basin and its dynamic meaning[D]. Doctoral Thesis of Zhejiang University (in Chinese with English abstract).
    Zhang G Z, Zhang Y, Xin H T, et al. 2021. Geochronology and geochemistry of diorite porphyrite from Laodonggou gold polymetallic deposit, Beishan, Inner Mongolia, and its metallogenic significance[J]. Mineral Deposits, 40(3): 555−573 (in Chinese with English abstract).
    Zhang H H, Zhang Z C, Li J F, et al. 2021. Meso−Cenozoic tectonic evolution in the northeastern margin of the Tibetan Plateau: Evidence from apatite and zircon fission tracks[J]. Chinese Journal of Geophysics, 64(6): 2017−2034 (in Chinese with English abstract).
    Zhang J J, Huang T L. 2019. An Overview on Continental Extensional Tectonics[J]. Earth Science, 44(5): 1705−1715 (in Chinese with English abstract).
    Zhang J L, Chen C, Zhang G F, et al. 2017. Sedimentary characteristics and age of the Early Cretaceous Chijinbao Formation in the Sandaomingshui of Beishan area, Inner Mongolia[J]. Geological Survey and Research, 40(1): 29−43 (in Chinese with English abstract).
    Zhang J, Cunningham D. 2012. Kilometer‒scale refolded folds caused by strike‒slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31: TC3009.
    Zhang J, Wang Y N, Qu J F, et al. 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geological Review, 63: 1490−1520. doi: 10.1080/00206814.2020.1783583
    Zhang J, Wang Y N, Zhang B H, et al. 2021b. Tectonothermal events in the central North China Craton since the Mesozoic: constrained by low−temperature thermochronology[J]. Tectonophysics, 804: 228769. doi: 10.1016/j.tecto.2021.228769
    Zhang Q N, You H L, Li D Q. 2015. Dinosaurs from late Early Cretaceous in the Mazongshan area, Gansu Province[J]. Geological Bulletin of China, 34(5): 890−897 (in Chinese with English abstract).
    Zhang Y X, Zhang K J, Li B, et al. 2007. SHRIMP U−Pb chronology and its genesis of zircon from anorthogranite in the South Lagoso ophiolite in Geze, Tibet[J]. Science Bulletin, 52: 100−106 (in Chinese with English abstract).
    Zhang Y X, Li Z W, Yang W G, et al. 2017. Late Jurassic–Early Cretaceous episodic development of the Bangong Meso−Tethyan subduction: Evidence from elemental and Sr–Nd isotopic geochemistry of arc magmatic rocks, Gaize region, central Tibet, China[J]. Journal of Asian Earth Sciences, 135: 212−242. doi: 10.1016/j.jseaes.2016.12.043
    Zheng Y D, Zhang Q, Wang Y, et al. 1996. Great Jurassic thrust sheets in Beishan (North Mountains) − Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111−1126. doi: 10.1016/0191-8141(96)00038-7
    Zhu G, Chen Y, Jiang D, et al. 2015. Rapid change from compression to extension in the North China Craton during the Early Cretaceous: Evidence from the Yunmengshan metamorphic core complex[J]. Tectonophysics, 656: 91−110. doi: 10.1016/j.tecto.2015.06.009
    Zhu R, Pan Y, He H, et al. 2008. Palaeomagnetism and 40Ar/39Ar age from a Cretaceous volcanic sequence, Inner Mongolia, China: Implications for the field variation during the Cretaceous normal superchron[J]. Physics of the Earth and Planetary Interiors, 169(1/4): 59−75. doi: 10.1016/j.pepi.2008.07.025
    Zorin Y A. 1999. Geodynamics of the western part of the Mongolia−Okhotsk collisional belt Trans−Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306: 33−56. doi: 10.1016/S0040-1951(99)00042-6
    Zuo G C, Zhang S L, He G Q, et al. 1991. Plate tectonic characteristics during the early Paleozoic in Beishan near the Sino−Mongolian border region, China[J]. Tectonophysics, 188: 385−392. doi: 10.1016/0040-1951(91)90466-6
    Zuo G C, Fen Y Z, Liu C Y, et al. 1992. A new discovery of Early Yanshanian strike−slip compressional nappe zones on middle−southern segment of Beishan mts, Gansu[J]. Scientia Geological Sinica, 4: 309−316 (in Chinese with English abstract).
    Zuo G C, Liu Y K, Liu C Y, et al. 2003. Framework and evolution of the tectonic structure in Beishan area across Gansu Province, Xinjiang autonomous region and Inner Mongolia autonomous region[J]. Acta Geologica Gansu, 12(1): 1−15 (in Chinese with English abstract).
    Zuo G C, Li S X. 2011. Early Paleozoic tectonic framework and evolution in the northeast margin of Tarim Basin[J]. Geology in China, 38(4): 945−960 (in Chinese with English abstract).
    Zuo Y, Jiang S, Wu S, et al. 2020. Terrestrial Heat Flow and Lithospheric Thermal Structure in the Chagan Depression of the Yingen‐Ejinaqi Basin, North Central China[J]. Basin Research, 32: 1328−1346. doi: 10.1111/bre.12430
    Zuza A V, Wu C, Wang Z Z, et al. 2019. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan−Tibetan orogen[J]. Lithosphere, 11(2): 209−231. doi: 10.1130/L1042.1
    陈柏林, 党光明, 崔巍, 等. 2003. 河西走廊地壳稳定性研究进展[J]. 地质力学学报, 9(1): 14−20. doi: 10.3969/j.issn.1006-6616.2003.01.002
    陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020.
    陈志鹏, 任战利, 祁凯, 等. 2019. 银额盆地苏红图坳陷早白垩世巴音戈壁组火山岩锆石U−Pb年代学、地球化学特征及构造意义[J]. 地质学报, 93(2): 353−367.
    陈志勇, 肖安成, 周苏平, 等. 2005. 柴达木盆地侏罗系分布的主控因素研究[J]. 地学前缘, 12(3): 149−155.
    程晓敢, 郑德文, 杨树锋, 等. 2006. 酒泉盆地晚白垩世—古新世构造特征[J]. 石油与天然气地质, 27(4): 522−527.
    董树文, 张岳桥, 赵越, 等. 2016. 中国大陆中—新生代构造演化与动力学分析[M]. 北京: 科学出版社: 20−22.
    董树文, 张岳桥, 李海龙, 等. 2019. “燕山运动”与东亚大陆晚中生代多板块汇聚构造——纪念“燕山运动”90周年[J]. 中国科学: 地球科学, 49(6): 913−938.
    甘肃省地质局第二区域地质调查队. 1971. 1∶20万旧寺墩幅[R]. 北京: 中国地质矿产局.
    郭召杰, 张志诚, 张臣, 等. 2008. 青藏高原北缘阿尔金走滑边界的侧向扩展: 甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 27(10): 1678−1686.
    蒋荣宝, 陈宣华, 党玉琪, 等. 2008. 柴达木盆地东部中新生代两期逆冲断层作用的FT定年[J]. 地球物理学报, 51: 116−124.
    李奋其. 2003. 中国西北部南北向伸展构造存在的新证据——酒泉早白垩世半地堑断陷成因初探[J]. 沉积与特提斯地质, 23(2): 35−42.
    林旭, 吴林, Jolivet M, 等. 2022. 苏鲁造山带东段新生代两阶段剥露事件的磷灰石(U−Th)/He热年代学证据[J]. 地球科学, 47(4): 1162−1176.
    刘奎, 陈宣华, 王德润, 等. 2023. 北山东南部早白垩世伸展构造变形: 二维反射地震剖面解释与磷灰石裂变径迹测年的制约[J]. 地质力学学报, 30(3): 377−393.
    刘雪亚, 王荃. 1995. 中国西部北山造山带的大地构造及其演化[C]//中国地质科学院地质研究所文集, 28: 37−48.
    楼谦谦, 肖安成, 杨浩, 等. 2009. 柴达木盆地北缘中生代盆地性质研究——对大柴旦凹陷的解剖[J]. 高校地质学报, 15(13): 407−416.
    苗来成, 朱明帅, 张福勤. 2014. 北山地区中生代岩浆活动与成矿构造背景分析[J]. 中国地质, 41(4): 1190−1204.
    彭楠. 2013. 北祁连—北山地区早白垩世沉积盆地分析及古地理特征[D]. 中国地质大学(北京)博士学位论文.
    任文秀, 胡斌, 唐德亮, 等. 2022. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J/OL]. 地球科学, https://kns.cnki.net/kcms/detail/42.1874.P.20220708.1633.008.html.
    邵浩浩, 陈宣华, 张达, 等. 2019. 河西走廊平山湖盆地早白垩世构造变形期次及其碎屑锆石U−Pb年龄约束[J]. 中国地质, 46(5): 1079−1093. doi: 10.12029/gc20190509
    宋扬, 曾庆高, 刘海永, 等. 2019. 班公湖–怒江洋形成演化新视角: 兼论西藏中部古–新特提斯转换[J]. 岩石学报, 35(3): 625−640.
    汤文豪, 张志诚, 李建锋, 等. 2012. 阿尔金断裂东端白垩纪火山岩地球化学特征及其地质意义[J]. 地学前缘, 19(4): 51−62.
    田健, 滕学建, 辛后田, 等. 2020. 北山造山带白云山地区蛇绿混杂岩结构、组成特征与形成时代[J]. 岩石学报, 36(12): 3741−3756.
    魏永峰, 肖倩茹, 吴建鑫, 等. 2023. 西藏纳木错地区晚白垩世过铝质花岗岩成因及对构造演化的制约[J]. 地球化学, 52(4): 458−474.
    魏志军, 黄增保, 金霞, 等. 2004. 甘肃红石山地区蛇绿混杂岩地质特征[J]. 西北地质, 37(2): 13−18.
    肖安成, 陈志勇, 杨树峰, 等. 2005. 柴达木盆地北缘晚白垩世古构造活动的特征研究[J]. 地学前缘, 12(4): 451−457.
    辛后田, 牛文超, 田健, 等. 2020. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 39(9): 1297−1316.
    杨兵, 李树才, 魏乃颐, 等. 2020. 甘肃酒泉市天仓地区早白垩世介形类的发现及其地质意义[J]. 地质通报, 39(4): 433−441.
    杨合群, 李英, 赵国斌, 等. 2010. 北山蛇绿岩特征及构造属性[J]. 西北地质, 43(1): 26−36.
    云龙, 张进, 王驹, 等. 2021. 甘肃北山南部活动断裂的发现及其区域构造意义[J]. 地质力学学报, 27(2): 195−207.
    张晨雨. 2020. 柴达木盆地北缘晚中生代沉积−构造演化及其大地构造意义[D]. 浙江大学博士毕业论文.
    张国震, 张永, 辛后田, 等. 2021. 内蒙古北山老硐沟金多金属矿床闪长玢岩年代学、地球化学及其成矿意义[J]. 矿床地质, 40(3): 555−573.
    张怀惠, 张志诚, 李建锋等. 2021. 青藏高原东北缘中新生代构造演化: 来自磷灰石和锆石裂变径迹的证据[J]. 地球物理学报, 64(6): 2017−2034.
    张金龙, 陈超, 张桂凤, 等. 2017. 内蒙古北山地区三道明水一带早白垩世赤金堡组沉积特征及时代厘定[J]. 地质调查与研究, 40(1): 29−43.
    张进江, 黄天立. 2019. 大陆伸展构造综述[J]. 地球科学, 44(5): 1705−1715.
    张茜楠, 尤海鲁, 李大庆. 2015. 甘肃马鬃山地区早白垩世晚期恐龙化石[J]. 地质通报, (5): 890−897.
    张玉修, 张开均, 黎兵, 等. 2007. 西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U−Pb年代学及其成因研究[J]. 科学通报, 52: 100−106.
    左国朝, 冯永忠, 刘春燕, 等. 1992. 甘蒙北山中南带新发现燕山早期走滑挤压推覆构造带[J]. 地质科学, 4: 309−316.
    左国朝, 刘义科, 刘春燕. 2003. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 12(1): 1−15.
    左国朝, 李绍雄. 2011. 塔里木盆地东北缘早古生代构造格局及演化[J]. 中国地质, 38(4): 945−960.

Catalog

    Article views (1113) PDF downloads (197) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return