Citation: | Liu H K, Zhang J, Hou H S, Li H Q. Deep structure of geothermal of Niutuo Uplift: Constrained by deep seismic reflection profile in Xiong’an New Area. Geological Bulletin of China, 2024, 43(11): 2015−2027. DOI: 10.12097/gbc.2024.02.018 |
Niutuozhen geothermal field is located in North China, one of China's most important medium−low temperature geothermal fields. To reveal the deep structure and the origin of the geothermal field, an E−W deep reflection seismic profile which is 40 km long and 250 times folded was aquired by the Chinese Academy of Geological Sciences in 2020. The shallow strata feature in low porosity in Niutuozhen overlaid on the thermal reservoir, acts as a serviceable cap layer. Niutuozhen has a superior geothermal reservoir attributed to the evolved carbonate rocks, such as the Jixian System, and the Changcheng System, which feature high permeability. The deep−seated Niudong and Rongdong faults unequivocally extend to the basement and connect the deep thermal reservoir and shallow strata. They act as channels for the upward migration of hot water and the thermal convection process. The decollement within the crust at depths of 16 km to 20 km in the Niutuozhen Uplift serves as a thermal conductor and hydrological barrier, facilitating the conduction of heat from deeper sources to heat the reservoirs. In the seismic profile, the transparent zone revealed as intrusive bodies formed by the upwelling of the Early Paleogene asthenosphere, and the intrusive bodies extending from the lower crust below the Moho surface primarily cause the heat anomaly in the region. The shallow sedimentary cover, the Mesoproterozoic carbonatite reservoirs with well developed fracture, the conduction of water and heat through faults, the impermeable heat-conductive decollement within the crust, and the deep intrusive bodies providing a heat source, all these essential elements are combined to form the Niutuozhen geothermal field, which now has objective geothermal resources.
Chen M X, Huang G S, Zhang W R, et al. 1982. The temperature distribution pattern and the utilization of geothermal water at NiutuoZhen basement protrusion of central Hebei Province[J]. Chinese Journal of Geology, 3: 239−252 (in Chinese with English abstract).
|
Chen M X, Wang J Y, Wang J A, et al. 1990. The characteristic of the geothermal field and its formation mechanism in the North China down−faulted basin[J]. Acta Geologica Sinica, 1: 80−91 (in Chinese with English abstract).
|
Chang J, Qiu N S, Zhao X Z, et al. 2016. Present−day geothermal regime of the Jizhong Depression in Bohai Bay Basin, East China[J]. Chinese Journal of Geophysics, 59(3): 1003−1016 (in Chinese with English abstract).
|
Dai M G, Lei H F, Hu J G, et al. 2019. Evaluation of recoverable geothermal resources and development parameters of Mesoproterozoic thermal reservoir with the top surface depth of 3500 m and shallow in Xiong'an New Area[J]. Acta Geologica Sinica, 93(11): 2874−2888 (in Chinese with English abstract).
|
Gao R, Zhou H, Lu Z W, et al. 2021. Deep seismic reflection profile reveals the deep process of continent−continent collision on the Tibetan Plateau[J]. Earth Science Frontiers, 28(5): 320−336 (in Chinese with English abstract).
|
He D F, Shan S Q, Zhang Y Y, et al. 2018. 3−D geologic architecture of Xiong'an New Area: Constraints from seismic reflection data[J]. Scientia Sinica (Terrae), 48(9): 1207−1222 (in Chinese with English abstract). doi: 10.1360/N072017-00345
|
Hu Q Y, Gao J, Ma F, et al. 2020. Dynamic prediction of geothermal recoverable resources in the Rongcheng uplift area of the Xiong'an New Area[J]. Acta Geologica Sinica, 94(7): 2013−2025 (in Chinese with English abstract).
|
Kusky T M, Li J. 2003. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 22(4): 383−397. doi: 10.1016/S1367-9120(03)00071-3
|
Kusky T M, Windley B F, Wang L, et al. 2014. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons[J]. Tectonophysics, 630: 208−221. doi: 10.1016/j.tecto.2014.05.028
|
Li H, Yu J B, Lv H, et al. 2017. Gravity and aeromagnetic responses and heat−controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 41(2): 242−248 (in Chinese with English abstract).
|
Li H T, Feng W, Wang K L, et al. 2021. Groundwater resources in Xiong'an New Area and its exploitation potential[J]. Geology in China, 48(4): 1112−1126 (in Chinese with English abstract).
|
Li H Q, Huang X, Gao R, et al. 2022. Imaging a decratonized lithosphere: A case of the Eastern North China Craton[J]. Geophysical Research Letters, 49(15): e2022GL099484. doi: 10.1029/2022GL099484
|
Liu M L, He T, Wu Q F, et al. 2020. Hydrogeochemistry of geothermal waters from Xiong’an New Area and its implications[J]. Earth Science, 45(6): 2221−2231 (in Chinese with English abstract).
|
Lu Z W, Gao R, Wang H Y, et al. 2014. Bright spots in deep seismic reflection profiles[J]. Progress in Geophysics, 29(6): 2518−2525 (in Chinese with English abstract).
|
Ma F, Wang G L, Zhang W, et al. 2020. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1981−1990 (in Chinese with English abstract).
|
Ma Y, Zhang B J, Yan J K, et al. 2022. Deep geothermal reservoir structure detection and geothermal well optimization technology in Xiongan New Area[J]. Acta Geoscientica Sinica, 43(5): 699−710 (in Chinese with English abstract).
|
Oualid M, Eldosouky A M, Ebong E D. 2021. Crustal architecture, heat transfer modes and geothermal energy potentials of the Algerian Triassic provinces[J]. Geothermics, 96: 102211.
|
Pang Z H, Kong Y L, Pang J M, et al. 2017. Geothermal resources and development in Xiong’an New Area[J]. Bulletin of Chinese Academy of Sciences, 32(11): 1224−1230 (in Chinese with English abstract).
|
Peng P, Liu W J, Zhai M G, et al. 2002. Response of North China Block to Rodinia supercontinent and its characteristics[J]. Acta Petrologica et Mineralogica, 4: 343−355 (in Chinese with English abstract).
|
Qi J F, Yu F S, Lu K Z, et al. 2003. Conspectus on Mesozoic basins in Bohai Bay Province[J]. Earth Science Frontiers, S1: 199−206 (in Chinese with English abstract).
|
Qiu N S, Zuo Y H, Chang J, et al. 2015. Characteristics of Meso−Cenozoic thermal regimes in typical eastern and western sedimentary basins of China[J]. Earth Science Frotiers, 22(1): 157−168.
|
Qiu N S, Xu W, Zuo Y H, et al. 2017. Evolution of Meso−Cenozoic thermal structure and thermo−rheological structure of the lithosphere in the Bohai Bay Basin, eastern North China Craton[J]. Earth Science Frontiers, 24(3): 13−26 (in Chinese with English abstract).
|
Sun D S, Liu C Y, Yang M H, et al. 2004. Study on complex extensional structures in the middle Jizhong Depression in the Bohai Bay Basin[J]. Geological Review, 5: 484−491 (in Chinese with English abstract).
|
Suo Y H, Li S Z, Cao X Z, et al. 2017. Mesozoic−Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249−267 (in Chinese with English abstract).
|
Tang B N, Zhu C Q, Qiu N S, et al. 2020. Characteristics of the karst thermal reservoir in the Wumishan Formation in the Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 2002−2012 (in Chinese with English abstract).
|
Tang X C, Wang G L, Zhang D L, et al. 2023. Coupling mechanism of geothermal accumulation and the Cenozoic active tectonics evolution in Gonghe Basin, northeastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 44(1): 7−20 (in Chinese with English abstract).
|
Wang H Y, Gao R, Li Q S, et al. 2010. Several factors influencing the quality of deep reflection seismic data in the Songpan area[J]. Progress in Geophysics, 25(2): 410−418 (in Chinese with English abstract).
|
Wang J Y, Hu S B, Pang Z H, et al. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 30(32): 25−31 (in Chinese with English abstract).
|
Wang G L, Li J, Wu A M, et al. 2018. A study of the thermal storage characteristics of Gaoyuzhuang Formation, a new layer system of thermal reservoir in Rongcheng uplift area, Hebei Province[J]. Acta Geoscientica Sinica, 39(5): 533−541 (in Chinese with English abstract).
|
Wang Z T, Zhang C, Jiang G Z, et al. 2019. Present−day geothermal field of Xiongan New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 62(11): 4313−4322 (in Chinese with English abstract).
|
Wang G L, Gao J, Zhang B J, et al. 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1970−1980 (in Chinese with English abstract).
|
Wang G W, Wang H Y, Li H Q, et al. 2021. Research and application of seismic forward simulation technology in deep reflection seismic profile detection[J]. Geophysical and Geochemical Exploration, 45(4): 970−980 (in Chinese with English abstract).
|
Wang K, Zhang J, Bai D W, et al. 2021. Geothermal−geological model of Xiong'an New Area: Evidence from geophysics[J]. Geology in China, 48(5): 1453−1468 (in Chinese with English abstract).
|
Wang X W, Guo S Y, Gao N A, et al. 2023. Detection of carbonate geothermal reservoir in Niudong fault zone of Xiong'an New Area and its geothermal exploration significance[J]. Geological Bulletin of China, 42(1): 14−26 (in Chinese with English abstract).
|
Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of sub−continental lithospheric mantle under eastern China: The role of water and multiple subduction[J]. American Journal of Science, 310(10): 1250−1293. doi: 10.2475/10.2010.03
|
Wu A M, Ma F, Wang G L, et al. 2018. A study of deep−seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiongan New Area[J]. Acta Geoscientica Sinica, 39(5): 523−532 (in Chinese with English abstract).
|
Wu F Y, Xu Y G, Gao S, et al. 2008. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica, 24(6): 1145−1174 (in Chinese with English abstract).
|
Yang H M, Dai J S, Wang B F, et al. 2014. Development process of Niutuozhen uplift[J]. Journal of Northeast Petroleum University, 38(6): 22−29 (in Chinese with English abstract).
|
Yu F S, Qi J F, Wang C Y, et al. 2002. Tectonic deformation of Indosinian period in eastern part of North China[J]. Journal of China University of Mining & Technology, 4: 75−79 (in Chinese with English abstract).
|
Yu C C, Qiao R X, Zhang D S, et al. 2017. The basement tectonic characteristics from interpretation of aeromagnetic data in Xiong'an region[J]. Geophysical and Geochemical Exploration, 41(3): 385−391 (in Chinese with English abstract).
|
Zhai M G. 2010. Tectonic evolution and metallogenesis of North China Craton[J]. Mineral Deposits, 29(1): 24−36 (in Chinese with English abstract).
|
Zhai M G. 2011. Kratonalization and the formation of the North China landmass[J]. Scientia Sinica (Terrae), 41(8): 1037−1046 (in Chinese with English abstract). doi: 10.1360/zd-2011-41-8-1037
|
Zhao J Y, Zhang W, Ma F, et al. 2020. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field, Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1991−2001 (in Chinese with English abstract).
|
Zhou R L, Liu Q S, Zhang J, et al. 1989. The geological features and exploitive prospects of the geothermal field of salient type of bed rock of Niutuozhen in the fault basin of North China[J]. Bulletin of the 562 Comprehensive Geological Brigade Chinese Academy of Geological Sciences : 21-36(in Chinese with English abstract).
|
Zhu R X, Chen L, Wu F Y, et al. 2011. Time, scope and mechanism of destruction of the North China Craton[J]. Scientia Sinica (Terrae), 41(5): 583−592 (in Chinese with English abstract). doi: 10.1360/zd-2011-41-5-583
|
Zhu R X, Xu Y G, Zhu G, et al. 2012. The destruction of North China Craton[J]. Scientia Sinica (Terrae), 42(8): 1135−1159 (in Chinese with English abstract). doi: 10.1360/zd-2012-42-8-1135
|
Zhu S Y, Zhang G B, Li S H. 2018. A study on geothermal resources comprehensive utilization in Xiongan New Area[J]. Coal Geology of China, 30(5): 20−23 (in Chinese with English abstract).
|
陈墨香, 黄歌山, 张文仁, 等. 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用[J]. 地质科学, 3: 239−252.
|
陈墨香, 汪集旸, 汪缉安, 等. 1990. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1: 80−91.
|
常健, 邱楠生, 赵贤正, 等. 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003−1016.
|
戴明刚, 雷海飞, 胡甲国, 等. 2019. 雄安新区顶面埋深在3500m以浅的中元古界热储可采地热资源量和开发参数评估[J]. 地质学报, 93(11): 2874−2888.
|
高锐, 周卉, 卢占武, 等. 2022. 深地震反射剖面揭露青藏高原陆−陆碰撞与地壳生长的深部过程[J]. 地学前缘, 29(2): 14−27.
|
何登发, 单帅强, 张煜颖, 等. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207−1222.
|
胡秋韵, 高俊, 马峰, 等. 2020. 雄安新区容城凸起区地热可采资源量动态预测[J]. 地质学报, 94(7): 2013−2025.
|
李弘, 俞建宝, 吕慧, 等. 2017. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 41(2): 242−248.
|
李海涛, 凤蔚, 王凯霖, 等. 2021. 雄安新区地下水资源概况、特征及可开采潜力[J]. 中国地质, 48(4): 1112−1126.
|
刘明亮, 何曈, 吴启帆, 等. 2020. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 45(6): 2221−2231.
|
卢占武, 高锐, 王海燕, 等. 2014. 深地震反射剖面上的“亮点”构造[J]. 地球物理学进展, 29(6): 2518−2525.
|
马峰, 王贵玲, 张薇, 等. 2020. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 94(7): 1981−1990.
|
马岩, 张保建, 闫金凯, 等. 2022. 雄安新区深部储热构造探测研究与地热井优选技术[J]. 地球学报, 43(05): 699−710.
|
庞忠和, 孔彦龙, 庞菊梅, 等. 2017. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 32(11): 1224−1230.
|
彭澎, 刘文军, 翟明国. 2002. 华北陆块对Rodinia超大陆的响应及其特征[J]. 岩石矿物学杂志, 2002(4): 343−355. doi: 10.3969/j.issn.1000-6524.2002.04.006
|
漆家福, 于福生, 陆克政, 等. 2003. 渤海湾地区的中生代盆地构造概论[J]. 地学前缘, S1: 199−206. doi: 10.3321/j.issn:1005-2321.2003.01.023
|
邱楠生, 左银辉, 常健, 等. 2015. 中国东西部典型盆地中—新生代热体制对比[J]. 地学前缘, 22(1): 157−168.
|
邱楠生, 许威, 左银辉, 等. 2017. 渤海湾盆地中—新生代岩石圈热结构与热−流变学演化[J]. 地学前缘, 24(3): 13−26.
|
孙冬胜, 刘池阳, 杨明慧, 等. 2004. 渤海湾盆地冀中坳陷中区中新生代复合伸展构造[J]. 地质论评, (5): 484−491. doi: 10.3321/j.issn:0371-5736.2004.05.006
|
索艳慧, 李三忠, 曹现志, 等. 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249−267.
|
唐博宁, 朱传庆, 邱楠生, 等. 2020. 雄安新区雾迷山组岩溶裂隙发育特征[J]. 地质学报, 94(7): 2002−2012.
|
唐显春, 王贵玲, 张代磊, 等. 2023. 青藏高原东北缘活动构造与共和盆地高温热异常形成机制[J]. 地球学报, 44(1): 7−20.
|
王海燕, 高锐, 李秋生, 等. 2010. 影响松潘地区深反射地震数据品质的几种因素[J]. 地球物理学进展, 25(2): 410−418. doi: 10.3969/j.issn.1004-2903.2010.02.006
|
王贵玲, 李郡, 吴爱民, 等. 2018. 河北容城凸起区热储层新层系——高于庄组热储特征研究[J]. 地球学报, 39(5): 533−541.
|
王朱亭, 张超, 姜光政, 等. 2019. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 62(11): 4313−4322.
|
王贵玲, 高俊, 张保建, 等. 2020. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970−1980.
|
王光文, 王海燕, 李洪强, 等. 2021. 地震正演技术在深反射地震剖面探测中的应用[J]. 物探与化探, 45(4): 970−980.
|
王凯, 张杰, 白大为, 等. 2021. 雄安新区地热地质模型探究: 来自地球物理的证据[J]. 中国地质. 48(5): 1453−1468.
|
汪集旸, 胡圣标, 庞忠和, 等. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002
|
汪新伟, 郭世炎, 高楠安, 等. 2023. 雄安新区牛东断裂带碳酸盐岩热储探测及其对地热勘探的启示[J]. 地质通报, 42(1): 14−26.
|
吴福元, 徐义刚, 高山, 等. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报, 24(6): 1145−1174.
|
吴爱民, 马峰, 王贵玲, 等. 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 39(5): 523−532.
|
杨海盟, 戴俊生, 汪必峰, 等. 2014. 牛驼镇凸起发育过程[J]. 东北石油大学学报, 38(6): 22−29. doi: 10.3969/j.issn.2095-4107.2014.06.003
|
于福生, 漆家福, 王春英. 2002. 华北东部印支期构造变形研究[J]. 中国矿业大学学报, 2002, (4): 75−79. doi: 10.3321/j.issn:1000-1964.2002.04.017
|
于长春, 乔日新, 张迪硕. 2017. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 41(3): 385−391.
|
翟明国. 2010. 华北克拉通的形成演化与成矿作用[J]. 矿床地质, 29(1): 24−36.
|
翟明国. 2011. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 41(8): 1037−1046.
|
赵佳怡, 张薇, 马峰, 等. 2020. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 94(7): 1991−2001. doi: 10.3969/j.issn.0001-5717.2020.07.008
|
周瑞良,刘琦胜,张晶,等. 1989.华北断陷盆地牛驼镇基岩高凸起型热田地质特征及其开发前景[J]. 中国地质科学院562综合大队集刊: 21-36.
|
朱日祥, 陈凌, 吴福元, 等. 2011. 华北克拉通破坏的时间、范围与机制[J]. 中国科学: 地球科学, 41(5): 583−592.
|
朱日祥, 徐义刚, 朱光, 等. 2012. 华北克拉通破坏[J]. 中国科学: 地球科学, 42(8): 1135−1159.
|
朱树源, 张国斌, 李少虎. 2018. 雄安新区地热资源综合利用研究[J]. 中国煤炭地质, 30(5): 20−23. doi: 10.3969/j.issn.1674-1803.2018.05.05
|