Citation: | Xu S L, Shao Z G, Li B, Chen X H, Wang Z D, Xu D X, Ma Y, Ding W C, Zhou P C, Wang Y. Lithospheric electrical structure of western Qaidam Basin. Geological Bulletin of China, 2024, 43(11): 1907−1920. DOI: 10.12097/gbc.2024.02.016 |
The Qaidam Basin is rich in oil, gas, and mineral resources. Its origin and evolutionary process, composition, and deep structural characteristics play a crucial role in geological research on the Qinghai−Tibetan Plateau. Considering that magentotelluric sounding as one of the vital methods to study the electrical structure of the lithosphere, it can provide significant support for basin dynamics, resource exploration and deposit genesis research. To better analyze the tectonic significance of the key electrical layers in the lithosphere of the Qaidam Basin, we conducted a (ultra−) broadband magnetotelluric sounding line about 255 km long from the Youquanzi to the Huahaizi in the western Qaidam Basin, which obtained a 2D profile, and including the combination with regional geological, the existing geochemical and geophysical research results. In the western Qaidam Basin, two Cenozoic electrical layers with different deformation strength developed in the upper and lower strata. The upper electrical layers with weak deformation contains a set of ultra−low resistivity layers lower than 2 Ω·m, which corresponds to the high−quality brine layer in the deep basin, indicating a good prospect of deep brine prospecting. But the deformation of the lower electrical layer is relatively strong, and a set of growing electrical layer can be seen at the bottom. We considered that the existence of the main Qaidam detachment fault in the deep part controlled the Cenozoic sedimentary and tectonic deformation of the basin at the beginning of the Cenozoic. There are significant differences in the deep electrical structure of the research area, with a high and low undulating electrical Moho surface located about 50 kilometers deep. The deep parts of Qaidam Basin and Suganhu Basin are dominated by medium−low resistance bodies. The Saishiteng Mountain area is rooted with high resistivity body, while the middle and lower crust of the Youquanzi alkali mountain area is a set of low resistance bodies. There may be an upwelling of asthenosphere material in the deep of the Kunteyi area.
Bahr K. 1991. Geological noise in magnetotelluric data: A classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 66(1/2): 24−38.
|
Caldwell T G, Bibby H M, Brown C. 2004. The magnetotelluric phase tensor[J]. Geophysical Journal International, 158(2): 457−469. doi: 10.1111/j.1365-246X.2004.02281.x
|
Chen Q L, Hu W B, Li J M, et al. 1999. The application of surface resistivity to the correction of magnetotelluric static migration[J]. Geophysical and Geochemical Exploration, 23(4): 289−295 (in Chinese with English abstract).
|
Chen X H, Yin A, Gehrels G E, et al. 2003. Two phases of Mesozoic north−south extension in the eastern Altyn Tagh range, northern Tibetan Plateau[J]. Tectonics, 22(5): 1053.
|
Chen X H, Dang Y Q, Yin A, et al. 2010. Basin−mountain coupling and tectonic evolution of Qaidam Basin and its adjacent orogenic belts[M]. Beijing: Geological Publishing House: 1–365 (in Chinese).
|
Chen X H, Gehrels G, Yin A, et al. 2015. Geochemical and Nd–Sr–Pb–O isotopic constrains on Permo–Triassic magmatism in eastern Qaidam Basin, northern Qinghai−Tibetan plateau: Implications for the evolution of the Paleo−Tethys[J]. Journal of Asian Earth Sciences, 114: 674−692. doi: 10.1016/j.jseaes.2014.11.013
|
Chen X H, Shao Z G, Xiong X S, et al. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).
|
Cui J W, Tang Z M, Deng J F, et al. 1999. Altun fault system[M]. Beijing: Geological Publishing House: 1–249 (in Chinese).
|
Di Q Y, Xue G Q, Wang Z X, et al. 2021. Lithospheric structures across the Qiman Tagh and western Qaidam Basin revealed by magnetotelluric data collected using a self−developed SEP system[J]. Science China Earth Sciences, 64(10): 1813−1820. doi: 10.1007/s11430-020-9785-4
|
He S, Su S J, Hou L P, et al. 2021. Application of comprehensive geophysical prospecting in deep brine potassium deposit exploration in salt lake of Qaidam Basin[J]. Geology and Resources, 30(5): 628−636 (in Chinese with English abstract).
|
Hu X Y, Lin W L, Yang W C, et al. 2020. A review on developments in the electrical structure of craton lithosphere[J]. Science China Earth Sciences, 63(11): 1661−1677. doi: 10.1007/s11430-019-9653-2
|
Jin S, Zhang L T, Jin Y J, et al. 2012. Crustal electrical structure along the Hezuo−Dajing profile across the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 55(12): 3979−3990 (in Chinese with English abstract).
|
Li X. 2022. Source−to−sink responses to the migration of depocenters during Cenozoic in the Qaidam Basin[D]. Master Thesis of Northwest University (in Chinese with English abstract).
|
Li Y H, Yang J, Chen Y B. 2011. The application of CEMP method to identifying overthrust nappe structure in front of the Saishiteng Mountain[J]. Geophysical and Geochemical Exploration, 35(6): 773−778 (in Chinese with English abstract).
|
Liu G Z, Zhang Y X, Xue J Q, et al. 2014. Zircon LA−ICPMS U−Pb dating and geochemistry of basement granites from north Kunlun faults zone, western Qaidam Basin and their geological implications[J]. Acta Petrologica Sinica, 30(6): 1615−1627 (in Chinese with English abstract).
|
Lu S N, Wang H C, Li H K, et al. 2002. Redefinition of the “Dakendaban Group” on the northern margin of the Qaidam Basin[J]. Geological Bulletin of China, 21(1): 19−23 (in Chinese with English abstract).
|
Ren S M, Bao S J, Zhang Y, et al. 2016. Geological conditions of the Jurassic shale gas on the northern margin of Qaidam Basin[J]. Geological Bulletin of China, 35(2/3): 204−210 (in Chinese with English abstract).
|
Rodi W, Mackie R L. 2001. Nonlinear conjugate gradients algorithm for 2−D magnetotelluric inversion[J]. Geophysics, 66(1): 174−187. doi: 10.1190/1.1444893
|
Sun J P, Yin C M, Chen S Y, et al. 2016. An analysis of Late Carboniferous sedimentary tectonic setting and provenance of North Qaidam area: Evidence from Well Shiqian 1[J]. Geological Bulletin of China, 35(2/3): 302−311 (in Chinese with English abstract).
|
Tang L J, Zhang Y W, Jin Z J, et al. 2004. Opening−closing cycles of the Tarim and Qaidam Basin, northwestern China[J]. Geological Bulletin of China, 23(3): 254−260 (in Chinese with English abstract).
|
Tian Z F. 2017. The study of lithosphere electrical structure in the northern Qaidam Basin[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
|
Wang H C, Lu S N, Mo X X, et al. 2005. An Early Paleozoic collisional orogen on the northern margin of the Qaidam Basin, northwestern China[J]. Geological Bulletin of China, 24(7): 603−612 (in Chinese with English abstract).
|
Wang H L, Hou X H, Wu D, et al. 2023. Research on key techniques of brine seismic exploration in western Qaidam Basin[C]// International Conference Proceedings Ⅰ of 2023 International Field Exploration and Development Conference, Wuhan: 569–576 (in Chinese with English abstract).
|
Wu L, Yang H C, Zhang Y S, et al. 2023. Structural coupling between the Qaidam Basin and bordering orogenic belts in the Cenozoic[J]. Acta Geologica Sinica, 97(9): 2939−2955 (in Chinese with English abstract).
|
Xiao Q B, Zhao G Z, Dong Z Y. 2011. Electrical resistivity structure at the northern margin of the Tibetan Plateau and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 116: B12401. doi: 10.1029/2010JB008163
|
Yang B, Wang Y B, Zhao L, et al. 2021. Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications[J]. Earth and Planetary Physics, 5(3): 296−304.
|
Yin A, Dang Y Q, Chen X H, et al. 2007. Cenozoic evolution and tectonic reconstruction of the Qaidam Basin: Evidence from seismic profiles[J]. Journal of Geomechanics, 13(3): 193−211 (in Chinese with English abstract).
|
Yin A, Dang Y Q, Zhang M, et al. 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction[J]. Geological Society of America Bulletin, 120: 847−876. doi: 10.1130/B26232.1
|
Yin Y T, Wei W B, Jin S, et al. 2017. Fossil oceanic subduction zone beneath the western margin of the Trans−North China Orogen: Magnetotelluric evidence from the Lüliang Complex[J]. Precambrian Research, 303: 54−74. doi: 10.1016/j.precamres.2017.01.012
|
Zhai G M, Song J G, Jin J Q, et al. 2002. Plate tectonic evolution and its relationship to petroliferous basins[M]. Beijing: Petroleum Industry Press: 1–461 (in Chinese).
|
Zhang C H, Yin C M, Gan G Y, et al. 2017. The application of the integrated exploration with gravity, magnetic, and magnetotelluric in complex area, western Qaidam Basin[J]. Geophysical Prospecting for Petroleum, 56(4): 607−616 (in Chinese with English abstract).
|
Zhang L T. 2013. A study of lithospheric electrical structure and deep thermal state across the Altyn Tagh fault on the northern margin of the Tibetan Plateau[D]. PhD Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
|
Zhang L T, Ye G F, Jin S, et al. 2015. Lithospheric electrical structure across the eastern segment of the Altyn Tagh fault on the northern margin of the Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 89(1): 90−104. doi: 10.1111/1755-6724.12397
|
Zhao J M. 2012. Geodynamic conditions for northern margin of Tibetan Plateau[M]. Beijing: Science Press: 1–344 (in Chinese).
|
Zhao J M, Jin Z J, Mooney W D, et al. 2013. Crustal structure of the central Qaidam basin imaged by seismic wide−angle reflection/refraction profiling[J]. Tectonophysics, 584: 174−190. doi: 10.1016/j.tecto.2012.09.005
|
Zhao Q S, Kong Z H, Hu S Y, et al. 2023. Geophysical exploration and application of underground brine of Mahai Salt Lake in Qaidam Basin[J]. Journal of Jilin University (Earth Science Edition), 53(5): 1560−1572 (in Chinese with English abstract).
|
Zhao R T, Zhao W J, Liu Z W, et al. 2022. Status and prospect of the seismic detection of the deep−seated structure beneath the East Kunlun Mountains[J]. Acta Geoscientica Sinica, 43(2): 189−201 (in Chinese with English abstract).
|
Zheng M P, Qi W, Zhang Y S. 2006. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 25(11): 1239−1246 (in Chinese with English abstract).
|
Zhou J X, Xu F Y, Hu Y. 2003. Mesozoic and Cenozoic tectonism and its control on hydrocarbon accumulation in the northern Qaidam Basin of China[J]. Acta Petrolei Sinica, 24(1): 19−24 (in Chinese with English abstract).
|
Zhou L S, Zhang L T, Jin S, et al. 2023. The crustal electrical structure of a tectono−magmatic rejuvenated craton: Insights from magnetotelluric data of the northwestern Qaidam Basin, northern Tibetan Plateau[J]. Tectonophysics, 848(229719): 1−12.
|
Zhuang Y J, Gu P Y, Gao Y W, et al. 2020. Petrogenesis of Middle Permian gabbro in Saishiteng Mountain of the northern Qaidam Basin and its constraint to the time of Zongwulong Ocean subduction[J]. Acta Petrologica et Mineralogica, 39(6): 718−734 (in Chinese with English abstract).
|
Zhuang Y J, Peng X, Zhou Y L, et al. 2023. Genesis and geological significance of Late Ordovician Nb−rich basalts from Tanjianshan Group in Saishitengshan Mountain, northern margin of Qaidam Tectonic belt[J]. Northwestern Geology, 56(1): 63−80 (in Chinese with English abstract).
|
陈清礼, 胡文宝, 李金铭, 等. 1999. 利用地表电阻率校正大地电磁静态偏移[J]. 物探与化探, 23(4): 289−295.
|
陈宣华, 党玉琪, 尹安, 等. 2010. 柴达木盆地及其周缘山系盆山耦合与构造演化[M]. 北京: 地质出版社: 1–365.
|
陈宣华, 邵兆刚, 熊小松, 等. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020. doi: 10.12029/gc20190504
|
崔军文, 唐哲民, 邓晋福, 等. 1999. 阿尔金断裂系[M]. 北京: 地质出版社: 1–249.
|
翟光明, 宋建国, 靳久强, 等. 2002. 板块构造演化与含油气盆地形成和评价[M]. 北京: 石油工业出版社: 1–461.
|
底青云, 薛国强, 王中兴, 等. 2021. 利用自制SEP电磁观测系统研究祁幔塔格山和西柴达木盆地岩石圈结构[J]. 中国科学: 地球科学, 51(12): 2197−2204.
|
何胜, 苏世杰, 侯利朋. 2021. 综合物探在柴达木盆地盐湖深层卤水钾矿勘查中的应用[J]. 地质与资源, 30(5): 628−636.
|
胡祥云, 林武乐, 杨文采, 等. 2020. 克拉通岩石圈电性结构研究进展[J]. 中国科学: 地球科学, 50(11): 1533−1554.
|
金胜, 张乐天, 金永吉, 等. 2012. 青藏高原东北缘合作−大井剖面地壳电性结构研究[J]. 地球物理学报, 55(12): 3979−3990. doi: 10.6038/j.issn.0001-5733.2012.12.010
|
李旋. 2022. 柴达木盆地新生代沉积中心迁移的源−汇响应[D]. 西北大学硕士学位论文.
|
李耀华, 杨进, 陈迎宾. 2011. 连续电磁剖面法在赛什腾山前逆掩推覆构造识别中的应用[J]. 物探与化探, 35(6): 773−778.
|
刘桂珍, 张玉修, 薛建勤, 等. 2014. 柴达木盆地西部昆北断阶带基底花岗岩锆石U−Pb年龄、地球化学特征及其地质意义[J]. 岩石学报, 30(6): 1615−1627.
|
陆松年, 王惠初, 李怀坤, 等. 2002. 柴达木盆地北缘“达肯大坂群”的再厘定[J]. 地质通报, 21(1): 19−23. doi: 10.3969/j.issn.1671-2552.2002.01.004
|
任收麦, 包书景, 张毅, 等. 2016. 柴达木盆地北缘侏罗系页岩气地质条件[J]. 地质通报, 35(2/3): 204−210. doi: 10.3969/j.issn.1671-2552.2016.02.002
|
孙娇鹏, 尹成明, 陈世悦, 等. 2016. 柴达木盆地北缘晚石炭世构造环境及物源——以石浅1井为例[J]. 地质通报, 35(2/3): 302−311.
|
汤良杰, 张一伟, 金之钧, 等. 2004. 塔里木盆地、柴达木盆地的开合旋回[J]. 地质通报, 23(3): 254−260. doi: 10.3969/j.issn.1671-2552.2004.03.013
|
田占峰. 2017. 柴达木盆地北部岩石圈电性结构研究[D]. 中国地质大学(北京)硕士学位论文.
|
王惠初, 陆松年, 莫宣学, 等. 2005. 柴达木盆地北缘早古生代碰撞造山系统[J]. 地质通报, 24(7): 603−612. doi: 10.3969/j.issn.1671-2552.2005.07.003
|
王海立, 候献华, 吴迪, 等. 2023. 柴达木盆地西部卤水地震勘探关键技术研究[C]//2023油气田勘探与开发国际会议论文集Ⅰ: 569–576.
|
吴磊, 杨惠童, 张永庶, 等. 2023. 新生代柴达木盆地与周缘造山带的构造耦合[J]. 地质学报, 97(9): 2939−2955.
|
尹安, 党玉琪, 陈宣华, 等. 2007. 柴达木盆地新生代演化及其构造重建——基于地震剖面的解释[J]. 地质力学学报, 13(3): 193−211. doi: 10.3969/j.issn.1006-6616.2007.03.001
|
张春贺, 尹成明, 甘贵元, 等. 2017. 重磁电一体化勘探技术在柴达木盆地西部复杂地区的应用[J]. 石油物探, 56(4): 607−616. doi: 10.3969/j.issn.1000-1441.2017.04.018
|
张乐天. 2013. 青藏高原北缘阿尔金断裂带岩石圈电性结构及深部热状态研究[D]. 中国地质大学(北京)博士学位论文.
|
赵俊猛. 2012. 青藏高原北缘地球动力学条件[M]. 北京: 科学出版社: 1–344.
|
赵全升, 孔智涵, 胡舒娅, 等. 2023. 柴达木盆地马海盐湖地下卤水地球物理探测及应用[J]. 吉林大学学报(地球科学版), 53(5): 1560−1572.
|
赵荣涛, 赵文津, 刘志伟, 等. 2022. 东昆仑深部结构地震探测研究现状与展望[J]. 地球学报, 43(2): 189−201. doi: 10.3975/cagsb.2021.022101
|
郑绵平, 齐文, 张永生. 2006. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 25(11): 1239−1246. doi: 10.3969/j.issn.1671-2552.2006.11.001
|
周建勋, 徐凤银, 胡勇. 2003. 柴达木盆地北缘中、新生代构造变形及其对油气成藏的控制[J]. 石油学报, 24(1): 19−24. doi: 10.3321/j.issn:0253-2697.2003.01.004
|
庄玉军, 辜平阳, 高永伟, 等. 2020. 柴北缘赛什腾中二叠世辉长岩成因及其对宗务隆洋盆俯冲时限的制约[J]. 岩石矿物学杂志, 39(6): 718−734. doi: 10.3969/j.issn.1000-6524.2020.06.004
|
庄玉军, 彭璇, 周艳龙, 等. 2023. 柴北缘赛什腾山滩间山群晚奥陶世富铌玄武岩成因及其地质意义[J]. 西北地质, 56(1): 63−80. doi: 10.12401/j.nwg.2022003
|