• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
Zhang K, Liu L, Ma X Z, Yang Y F. Deep background and process of mineralization of the Middle and Lower Reaches of Yangtze River Metallogenic Belt revealed by the geophysical structure. Geological Bulletin of China, 2024, 43(11): 2044−2061. DOI: 10.12097/gbc.2024.02.007
Citation: Zhang K, Liu L, Ma X Z, Yang Y F. Deep background and process of mineralization of the Middle and Lower Reaches of Yangtze River Metallogenic Belt revealed by the geophysical structure. Geological Bulletin of China, 2024, 43(11): 2044−2061. DOI: 10.12097/gbc.2024.02.007

Deep background and process of mineralization of the Middle and Lower Reaches of Yangtze River Metallogenic Belt revealed by the geophysical structure

More Information
  • Received Date: February 17, 2024
  • Revised Date: April 13, 2024
  • The Middle and Lower Reaches of Yangtze River Metallogenic Belt is an important treasure trove of Fe−Cu polymetallic resources in China. Previous research results have shown that the lithospheric tectonic evolution of the metallogenic belt is the key to understand the entire mineralization process and to predict new deposits. However, there is still great controversy over the tectonic control on deep setting and process of magma−mineral system, including two kinds of understanding: ① lithospheric extension and lower crust melting caused by upper mantle convection; ② stress regime conversion and deep magmatic activity related to the subduction of the ancient Pacific plate. Moreover, this important geological issue still lacks constraints from geophysical deep exploration data. Therefore, based on the geophysical exploration data obtained by the "Deep Mineral Resources Exploration and Evaluation Innovation Team" of the Science and Technology Innovation Team of the Ministry of Natural Resources in the metallogenic belt, we analyze the results and geology−geophysics models of multi depth scale from upper mantle to most upper crust. Then we summarize and supplement the relevant understanding of the deep setting and process of mineralization in the metallogenic belt. Moreover, we, here, propose that the mantle material upwelling caused by the detachment of intracontinental subduction slab beneath the metallogenic belt controled the deep material sources and channel elements of the mineral system in the study area. Therefore, Fe−Cu mineral system was controlled by the stress regime conversion caused by slab sinking, and was formed in a variable tectonic setting over time, although there was a unified deep structure.

  • Chang Y F, Dong S W, Huang D Z. 1996. On the pattern and evolution of "One Cover, Multiple Bottom" in the Middle and Lower Yangtze[J]. Volcanology & Mineral Resources, 17(1/2): 1−14 (in Chinese with English abstract).
    Chang Y F, Liu X P, Wu Y C.1991.The Middle-Lower Yangtze River valley steel metallogenic belt[M].Beijing: Geological Publishing House (in Chinese).
    Chang Y F, Zhou T F, Fan Y. 2012. Polygenetic compound mineralization and tectonic evolution: Study in the Middle−Lower Yangtze River valley metallogenic belt[J]. Acta Petrologica Sinica, 28(10): 3067−3075 (in Chinese with English abstract).
    Chen A G. 2017. Integrated gravity-magnetic-seismic exploration andmetallogenic dynamics study of the Middle-LowerYangtze River Valley metallogenic belt[D]. Doctoral Dissertation of Hefei University of Technology (in Chinese with English abstract).
    Deng J F, Wu Z X. 2001. The lithospheric thinning event in the Lower Yangtze Craton and the Cu−Fe mineralization belt in the middle and lower reaches of the Yangtze River[J]. Geology of Anhui, 11(2): 86-91(in Chinese with English abstract).
    Dentith M, Yuan H, Johnson S, et al. 2018. Application of deep−penetrating geophysical methods to mineral exploration: Examples from Western Australia[J]. Geophysics, 83(3): WC29−WC41. doi: 10.1190/geo2017-0482.1
    Dong H, Wei W, Jin S, et al. 2016. Extensional extrusion: Insights into south−eastward expansion of Tibetan Plateau from magnetotelluric array data[J]. Earth and Planetary Science Letters, 454: 78−85. doi: 10.1016/j.jpgl.2016.07.043
    Dong S W, Li T D, Zhong D L, et al. 2009. Recent progress and perspective of the research on J−k East Asian multi−direction convergent tectonics[J]. Bulletion of National Natural Science Foundation of China, 23(5): 281−286 (in Chinese with English abstract).
    Dong S W, Ma L C, Liu G, et al. 2011. On dynamics of the metallogenic belt of middle−lower Yangtze River, eastern China[J]. Acta Geologica Sinica, 85(5): 612−625 (in Chinese with English abstract).
    Fan Y, Zhou T F, Yuan F, et al. 2008. LA−ICP−MS zircon U−Pb ages of the A−type granites in the Lu−Zong(Lujiang−Zongyang) area and their geological significances[J]. Acta Petrologica Sinica, 24(8): 1715-1724(in Chinese with English abstract).
    Fan Y, Zhou T F, Yuan F, et al. 2010. Geochronology of the diorite porphyrites in Ning−Wu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 26(9): 2715−2728 (in Chinese with English abstract).
    He C S, Santosh M. 2016. Crustal evolution and metallogeny in relation to mantle dynamics: A perspective from P−wave tomography of the South China Block[J]. Lithos, 263: 3−14. doi: 10.1016/j.lithos.2016.06.021
    He C S, Zheng Y F. 2018. Seismic evidence for the absence of deeply subducted continental slabs in the lower lithosphere beneath the Central Orogenic Belt of China[J]. Tectonophysics, 723: 178−189. doi: 10.1016/j.tecto.2017.12.018
    Hou Z Q, Pan X F, Yang Z M, et al. 2007. Porphyry Cu−(Mo−Au) deposits no related to oceanic−slab subduction: examples from Chinese porphyry deposits in continental settings[J]. Geoscience, 21(2): 1−11 (in Chinese with English abstract).
    Huang J L. 2014. P− and S−wave tomography of the Hainan and surrounding regions: Insight into the Hainan plume[J]. Tectonophysics, 633: 176−192. doi: 10.1016/j.tecto.2014.07.007
    Jiang G M, Zhang G B, Lü Q T, et al. 2013. 3−D velocity model beneath the Middle–Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 606: 36−47. doi: 10.1016/j.tecto.2013.03.026
    Jiang G M, Zhang G B, Zhao D P, et al. 2015. Mantle dynamics and Cretaceous magmatism in east−central China: Insight from teleseismic tomograms[J]. Tectonophysics, 664: 256−268. doi: 10.1016/j.tecto.2015.09.019
    Jiang L L, Wu W P, Liu Y C, et al. 2003. U−Ph zrcon and Ar−Ar hornblende ages of the Susong complex of thesouthern Dabie orogen and their geological implication[J]. Acta Petrologica Sinica, 19(3): 497−505 (in Chinese with English abstract).
    Lapierre H, Jahn B M, Charvet J, et al. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 274(4): 321−338. doi: 10.1016/S0040-1951(97)00009-7
    Li J H, Zhang Y Q, Dong S W, et al. 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis[J]. Earth−Science Reviews, 134: 98−136. doi: 10.1016/j.earscirev.2014.03.008
    Li S G, Jagoutz E, Chen Y Z, et al. 2000. Sm–Nd and Rb–Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 64(6): 1077−1093. doi: 10.1016/S0016-7037(99)00319-1
    Li S Z, Suo Y H, Li X Y, et al. 2019. Mesozoic tectono−magmatic response in the East Asian ocean−continent connection zone to subduction of the Paleo−Pacific Plate[J]. Earth−Science Reviews, 192: 91−137. doi: 10.1016/j.earscirev.2019.03.003
    Li X Y, Zhu P M, Kusky T M, et al. 2015. Has the Yangtze craton lost its root? A comparison between the North China and Yangtze cratons[J]. Tectonophysics, 655: 1−14. doi: 10.1016/j.tecto.2015.04.008
    Ling M X, Wang F Y, Ding X, et al. 2009. Cretaceous ridge subduction along the lower yangtze river belt, eastern china[J]. Economic Geology, 104(2): 303−321. doi: 10.2113/gsecongeo.104.2.303
    Liu B. 2018. Spatial and temporal distribution and genesis of copper geochemical blocks in the Middle-Lower Yangtze River region[D]. Doctoral Dissertation of Chinese Academy of Geological Sciences (in Chinese with English abstract).
    Liu G, Dong S W, Ma L C, et al. 2016. Basement and Metallogeny Belt of the Middle Lower Yangtze River, Eastern China[J]. Acta Geologica Sinica, 90(9): 2258−2275 (in Chinese with English abstract).
    Liu Q, Yu J H, Wang Q, et al. 2012. Ages and geochemistry of granites in the Pingtan–Dongshan Metamorphic Belt, Coastal South China: New constraints on Late Mesozoic magmatic evolution[J]. Lithos, 150: 268−286. doi: 10.1016/j.lithos.2012.06.031
    Lü Q T, Hou Z Q, Yang Z S, et al. 2004. Bottom intrusion and dynamic evolution patterns in the middle and lower reaches of the Yangtze River: constraints from geophysical data[J]. Science China Earth Sciences, 34(9): 783−794 (in Chinese with English abstract).
    Lü Q T, Dong S W, Shi D N, et al. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt: A review from SinoProbe[J]. Acta Petrologica Sinica, 30(4): 889−906 (in Chinese with English abstract).
    Lü Q T, Dong S W, Tang J T, et al. 2015a. Multi−scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth: A synthesis from SinoProbe−03[J]. Chinese Journal of Geophysics, 58(12): 4319−4343 (in Chinese with English abstract).
    Lü Q T, Liu Z D, Dong S W, et al. 2015b. The nature of Yangtze River deep fault zone: Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12): 4344−4359 (in Chinese with English abstract).
    Lü Q T, Meng G X, Zhang K, et al. 2021. The lithospheric architecture of the Lower Yangtze Metallogenic Belt, East China: insights into an extensive Fe–Cu mineral system[J]. Ore Geology Reviews, 132: 103989. doi: 10.1016/j.oregeorev.2021.103989
    Lü Q T, Meng G X, Yan J Y, et al. 2020. The geophysical exploration of Mesozoic iron−copper mineral system in the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: a synthesis[J]. Earth Science Frontiers(China University of Geosciences(Beijing); Peking University), 27(2): 232−253 (in Chinese with English abstract).
    Lü Q T, Yang Z S, Yan J Y, et al. 2007. Deep mineralization potential, prospecting ideas, and preliminary attempts in the middle and lower reaches of the Yangtze River metallogenic belt: a case study of the Tongling ore concentration area[J]. Acta Geologica Sinica, 81(7): 865−881 (in Chinese with English abstract).
    Lϋ Q T, Yan J Y, Shi D N, et al. 2013. Reflection seismic imaging of the Lujiang–Zongyang volcanic basin, Yangtze Metallogenic Belt: An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 606: 60−77. doi: 10.1016/j.tecto.2013.04.006
    Mao J R, Li Z L, Ye H M. 2014. Mesozoic tectono−magmatic activities in South China: Retrospect and prospect[J]. Science China Earth Sciences, 57(12): 2853−2877. doi: 10.1007/s11430-014-5006-1
    Mao J R, li Z L, Ye H M. 2014. Research on Mesozoic tectonic magmatic activity in South China: Current status and prospects[J]. Science China Earth Sciences, 44(12): 2593−2617 (in Chinese with English abstract).
    Menzies M, Xu Y, Zhang H, et al. 2007. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton[J]. Lithos, 96(1): 1−21.
    Qi G, Lü Q T, Yan J Y, et al. 2014. 3D geological modeling of Luzong ore district based on priori information constrained[J]. Acta Geologica Sinica, 88(4): 466−477 (in Chinese with English abstract).
    Qi G, Lü Q T, Yan J Y, et al. 2012. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit —A case study[J]. Chinese Journal of Geophysics, 55(12): 4194−4206 (in Chinese with English abstract).
    Qiu R L, Dong S W. 1993. Mesozoic tectonism and magmatism in Anqing area of Middle−Lower Yangtze River[J]. Geology of Anhui, (2): 20−31 (in Chinese with English abstract).
    Rowley D B, Xue F, Tucker R D, et al. 1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology[J]. Earth and Planetary Science Letters, 151(3): 191−203.
    Shan B, Zhou W, Xiao Y. 2021. Lithospheric thermal and compositional structure of South China jointly inverted from multiple geophysical observations[J]. Science China Earth Sciences, 64(1): 148−160. doi: 10.1007/s11430-019-9661-4
    Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle–lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra−continental mineralization[J]. Tectonophysics, 606: 48−59. doi: 10.1016/j.tecto.2013.01.012
    Shi D N, Lü Q T, Yang S, et al. 2023. New Insights into the Mesozoic Large-scale Intra-plate Magmatism and Mineralization in South China from Seismic Tomography[J]. Acta Geologica Sinica (English Edition), 97(4): 1243−1251.
    Song C Z, Li J H, Yan J Y, et al. 2019. A tentative discussion on some tectonic problems in the east of South China continent[J]. Geology in China, 46(4): 704−722 (in Chinese with English abstract).
    Song C Z, Lin S F, Zhou T F, et al. 2010. Mesozoic tectonic regime transition of the Middle and Lower Reaches of the Yangtze River and its adjacent area[J]. Acta Petrologica Sinica, 26(9): 2835−2849 (in Chinese with English abstract).
    Sun W D, Ding X, Hu Y H, et al. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 262(3): 533−542.
    Tan X D, Kodama K P, Gilder S, et al. 2007. Palaeomagnetic evidence and tectonic origin of clockwise rotations in the Yangtze fold belt, South China Block[J]. Geophysical Journal International, 168(1): 48−58. doi: 10.1111/j.1365-246X.2006.03195.x
    Tang J, Zhou C, Wang X, et al. 2013. Deep electrical structure and geological significance of Tongling ore district[J]. Tectonophysics, 606: 78−96. doi: 10.1016/j.tecto.2013.05.039
    Tao L, Zhang S S, Lan X Y, et al. 2019. Application of 1: 50000 gravity and magnetic exploration for mineral prospect in heavily covered area in Xuancheng, Anhui Province[J]. Geology in China, 46(4): 894−905 (in Chinese with English abstract).
    Teng J W, Yang L Q, Liu H C, et al. 2009. Geodynamical responses for formation and concentration of metallic minerals in the second deep space of lithosphere[J]. Chinese Journal of Geophysics, 52(7): 1734−1756 (in Chinese with English abstract).
    Teng J W, Yang L Q, Yao J Q, et al. 2007. Deep disscover ore、exploration and exploitation for metal mineral resocrces and its deep dynamical process of formation[J]. Progress in Geophysics, 22(2): 317−334 (in Chinese with English abstract).
    Uno K, Huang B C. 2003. Constraints on the Jurassic swing of the apparent polar wander path for the North China Block[J]. Geophysical Journal International, 154(3): 801−810. doi: 10.1046/j.1365-246X.2003.01992.x
    Wang G, Fang H, Qiu G G, et al. 2019. The deep electrical structure across Anqing−Guichi ore concentration area[J]. Geology in China, 46(4): 795−806 (in Chinese with English abstract).
    Wang P C, Li S Z, Liu X, et al. 2012. Yanshanian fold−thrust tectonics and dynamics in the Middle−Lower Yangtze River area, China[J]. Acta Petrologica Sinica, 28(10): 3418−3430 (in Chinese with English abstract).
    Wang Q, Wyman D A, Xu J F, et al. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): implications for geodynamics and Cu–Au mineralization[J]. Lithos, 89: 424−446. doi: 10.1016/j.lithos.2005.12.010
    Wang Q, Xu J F, Zhao Z H, et al. 2003. Petrogenesis of the Mesozoic intrusive rocks in the Tongling area, Anhui Province, China and their constraint on geodynamic process[J]. Science in China Series D: Earth Sciences, 46(8): 801−815. doi: 10.1007/BF02879524
    Wang Q, Xu J F, Zhao Z H, et al. 2004. Cretaceous high−potassium intrusive rocks in the Yueshan−Hongzhen area of east China: Adakites in an extensional tectonic regime within a continent[J]. Geochemical Journal, 38(5): 417−434. doi: 10.2343/geochemj.38.417
    Wang Q, Zhao Z H, Xiong X L, et al. 2001. Melting of the lower crust with basalt intrusions: Evidence from adakite rich sodium quartz diorite in Anweisha Creek[J]. Geochimica, 30(4): 353−362 (in Chinese with English abstract).
    Wang Q, Zhao Z H, Xu J F, et al. 2003. Petrogenesis and metallogenesis of the Yanshanian adakite−like rocks in the Eastern Yangtze Block[J]. Science in China Series D: Earth Sciences, 46(1): 164−176.
    Wang W B, Li W D, Fan H Y. 1996. Metamorphic basement and crustal formation time in the middle and lower reaches of the Yangtze River[J]. Volcanology & Mineral Resources, 17(3/4): 42−50 (in Chinese with English abstract).
    Xie G Q, Mao J W, Li R L, et al. 2007. Re–Os molybdenite and Ar–Ar phlogopite dating of Cu–Fe–Au–Mo (W) deposits in southeastern Hubei, China[J]. Mineralogy and Petrology, 90(3): 249−270.
    Xing F M, Xu X. 1994. Two a−type granite belts from Anhui[J]. Acta Petrologica Sinica, 10(4): 357−369 (in Chinese with English abstract).
    Xu J F, Shinjo R, Defant M J, et al. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 1111−1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
    Xu X, O'Reilly S Y, Griffin W L, et al. 2003. Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China[J]. Chemical Geology, 198(3): 163−188.
    Xu Y, Lü Q T, Shi D N, et al. 2022. Upper mantle velocity structure beneath the eastern South China Block and implications for late Mesozoic magmatism[J]. Journal of Asian Earth Sciences, 224: 105013. doi: 10.1016/j.jseaes.2021.105013
    Xu Y, Lü Q T, Zhang G B, et al. 2015. S−wave velocity structure beneath the Middle−Lower Yangtze River Metallogenic Belt and the constraints on the deep dynamic processes[J]. Chinese Journal of Geophysics, 58(12): 4373−4387 (in Chinese with English abstract).
    Xue H m, Fang M, Cao G. 2015. Geochronology and petrogenesis of shoshonitic igneous rocks, Luzong volcanic basin, middle and lower Yangtze River reaches, China[J]. Journal of Asian Earth Sciences, 110: 123−140. doi: 10.1016/j.jseaes.2015.03.020
    Yan J Y. 2010. Integrated geophysical study on the deep background of the Middle and Lower Yangtze River Metallogenic Belt[D]. Doctoral Dissertation of Chinese Academy of Sciences (in Chinese with English abstract).
    Yan J Y, Lü Q T, Chen M C, et al. 2015. Identification and extraction of geological structure information based on multi−scale edge detection of gravity and magnetic fields: An example of the Tongling ore concentration area[J]. Chinese Journal of Geophysics, 58(12): 4450−4464 (in Chinese with English abstract).
    Yan J Y, Lü Q T, Luo F, et al. 2021. A gravity and magnetic study of lithospheric architecture and structures of South China with implications for the distribution of plutons and mineral systems of the main metallogenic belts[J]. Journal of Asian Earth Sciences, 221: 104938. doi: 10.1016/j.jseaes.2021.104938
    Yan J Y, Lü Q T, Meng G X, et al. 2009. Aeromagnetic 3D inversion imaging for intermediate−acid intrusive bodies and its indication significance of deep ore prospecting in Tongling ore concentration district[J]. Mineral Deposits, 28(6): 838−849 (in Chinese with English abstract).
    Yan J Y, Luo F, Zhang K, et al. 2019. Three−dimensional spatial structure of plutons in the Middle and Lower Reaches of Yangtze River metallogenic belt: Evidence from three−dimensional inversion of gravity and magnetic[J]. Chinese Journal of Geology, 54(3): 853−875 (in Chinese with English abstract).
    Yan J Y, Zhang Y Q, Luo F, et al. 2022. Isostatic gravity state in South China block and its geological implication[J]. Acta Geoscientica Sinica, 43(6).
    Yao C L, Hao T Y, Guan Z N. 2002. Restrictions in gravity and magnetic inversions and technical strategy of 3d properties inversion[J]. Geophysical and Geochemical Exploration, 26(4): 253−257 (in Chinese with English abstract).
    Yao S Z, Zhou Z G, Gong Y J, et al. 2011. Primary discussion on the temporal−spatial structure and tectonic controls of metallogenic systems[J]. Geological Bulletin of China, 30(4): 469−477 (in Chinese with English abstract).
    Yin Y T, Wei W B, Jin S, et al. 2017. Fossil oceanic subduction zone beneath the western margin of the Trans−North China Orogen: Magnetotelluric evidence from the Lüliang Complex[J]. Precambrian Research, 303: 54−74. doi: 10.1016/j.precamres.2017.01.012
    Yu Y, Xu X−S, Griffin W L, et al. 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 126(3): 182−197.
    Zhai M, Zhou Y. 2015. General Precambrian Geology in China[M]. Berlin, Heidelberg: Springer Berlin Heidelberg.
    Zhai Y S, Yao S Z, Lin X D, et al. 1992. Research on the ore−forming laws of iron, copper and other minerals in the middle and lower reaches of the Yangtze River[J]. Mineral deposits, 11(1): 1−12 (in Chinese with English abstract).
    Zhang K, Lü Q, Yan J. 2015. The lower crust conductor from Nanjing (Ning) – Wuhu (Wu) area in the Middle and Lower Reaches of Yangtze River: Preliminary results from 3D inversion of magnetotelluric data[J]. Journal of Asian Earth Sciences, 101: 20−29. doi: 10.1016/j.jseaes.2015.01.007
    Zhang K, Lü Q, Yan J, et al. 2019a. The three−dimensional electrical structure and metallogenic prospect of the Ning (Nanjing)−Wu (Wuhu) basin and the southern adjacent area in eastern China[J]. Journal of Asian Earth Sciences, 173: 304−313. doi: 10.1016/j.jseaes.2019.01.032
    Zhang K, Lü Q, Yan J, et al. 2019b. The subduction and continental collision of the North China and Yangtze Blocks: magnetotelluric evidence from the Susong−Anqing section of Western Anhui, China[J]. Geophysical Journal International, 216(3): 2114−2128. doi: 10.1093/gji/ggy541
    Zhang K, Lü Q T, Lan X Y, et al. 2021. Magnetotelluric evidence for crustal decoupling: Insights into tectonic controls on the magmatic mineral system in the Nanling–Xuancheng area, SE China[J]. Ore Geology Reviews, 131: 104045. doi: 10.1016/j.oregeorev.2021.104045
    Zhang K, Lü Q T, Man Z H, et al. 2022. Electrical constraints on the deep setting and process of magma−mineral system in the Middle−Lower Reaches of Yangtze Metallogenic Belt[J]. Acta Petrologica Sinica, 38(2): 573−583 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.18
    Zhang K, Lü Q T, Zhao J H, et al. 2020. Magnetotelluric evidence for the multi−microcontinental composition of eastern South China and its tectonic evolution[J]. Scientific Reports, 10(1): 13105. doi: 10.1038/s41598-020-69777-3
    Zhang L, Yang L Q, Groves D I, et al. 2019. An overview of timing and structural geometry of gold, gold−antimony and antimony mineralization in the Jiangnan Orogen, southern China[J]. Ore Geology Reviews, 115: 103173. doi: 10.1016/j.oregeorev.2019.103173
    Zhang S, Wu M A, Wang J, et al. 2014. The Mineralization Related with the Syenite in Luzong Basin, Anhui Province[J]. Acta Geologica Sinica, 88(4): 519−531 (in Chinese with English abstract).
    Zhang Y Q, Lü Q, Shi D, et al. 2023. The Crustal and Uppermost Mantle Vs Structure of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: Implications for Metallogenic Process[J]. Journal of Geophysical Research: Solid Earth, 128(8): e2023JB026817. doi: 10.1029/2023JB026817
    Zhao D P, Tian Y, Lei J S, et al. 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3): 197−206.
    Zhao G C. 2015. Jiangnan Orogen in South China: Developing from divergent double subduction[J]. Gondwana Research, 27(3): 1173−1180. doi: 10.1016/j.gr.2014.09.004
    Zheng J P, O'Reilly S Y, Griffin W L, et al. 2004. Nature and evolution of Mesozoic–Cenozoic lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 74(1): 41−65.
    Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones[J]. Chemical Geology, 328: 5−48. doi: 10.1016/j.chemgeo.2012.02.005
    Zheng Y F, Chen F K, Gong B. 2003. The nature of protoliths for coesite−bearing metamorphic terrain of the Dabie Mountains, central China and their geotectonic implications[J]. J. Southeast Asian Earth Sci., 11(1): 1−13.
    Zheng Y F, Chen R X, Xu Z, et al. 2016. The transport of water in subduction zones.[J]. Science China Earth Sciences, 59: 651−681. doi: 10.1007/s11430-015-5258-4
    Zheng Y F, Chen Y X, Dai L Q, et al. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China: Earth Sciences, 45(6): 711−735 (in Chinese with English abstract).
    Zheng Y F, Zhao Z F, Wu Y B, et al. 2006. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh−pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology, 231(1): 135−158.
    Zhou T F, Fan Y, Wang S W, et al. 2017. Metallogenic regularity and metallogenic model of the Middle−Lower Yangtze River valley metallogenic belt[J]. Acta Petrologica Sinica, 33(11): 3353−3372 (in Chinese with English abstract).
    Zhou T F, Fan Y, Yuan F. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8): 1665−1678 (in Chinese with English abstract).
    Zhou T F, Fan Y, Yuan F, et al. 2011. Petrogensis and Metallogeny Study of Volcanic Basins in the Middle and Lower Reaches of the Yangtze River Area[J]. Acta Geologica Sinica, 85(5): 712−730 (in Chinese with English abstract).
    Zhou T F, Fan Y, Yuan F, et al. 2012. Progress of geological study in the Middle−Lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 28(10): 3051−3066 (in Chinese with English abstract).
    Zhou T F, Wang S W, Fan Y, et al. 2015. A review of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley metallogenic belt, Eastern China[J]. Ore Geology Reviews, 65: 433−456. doi: 10.1016/j.oregeorev.2014.10.002
    Zhou T F, Wang S W, Yuan F, et al. 2016. Magmatism and related mineralization of the intracontinental porphyry deposits in the Middle−Lower Yangtze River Valley Metallogenic Belt[J]. Acta Petrologica Sinica, 32(2): 271−288.
    Zhou T F, Yuan F, Tan L G, et al. 2006. Geodynamic significance of the A−type granites in the Sawuer region in west Junggar, Xinjiang: Rock geochemistry and SHRIMP zircon age evidence[J]. Science in China Series D, 49(2): 113−123. doi: 10.1007/s11430-005-0121-7
    Zhou T F, Yuan F, Yue S C, et al. 2007. Geochemistry and evolution of ore−forming fluids of the Yueshan Cu−Au skarn− and vein−type deposits, Anhui Province, South China[J]. Ore Geology Reviews, 31(1): 279−303.
    常印佛, 董树文, 黄德志. 1996. 论中—下扬子“一盖多底”格局与演化[J]. 华东地质, 17(1/2): 1-4.
    常印佛, 刘湘培, 吴言昌. 1991. 长江中下游钢铁成矿带[M]. 北京: 地质出版社.
    常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换——以长江中下游成矿带为例[J]. 岩石学报, 28(10): 3067−3075.
    陈安国. 2017. 长江中下游成矿带重、磁、震综合探测与成矿动力学研究[D]. 合肥工业大学博士学位论文.
    陈沪生, 张永鸿. 1999. 下扬子及邻区岩石圈结构构造特征与油气资源评价[M]. 北京: 地质出版社.
    邓晋福, 吴宗絮. 2001. 下扬子克拉通岩石圈减薄事件与长江中下游Cu−Fe成矿带[J]. 安徽地质, 11(2): 86-91.
    董树文, 李廷栋, 钟大赉, 等. 2009. 侏罗纪/白垩纪之交东亚板块汇聚的研究进展和展望[J]. 中国科学基金, 23(5): 281−286. doi: 10.3969/j.issn.1000-8217.2009.05.008
    董树文, 马立成, 刘刚, 等. 2011. 论长江中下游成矿动力学[J]. 地质学报, 85(5): 612−625.
    范裕, 周涛发, 袁峰, 等. 2008. 安徽庐江—枞阳地区A型花岗岩的LA−ICP−MS定年及其地质意义[J]. 岩石学报, 24(8): 1715−1724.
    范裕, 周涛发, 袁峰, 等. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J]. 岩石学报, 26(9): 2715−2728.
    侯增谦, 潘小菲, 杨志明, 等. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2): 1−11. doi: 10.3969/j.issn.1000-8527.2007.02.019
    刘彬. 2018. 长江中下游地区铜地球化学块体时空分布特征及其成因研究[D]. 中国地质科学院博士学位论文.
    刘刚, 董树文, 马立成, 等. 2016. 长江中下游地区基底与成矿[J]. 地质学报, 90(9): 2258−2275. doi: 10.3969/j.issn.0001-5717.2016.09.012
    吕庆田, 侯增谦, 杨竹森, 等. 2004. 长江中下游地区的底侵作用及动力学演化模式: 来自地球物理资料的约束[J]. 中国科学D辑: 地球科学, 34(9): 783−794.
    吕庆田, 杨竹森, 严加永, 等. 2007. 长江中下游成矿带深部成矿潜力、找矿思路与初步尝试——以铜陵矿集区为实例[J]. 地质学报, 81(7): 865−881. doi: 10.3321/j.issn:0001-5717.2007.07.001
    吕庆田, 董树文, 史大年, 等. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J]. 岩石学报, 30(4): 889−906.
    吕庆田, 董树文, 汤井田, 等. 2015a. 多尺度综合地球物理探测: 揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J]. 地球物理学报, 58(12): 4319−4343. doi: 10.6038/cjg20151201
    吕庆田, 刘振东, 董树文, 等. 2015b. “长江深断裂带”的构造性质: 深地震反射证据[J]. 地球物理学报, 58(12): 4344−4359. doi: 10.6038/cjg20151202
    吕庆田, 孟贵祥, 严加永, 等. 2020. 长江中下游成矿带铁-铜成矿系统结构的地球物理探测: 综合分析[J]. 地学前缘, 27(2): 232−253.
    毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造-岩浆活动研究: 现状与前景[J]. 中国科学: 地球科学, 44(12): 2593−2617.
    祁光, 吕庆田, 严加永, 等. 2014. 基于先验信息约束的三维地质建模: 以庐枞矿集区为例[J]. 地质学报, 88(4): 466−477.
    祁光, 吕庆田, 严加永, 等. 2012. 先验地质信息约束下的三维重磁反演建模研究 ——以安徽泥河铁矿为例[J]. 地球物理学报, 55(12): 4194−4206. doi: 10.6038/j.issn.0001-5733.2012.12.031
    史大年, 吕庆田, 徐文艺, 等. 2012. 长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据?[J]. 地质学报, 86(3): 389−399. doi: 10.3969/j.issn.0001-5717.2012.03.004
    宋传中, 李加好, 严加永, 等. 2019. 华南大陆东部若干构造问题的思考[J]. 中国地质, 46(4): 704−722. doi: 10.12029/gc20190403
    宋传中, 周涛发, 闫峻, 等. 2010. 长江中下游及其邻区中生代构造体制转换[J]. 岩石学报, 26(9): 2835−2849.
    王鹏程, 李三忠, 刘鑫, 等. 2012. 长江中下游燕山期逆冲推覆构造及成因机制[J]. 岩石学报, 28(10): 3418−3430.
    王文斌, 李文达, 范洪源. 1996. 长江中下游地区变质基底及地壳形成时间[J]. 火山地质与矿产, 17(3/4): 42−50.
    徐峣, 吕庆田, 张贵宾, 等. 2015. 长江中下游成矿带三维S波速度结构及对深部过程的约束[J]. 地球物理学报, 58(12): 4373−4387. doi: 10.6038/cjg20151204
    严加永. 2010. 长江中下游成矿带深部背景综合地球物理研究[D]. 中国科学院博士学位论文.
    严加永, 吕庆田, 孟贵祥, 等. 2009. 铜陵矿集区中酸性岩体航次3D成像及对深部找矿方向的指示[J]. 矿床地质, 28(6): 838−849. doi: 10.3969/j.issn.0258-7106.2009.06.012
    严加永, 吕庆田, 陈明春, 等. 2015. 基于重磁场多尺度边缘检测的地质构造信息识别与提取——以铜陵矿集区为例[J]. 地球物理学报, 58(12): 4450-4464.
    严加永, 罗凡, 张昆, 等. 2019. 长江中下游成矿带岩浆岩体三维空间结构: 来自重磁三维反演的证据[J]. 地质科学, 54(3): 853−875. doi: 10.12017/dzkx.2019.049
    严加永, 张永谦, 罗凡, 等. 2022. 华南陆块均衡重力状态及其地质意义[J]. 地球学报, 43(6): 744-754.
    姚长利, 郝天珧, 管志宁. 2002. 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 26(4): 253−257.
    姚书振, 周宗桂, 宫勇军, 等. 2011. 初论成矿系统的时空结构及其构造控制[J]. 地质通报, 30(4): 469−477. doi: 10.3969/j.issn.1671-2552.2011.04.003
    翟裕生. 1996.成矿系列研究[M]. 武汉:中国地质大学出版社.
    张昆, 吕庆田, 满祖辉, 等. 2022. 长江中下游成矿带岩浆-成矿系统深部背景和过程的电性结构约束[J]. 岩石学报, 38(2): 573−583. doi: 10.18654/1000-0569/2022.02.18
    张昆, 严加永, 吕庆田,等. 2014. 安徽泥河玢岩铁矿电磁法探测试验[J]. 地质学报, 88(4): 496−506.
    张舒, 吴明安, 汪晶, 等. 2014. 安徽庐枞盆地与正长岩有关的成矿作用[J]. 地质学报, 88(4): 519−531.
    郑永飞, 陈伊翔, 戴立群, 等. 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带[J]. 中国科学: 地球科学, 45(6): 711−735.
    周涛发, 范裕, 王世伟, 等. 2017. 长江中下游成矿带成矿规律和成矿模式[J]. 岩石学报, 33(11): 3353−3372.
    周涛发, 范裕, 袁峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报, 24(8): 1665−1678.
    周涛发, 范裕, 袁峰, 等. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 85(5): 712−730.
    周涛发, 范裕, 袁峰, 等. 2012. 长江中下游成矿带地质与矿产研究进展[J]. 岩石学报, 28(10): 3051−3066.
    周涛发, 王世伟, 袁峰, 等. 2016. 长江中下游成矿带陆内斑岩型矿床的成岩成矿作用[J]. 岩石学报, 32(2): 271−288.
    周涛发, 岳书仓, 袁峰. 2005. 安徽月山矿田成岩成矿作用[M]. 北京: 地质出版社.

Catalog

    Article views (1097) PDF downloads (344) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return