• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
Zhao W B, Cao J W, Guo C B, Liu J X, Yang Z H, Wei C L, Wu R A. Developmental characteristics and stability simulation of Yangpo Village large-scale ancient landslides in Minxian County, Gansu Province. Geological Bulletin of China, 2024, 43(10): 1869−1880. DOI: 10.12097/gbc.2024.01.048
Citation: Zhao W B, Cao J W, Guo C B, Liu J X, Yang Z H, Wei C L, Wu R A. Developmental characteristics and stability simulation of Yangpo Village large-scale ancient landslides in Minxian County, Gansu Province. Geological Bulletin of China, 2024, 43(10): 1869−1880. DOI: 10.12097/gbc.2024.01.048

Developmental characteristics and stability simulation of Yangpo Village large-scale ancient landslides in Minxian County, Gansu Province

More Information
  • Received Date: May 05, 2024
  • Revised Date: June 19, 2024
  • Available Online: September 17, 2024
  • The northeast edge of the Qinghai−Xizang Plateau has complex geological and environmental conditions, and a series of large and very large landslides have been developed in the region under the coupling of internal and external dynamics, which are characterised by their large scale, high hazards, and frequent recurrence and resurrection. The landslide in Yangpo Village, Minxian County, Gansu Province, is a large loess−mudstone landslide with complex spatial structure characteristics and strong deformation. This paper analyses and reveals the geometric spatial structure and deformation characteristics of the landslide in Yangpo Village through field geological investigation, remote sensing interpretation, unmanned aerial surveying, drilling, and numerical simulation, and elucidates its deformation and destabilisation mechanism and influencing factors. The results of the study show that; the deformation of tensile cracks and other deformations of the landslide in Yangpo Village is concentrated in three strong deformation zones (I1, I2, I3). The drilling reveals that the landslide body in Yangpo village develops two levels of slip zones, in which borehole ZK1 reveals slip zones of 9.7~10.5 m and 22.0~25.0 m, and ZK3 reveals slip zones of 10.0~12.3m and 36.0~37.0m, with the volume of the landslide of about 465×104m3. Numerical simulation results show that the slide displacement and deformation under the general conditions are small, and the stability is relatively good; Under heavy rainfall conditions, the strong deformation area at the leading edge of the landslide shows obvious signs of local deformation, which may result in unstable sliding, and a wide range of deformation may pull the back of the pile to slide; under seismic conditions, the resurrection deformation range and displacement size of the landslide increase significantly compared with the general conditions, and at the same time there are several potential sliding surfaces, which may result in multiple deformation and multilevel activities of the slope body. The results of the study provide an effective reference for the prevention and control of landslides in Yangpo Village, and have certain theoretical and practical significance for the evaluation of the stability of large loess−mudstone landslides.

  • Cao P. 2022. Stability prediction and instability criterion of typical accumulation landslide in Minxian County, Gansu Province[D]. Master Thesis of China University of Geosciences (Beijing) (in Chinese with English abstract).
    Chang Z L, Huang F M, Huang J L, et al. 2021. Experimental study of the failure mode and mechanism of loess fill slopes induced by rainfall[J]. Engineering Geology, 280: 105941.
    Che F D, Wang T, Xin P, et al. 2020. Investigation of dynamic response and deformation characteristics of loess landslide under near and far earthquakes: A case study of Liping landslide in Tianshui earthquake area, Gansu Province[J]. Geological Bulletin of China, 39(12): 1981−1992 (in Chinese with English abstract).
    Chen J C, Wang L M, Wang P, et al. 2022. Failure mechanism investigation on loess−mudstone landslides based on the Hilbert−Huang transform method using a large−scale shaking table test[J]. Engineering Geology, 302: 106630. doi: 10.1016/j.enggeo.2022.106630
    Chen Y M, Xu D P. 2013. FLAC/FLAC3D fundamentals and engineering examples − 2nd Edition[M]. Beijing: China Water & Power Press (in Chinese with English abstract).
    Dong Y, Jia J, Zhang M S, et al. 2013. An analysis of the inducing effects of irrigation and the responses of loess landslides in Heifangtai area[J]. Geological Bulletin of China, 32(6): 893−898 (in Chinese with English abstract).
    Guo C B, Du B Y, Zhang Y S, et al. 2015. Geohazard effects of the Xianshuihe fault and characteristics of typical landslides in western Sichuan[J]. Geological Bulletin of China, 34(1): 121−134 (in Chinese with English abstract).
    Guo F Y, Zhang L S, Wang X, et al. 2023. Analysis on evolution process and movement mechanism of the Luojiapo landslide in Heifangtai, Gansu Province[J]. The Chinese Journal of Geological Hazard and Contro, 34(2): 11−20 (in Chinese with English abstract).
    Iverson R M, George D L, Allstadt K, et al. 2015. Landslide mobility and hazards: implications of the 2014 Oso disaster[J]. Earth & Planetary Science Letters, 412: 197−208.
    Jia J, Zhu L F, Hu W. 2013. The formation mechanism and disaster mode of loess landslides induced by irrigation in Heifangtai, Gansu Province: A case study of the 13th landslide in Jiaojiayatou[J]. Geological Bulletin of China, 32(12): 1968−1975 (in Chinese with English abstract).
    Jia X N. 2023. Creeping resurrection mechanism and engineering catastrophe of deep−thickly bedded loess−mudstone giant landslides[D]. PhD Thesis of Changan University (in Chinese with English abstract).
    Jin Y L, Dai F C. 2007. The mechanism of irrigation−induced landslides of loess[J]. Chinese Journal of Geotechnical Engineering, (10): 1493−1499 (in Chinese with English abstract).
    Li C L, Qi S W, Tong L Q, et al. 2004. Stability analysis of slope under earthquake with FLAC3D[J]. Chinese Journal of Rock Mechanics and Engineering, (16): 2730−2733 (in Chinese with English abstract).
    Li C, Yang L, Wuliji N S, et al. 2016. Model experiment of engineering protection on loess−mudstone interfacial landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 35(S2): 3923−3929 (in Chinese with English abstract).
    Li S H, Li C, Yao D, et al. 2020. Interdisciplinary asperity theory to analyze nonlinear motion of loess landslides with weak sliding interface[J]. Landslides, 17(12): 2957−2965. doi: 10.1007/s10346-020-01479-3
    Li S H, Yuan Y, Wang X R, et al. 2023. Physical modelling of progressive sliding instability of loess−mudstone landslide[J]. Marine Geology & Quaternary Geology, 43(2): 200−207 (in Chinese with English abstract).
    Meng Z J, Zhang F, Peng J B, et al. 2022. Model test research on rainfall−type loess landslide under preset joint conditions[J]. Journal of Engineering Geology, 30(5): 1528−1537 (in Chinese with English abstract).
    Mu H D, Sun P, Li R J, et al. 2017. Dynamic damping characteristics and evolution law of panan structural loess[J]. Journal of Geomechanics, 23(6): 935−942. (in Chinese with English abstract).
    Negi I S, Kumar K, Kathait A, et al. 2013. Cost assessment of losses due to recent reactivation of Kaliasaur landslide on National Highway 58 in Garhwal Himalaya[J]. Natural Hazards, 68(2): 901−914. doi: 10.1007/s11069-013-0663-5
    Peng J B, Fan Z J, Wu D, et al. 2015. Heavy rainfall triggered loess–mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology, 186: 79−90. doi: 10.1016/j.enggeo.2014.08.015
    Peng J B, Ma R Y, Lu Q Z, et al. 2004. Geological hazards effects of uplift of qinghai−tibet plateau[J]. Advances in Earth Science, (3): 457−466 (in Chinese with English abstract).
    Tang H M, Zou Z X, Xiong C R, et al. 2015. An evolution model of large consequent bedding rockslides, with particular reference to the Jiweishan rockslide in Southwest China[J]. Engineering Geology, 186: 17−27. doi: 10.1016/j.enggeo.2014.08.021
    Wang H, Sun P, Zhang S, et al. 2020. Rainfall−induced landslide in loess area, Northwest China: a case study of the Changhe landslide on September 14, in Gansu Province[J]. Landslides, 17: 2145−2160. doi: 10.1007/s10346-020-01460-0
    Wang J D, Zhang Z Y. 1999. A study on the mechanism of high speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering, (6): 670−674 (in Chinese with English abstract).
    Wang K, Chang J B, Li X B, et al. 2023. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangke landslide in Yanan[J]. The Chinese Journal of Geological Hazard and Control, 34(6): 47−56 (in Chinese with English abstract).
    Wang L M, Chai S F, Bao J S, et al. 2023. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 45(8): 1543−1554 (in Chinese with English abstract).
    Wang M H, Li Y, Pei Y Q. 2023. Disaster characteristics and stability evaluation of the Hanjin Beishanlandslide group in Linxia Basin, Gansu Province[J]. Geological Bulletin of China, 42(2/3): 460−468 (in Chinese with English abstract).
    Wang S J. 2002. Coupling of earth's endogenic and exogenic geological processes and origins on serious geological disasters[J]. Journal of Engineering Geology, (2): 115−117 (in Chinese with English abstract).
    Wang X G, Wang J D, Zhan H B, et al. 2020. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide[J]. Catena, 187: 104371. doi: 10.1016/j.catena.2019.104371
    Wang X Y, Wang D W. 2011. Relationships between the Wenchuan earthquake−induced landslide and peak ground velocity, Sichuan, China[J]. Geological Bulletin of China, 30(1): 159−165 (in Chinese with English abstract).
    Wen B P, Wang S J, Wang E Z, et al. 2005. Deformation characteristics of loess landslide along the contact between loess and neocene red mudstone[J]. Acta Geologica Sinica English Edition, 79(1): 139−151. doi: 10.1111/j.1755-6724.2005.tb00875.x
    Wu R A, Ni J W, Guo C B, et al. 2021. Research on formation mechanism of the Huangcaoping landslide in the Batang fault, western Sichuan[J]. Geological Bulletin of China, 40(12): 1992−2001 (in Chinese with English abstract).
    Wu W J, Wang N Q. 2002. Basic types and active features of loess landslide[J]. The Chinese Journal of Geological Hazard and Contro, (2): 38−42 (in Chinese with English abstract).
    Wu W J, Su X, Feng L T, et al. 2019. The study on landslide types and activity characteristics in Heifangtai, Gansu Province[J]. Journal of Glaciology and Geocryology, 41(6): 1483−1495 (in Chinese with English abstract).
    Wu Z J, Chen Y J, Wang Q, et al. 2019. Disaster−causing mechanism of Yongguang landslide under Minxian−Zhangxian Ms6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 41(S2): 165−168 (in Chinese with English abstract).
    Zhang P P, Zhang M S, Jiang R J, et al. 2021. Deformation and failure mechanism of rainfall−induced shallow loess landslide[J]. Geological Bulletin of China, 40(10): 1617−1625 (in Chinese with English abstract).
    Zhang Z L, Wang T, Wu S R, et al. 2017. Seismic performance of loess−mud−stone slope in Tianshui−Centrifuge model tests and numerical analysis[J]. Engineering Geology, 222: 225−235. doi: 10.1016/j.enggeo.2017.04.006
    Zhang Z L. 2016. The initating mechanism and runout pattern of typical seismic loess landslides[D]. PhD Thesis of China University of Geosciences (Wuhan) (in Chinese with English abstract).
    Zhao S Y, Zheng Y R, Shi W M, et al. 2002. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, (3): 343−346 (in Chinese with English abstract).
    Zhu J D, Yan H, Li S H, et al. 2019. Laboratory model experiment of landslides along loess mudstone interface induced by rainfall patterns[J]. Journal of Engineering Geology, 27(3): 623−631 (in Chinese with English abstract).
    曹鹏. 2022. 甘肃岷县典型堆积层滑坡复活机理与失稳模式预测[D]. 中国地质大学(北京)硕士学位论文.
    车福东, 王涛, 辛鹏, 等. 2020. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例[J]. 地质通报, 39(12): 1981−1992. doi: 10.12097/j.issn.1671-2552.2020.12.012
    陈育民, 徐鼎平. 2013. FLAC/FLAC3D基础与工程实例-第2版[M]. 北京: 中国水利水电出版社.
    董英, 贾俊, 张茂省, 等. 2013. 甘肃永靖黑方台地区灌溉诱发作用与黄土滑坡响应[J]. 地质通报, 32(6): 893−898. doi: 10.3969/j.issn.1671-2552.2013.06.011
    郭富赟, 张龙生, 王信, 等. 2023. 甘肃黑方台罗家坡滑坡演化过程及运动机制分析[J]. 中国地质灾害与防治学报, 34(2): 11−20.
    郭长宝, 杜宇本, 张永双, 等. 2015. 川西鲜水河断裂带地质灾害发育特征与典型滑坡形成机理[J]. 地质通报, 34(1): 121−134. doi: 10.3969/j.issn.1671-2552.2015.01.010
    贾俊, 朱立峰, 胡炜. 2013. 甘肃黑方台地区灌溉型黄土滑坡形成机理与运动学特征——以焦家崖头13号滑坡为例[J]. 地质通报, 32(12): 1968−1975.
    贾向宁. 2023. 深厚层黄土−泥岩巨型滑坡蠕动复活机制与工程灾变研究[D]. 长安大学博士学位论文.
    金艳丽, 戴福初. 2007. 灌溉诱发黄土滑坡机理研究[J]. 岩土工程学报, (10): 1493−1499. doi: 10.3321/j.issn:1000-4548.2007.10.011
    李驰, 杨柳, 乌力吉那顺, 等. 2016. 黄土泥岩接触地带界面滑坡的工程防护模型试验研究[J]. 岩石力学与工程学报, 35(S2): 3923−3929.
    李拴虎, 元越, 王晓荣, 等. 2023. 黄土−泥岩滑坡渐进滑动失稳的模型试验研究[J]. 海洋地质与第四纪地质, 43(2): 200−207.
    刘春玲, 祁生文, 童立强, 等. 2004. 利用FLAC3D分析某边坡地震稳定性[J]. 岩石力学与工程学报, (16): 2730−2733. doi: 10.3321/j.issn:1000-6915.2004.16.014
    孟振江, 张凡, 彭建兵, 等. 2022. 预设节理条件下降雨型黄土滑坡模型试验研究[J]. 工程地质学报, 30(5): 1528−1537.
    慕焕东, 孙萍, 李荣建, 等. 2017. 磐安结构性黄土动阻尼特征及其演化规律研究[J]. 地质力学学报, 23(6): 935−942.
    彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, (3): 457−466. doi: 10.3321/j.issn:1001-8166.2004.03.018
    孙萍萍, 张茂省, 江睿君, 等. 2021. 降雨诱发浅层黄土滑坡变形破坏机制[J]. 地质通报, 40(10): 1617−1625. doi: 10.12097/j.issn.1671-2552.2021.10.003
    汪美华, 李勇, 裴叶青. 2023. 甘肃临夏盆地韩集北山滑坡群致灾特征与稳定性评价[J]. 地质通报, 42(2/3): 460−468. doi: 10.12097/j.issn.1671-2552.2023.2-3.023
    王家鼎, 张倬元. 1999. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, (6): 670−674. doi: 10.3321/j.issn:1000-4548.1999.06.008
    王康, 畅俊斌, 李晓科, 等. 2023. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报, 34(6): 47−56.
    王兰民, 柴少峰, 薄景山, 等. 2023. 黄土地震滑坡的触发类型、特征与成灾机制[J]. 岩土工程学报, 45(8): 1543−1554. doi: 10.11779/CJGE20220531
    王思敬. 2002. 地球内外动力耦合作用与重大地质灾害的成因初探[J]. 工程地质学报, (2): 115−117. doi: 10.3969/j.issn.1004-9665.2002.02.001
    王秀英, 王登伟. 2011. 四川汶川地震诱发滑坡与峰值速度的关系[J]. 地质通报, 30(1): 159−165. doi: 10.3969/j.issn.1671-2552.2011.01.017
    吴瑞安, 倪嘉伟, 郭长宝, 等. 2021. 川西巴塘断裂带黄草坪滑坡形成机制[J]. 地质通报, 40(12): 1992−2001. doi: 10.12097/j.issn.1671-2552.2021.12.002
    吴玮江, 宿星, 冯乐涛, 等. 2019. 甘肃黑方台滑坡类型与活动特征研究[J]. 冰川冻土, 41(6): 1483−1495.
    吴玮江, 王念秦. 2002. 黄土滑坡的基本类型与活动特征[J]. 中国地质灾害与防治学报, (2): 38−42. doi: 10.3969/j.issn.1003-8035.2002.02.008
    吴志坚, 陈豫津, 王谦, 等. 2019. 岷县漳县6.6级地震永光村滑坡致灾机制分析[J]. 岩土工程学报, 41(S2): 165−168. doi: 10.11779/CJGE2019S2042
    张泽林. 2016. 典型黄土滑坡启动机制及成灾模式研究[D]. 中国地质大学(武汉)博士学位论文.
    赵尚毅, 郑颖人, 时卫民, 等. 2002. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, (3): 343−346. doi: 10.3321/j.issn:1000-4548.2002.03.017
    朱建东, 鄢好, 李绍红, 等. 2019. 黄土−泥岩接触面滑坡的两种雨型模型试验[J]. 工程地质学报, 27(3): 623−631.
  • Related Articles

Catalog

    Article views (7400) PDF downloads (574) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return