• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
Liu J X, Guo C B, Wu R A, Song D G, Yan Y Q, Li X. Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang. Geological Bulletin of China, 2024, 43(10): 1855−1868. DOI: 10.12097/gbc.2023.07.032
Citation: Liu J X, Guo C B, Wu R A, Song D G, Yan Y Q, Li X. Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang. Geological Bulletin of China, 2024, 43(10): 1855−1868. DOI: 10.12097/gbc.2023.07.032

Creeping deformation characteristics and stability analysis of Guili large deep-seated landslide in Jiangda, Xizang

More Information
  • Received Date: July 25, 2023
  • Revised Date: February 07, 2024
  • The geological environment on the eastern edge of the Qinghai−Tibet Plateau is complex. Under the combined effects of internal and external forces, this region has witnessed the development of a series of large to super−large deep−seated landslides, leading to multiple instances of landslide−induced river blockages. The Guili landslide, located in Jiangda County, Xizang, is a large−scale deep−seated landslide characterized by complex spatial structure and intense deformations. This study, based on data collection and analysis, comprehensively utilized research methods such as field geological surveys, remote sensing interpretation, unmanned aerial vehicle aerial surveys, InSAR deformation monitoring, and numerical simulation to analyze the geometric and creep deformation characteristics of the Guili landslide and elucidate its origin and instability mechanism. In the view, it can be divided into two parts: the trailing edge of the landslide area (Ⅰ) and the landslide stacking area (Ⅱ). The landslide stacking area can be further divided into a local stabilization zone (Ⅱ1) and a strongly deformed zone at the leading edge (Ⅱ2 and Ⅱ3). The volume of the landslide is approximately 6.55 × 107 m3, with revealed depths of the deep slip zone from drilling being 64.02 m, 57.90 m, and 54.13 m. Based on SBAS−InSAR monitoring data, the Guili landslide is currently in a stage of overall creeping deformation, with localized areas experiencing accelerated deformation. The highly deformed zone at the front edge of the Guili landslide exhibits progressive deformation and surface maximum deformation rate of up to −92.12 mm/a. Deformation of the landslide slope is primarily influenced by rainfall and river erosion. Numerical simulation results indicate that under natural conditions, the displacement and deformation of the sliding mass are relatively small, indicating good stability. However, under heavy rainfall conditions, the strong deformation zone at the leading edge of the Guili landslide shows obvious signs of deformation, and may be destabilized and sliding, pulling the back of the pile body sliding, which is a typical traction creep−slip deformation mode, and the sliding pile body may block the Jinsha River, and there is the risk of forming a disaster chain of blocking the river − dam failure − flooding. These research findings can provide valuable insights for coping with large−scale deep−seated landslide disasters and hold theoretical and practical significance for stability assessment of such landslides.

  • Chen J, Dai F C, Lv T Y, et al. 2013. Holocene landslide−dammed lake deposits in the Upper Jinsha River, SE Tibetan Plateau and their ages[J]. Quaternary International, 298: 107−113. doi: 10.1016/j.quaint.2012.09.018
    Chen H, Huang J, Lin F, et al. 2008. The application of GeoStudio software in saturated−unsaturated seepage analysis of soil slopes[J]. Sichuan Architecture, 28(6): 67−68(in Chinese with English abstract).
    Deng J H, Gao Y J, Yu Z Q, et al. 2019. Analysis on the formation mechanism and process of Baige landslides damming the upper reach of Jinsha River, China[J]. Dvanced Engineering Sciences, 51(1): 9−16(in Chinese with English abstract).
    Du Y, Lu Y D, Xie M W, et al. 2020. Stability evaluation of creeping landslide considering variation of initial conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 39(S1): 2828−2836(in Chinese with English abstract).
    Fan X M, Yang F, Subramanian S S, et al. 2020. Prediction of a multi−hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China[J]. Landslides, 17(1): 147−164. doi: 10.1007/s10346-019-01313-5
    Gao Y J, Zhao S Y, Deng J H, Yu Z Q, et al. 2021. Flood assessment and early warning of the reoccurrence of river blockage at the Baige landslide[J]. Journal of Geographical Sciences, 31(11): 1694−1712. doi: 10.1007/s11442-021-1918-9
    Guo C B, Yan Y Q, Zhang Y S, et al. 2022. Research progress and prospect of failure mechanism of large deep−seated creeping landslides in Tibetan Plateau, China[J]. Earth Science, 47(10): 3677−3700(in Chinese with English abstract).
    Guo C B, Yan Y Q, Zhang Y S, et al. 2021. Study on the creep−sliding mechanism of the Giant Xiongba ancient landslide based on the SBAS−InSAR method, Tibetan Plateau, China[J]. Remote Sensing, 13(17): 3365. doi: 10.3390/rs13173365
    Huang R Q. 2007. Large−scale landslides and their sliding mechanisms in china since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433−454(in Chinese with English abstract).
    Li J J, Zhou S Z, Zhao Z J, et al. 2015. The Qingzang movement: the major uplift of the Qinghai−Tibetan Plateau[J]. Sci. China Earth Sci., 58: 2113−2122(in Chinese with English abstract).
    Liu W, Ju N, Zhang Z, et al. 2020. Simulating the process of the Jinshajiang landslide−caused disaster chain in October 2018[J]. Bulletin of Engineering Geology and the Environment, 79: 2189−2199. doi: 10.1007/s10064-019-01717-6
    Lu H Y, Li W L, Xu Q, et al. 2019. Early Detection of Landslides in the Upstream and Downstream Areas of the Baige Landslide, the Jinsha River Based on Optical Remote Sensing and InSAR Technologies[J]. Geomatics and Information Science of Wuhan University, 44(9): 1342−1354(in Chinese with English abstract).
    Luan Y T, Wu Y J, Nian Y K, et al. 2003. A criterion for evaluating slope stability based on development of plastic zone by shear strength reduction FEM[J]. Journal of Disaster Prevention and Mitigation Engineering, 23(3): 1−8(in Chinese with English abstract).
    Mei S Y, Chen S S, Zhong Q M, et al. 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching[J]. Landslides, 19(12): 2925−2949.
    Pan G T, Xiao Q H, Lu S N, et al. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28(in Chinese with English abstract).
    Pan G T, Ren F, Yin F G, et al. 2020. Key zones of oceanic plate geology and Sichuan−Tibet Railway Project[J]. Earth Science, 45(7): 2293−2304(in Chinese with English abstract).
    Peng J B, Ma R R, Lu Q Z, et al. 2004. Geological hazards effects of uplift of Qinghai−Tibet Plateau[J]. Advance in Earth Sciences, 19(3): 457−466(in Chinese with English abstract).
    Sun L Q. 1983. The geological feature and its formation in the sanjiang arcuate structural zone[J]. Tibetan Plateau Geological Collection, (4): 63−74(in Chinese with English abstract).
    Wang B D, Wang L Q, Wang D B, et al. 2021. The temporal and spatial framework and its tectonic evolution of the Jinsha River arc−basin system, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 41(2): 246−264(in Chinese with English abstract).
    Wang P F, Chen J, Dai F C, et al. 2014. Chronology of relict lake deposits around the Suwalong paleolandslide in the upper Jinsha River, SE Tibetan Plateau: Implications to Holocene tectonic perturbations[J]. Geomorphology, 217: 193−203. doi: 10.1016/j.geomorph.2014.04.027
    Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives[J]. Engineering Geology, 174(1): 103−138.
    Wu R A, Ma H S, Zhang J C, et al. 2021. Developmental characteristics and damming river risk of the Woda landslide in the upper reaches of the Jinshajiang River[J]. Hydrogeology & Engineering Geology, 48(5): 120−128(in Chinese with English abstract).
    Xu L, Chang M, Wu B B, et al. 2023. Development characteristics and movement process of Guili landslide in Jinsha River[J/OL]. Journal of Disaster Prevention and Mitigation Engineering, 43(7): 845−853(in Chinese with English abstract).
    Xu Q, Zheng G, Li W L, et al. 2018. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3, 2018[J]. Journal of Engineering Geology, 26(6): 1534−1551(in Chinese with English abstract).
    Yan Y Q, Guo C B, Zhang Y S, et al. 2021. Study of the deformation characteristics of the Xiongbacien landslide based on the SBAS−InSAR method, Tibet, China[J]. Acta Geologica Sinica, 95(11): 3556−3570(in Chinese with English abstract).
    Yan Y Q, Guo C B, Zhong N, et al. 2022. Deformation characteristics of Jiaju ancient landslide based on InSAR monitoring method, Sichuan, China[J]. Earth Science, 47(12): 4681−4697(in Chinese with English abstract).
    Yang C, Tie Y B, Zhang X Z, et al. 2024. Analysis of debris flow control effect and hazard assessment in Xinqiao Gully, Wenchuan M8.0 earthquake area based on numerical simulation[J]. China Geology, 7: 248−263. doi: 10.31035/cg2023144
    Zhang P W, Liu D F, Huang D H, et al. 2003. Saturated−unsaturated unsteady seepage flow numerical simulation[J]. Rock and Soil Mechanics, (6): 927−930(in Chinese with English abstract).
    Zhang Y S, Cheng Y L, Yao X, et al. 2013. The evolution process of Wenchuan earthquake−landslide−debris flow geohazard chain[J]. Geological Bulletin of China, 32(12): 1900−1910(in Chinese with English abstract).
    Zhang Y S, Wu R A, Guo C B, et al. 2018. Research progress and prospect on reactivation of ancient landslides[J]. Advances in Earth Science, 33(7): 728−740(in Chinese with English abstract).
    Zhang Y S, Ba J R, Ren S S, et al. 2020. An analysis of geo−mechanism of the Baige landslide in Jinsha River, Tibet[J]. Geology in China, 47(6): 1637−1645(in Chinese with English abstract).
    Zhang Y S, Li J Q, Ren S S, et al. 2022. Development characteristics of clayey altered rocks in the Sichuan Tibet traffic corridor and their promotion to large scale landslides[J]. Earth Science, 47(6): 1945−1956(in Chinese with English abstract).
    Zhao G H, Lan H X, Yin H Y, et al. 2024. Deformation, structure and potential hazard of a landslide based on InSAR in Banbar county, Xizang (Tibet)[J]. China Geology, 7: 203−221. doi: 10.31035/cg2023130
    Zhao S Y, Zheng Y R, Shi W M, et al. 2002. Analysis on safety factor of slope by strength reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 24(2): 254−260(in Chinese with English abstract).
    Zheng Y R, Zhao S Y. 2004. Calculation of inner force of support structure for landslide/slope by using strength reduction fem[J]. Chinese Journal of Rock Mechanics and Engineering, (20): 3552−3558(in Chinese with English abstract).
    Zhu S N, Yin Y P, Huang P L, et al. 2021. Deformation characteristics and instability mechanism of large monoclinal layered neogenic bedrock landslide in Three Gorges Reservoir area[J]. Journal of Engineering Geology, 29(3): 657−667(in Chinese with English abstract).
    陈浩, 黄静, 林锋. 2008. GeoStudio软件在土坡饱和—非饱和渗流分析中的应用[J]. 四川建筑, 28(6): 67−68. doi: 10.3969/j.issn.1007-8983.2008.06.030
    邓建辉, 高云建, 余志球, 等. 2019. 堰塞金沙江上游的白格滑坡形成机制与过程分析[J]. 工程科学与技术, 51(1): 9−16.
    杜岩, 陆永都, 谢谟文, 等. 2020. 考虑初始条件变异的蠕滑型滑坡稳定性评价研究[J]. 岩石力学与工程学报, 39(S1): 2828−2836.
    郭长宝, 闫怡秋, 张永双, 等. 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望[J]. 地球科学, 47(10): 3677−3700.
    黄润秋. 2007. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 26(3): 433−454. doi: 10.3321/j.issn:1000-6915.2007.03.001
    陆会燕, 李为乐, 许强, 等. 2019. 光学遥感与InSAR结合的金沙江白格滑坡上下游滑坡隐患早期识别[J]. 武汉大学学报(信息科学版), 44(9): 1342−1354.
    栾茂田, 武亚军, 年延凯. 2003. 强度折减有限元法中边坡失稳的塑性区判据及其应用[J]. 防灾减灾工程学报, 23(3): 1−8. doi: 10.3969/j.issn.1672-2132.2003.03.001
    潘桂棠, 肖庆辉, 陆松年, 等. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28. doi: 10.3969/j.issn.1000-3657.2009.01.001
    潘桂棠, 任飞, 尹福光, 等. 2020. 洋板块地质与川藏铁路工程地质关键区带[J]. 地球科学, 45(7): 2293−2304.
    彭建兵, 马润勇, 卢全中, 等. 2004. 青藏高原隆升的地质灾害效应[J]. 地球科学进展, 19(3): 457−466. doi: 10.3321/j.issn:1001-8166.2004.03.018
    孙立蒨. 1983. 三江弧形构造带地质构造特征及其形成[J]. 青藏高原地质文集, (4): 63−74.
    王保弟, 王立全, 王冬兵, 等. 2021. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 41(2): 246−264.
    吴瑞安, 马海善, 张俊才, 等. 2021. 金沙江上游沃达滑坡发育特征与堵江危险性分析[J]. 水文地质工程地质, 48(5): 120−128.
    徐璐, 常鸣, 武彬彬, 等. 2023. 金沙江上游圭利滑坡发育特征及运动过程分析[J]. 防灾减灾工程学报, 43(7): 845−853.
    许强, 郑光, 李为乐, 等. 2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J]. 工程地质学报, 26(6): 1534−1551.
    闫怡秋, 郭长宝, 张永双, 等. 2021. 基于SBAS−InSAR技术的西藏雄巴古滑坡变形特征[J]. 地质学报, 95(11): 3556−3570. doi: 10.3969/j.issn.0001-5717.2021.11.027
    闫怡秋, 郭长宝, 钟宁, 等. 2022. 基于InSAR形变监测的四川甲居古滑坡变形特征[J]. 地球科学, 47(12): 4681−4697.
    张培文, 刘德富, 黄达海, 等. 2003. 饱和-非饱和非稳定渗流的数值模拟[J]. 岩土力学, (6): 927−930. doi: 10.3969/j.issn.1000-7598.2003.06.011
    张永双, 成余粮, 姚鑫, 等. 2013. 四川汶川地震-滑坡-泥石流灾害链形成演化过程[J]. 地质通报, 32(12): 1900−1910.
    张永双, 吴瑞安, 郭长宝, 等. 2018. 古滑坡复活问题研究进展与展望[J]. 地球科学进展, 33(7): 728−740. doi: 10.11867/j.issn.1001-8166.2018.07.0728
    张永双, 巴仁基, 任三绍, 等. 2020. 中国西藏金沙江白格滑坡的地质成因分析[J]. 中国地质, 47(6): 1637−1645. doi: 10.12029/gc20200603
    张永双, 李金秋, 任三绍, 等. 2022. 川藏交通廊道黏土化蚀变岩发育特征及其对大型滑坡的促滑作用[J]. 地球科学, 47(6): 1945−1956. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206004
    赵尚毅, 郑颖人, 时卫民, 等. 2002. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 24(2): 254−260.
    郑颖人, 赵尚毅. 2004.用有限元强度折减法求边(滑)坡支挡结构的内力[J]. 岩石力学与工程学报, 20: 3552−3558.
    朱赛楠, 殷跃平, 黄波林, 等. 2021.三峡库区大型单斜顺层新生滑坡变形特征与失稳机理研究[J]. 工程地质学报, 29(3): 657−667.
  • Related Articles

Catalog

    Article views (740) PDF downloads (126) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return