Citation: | Feng Z, Chen L, Wang L C, Hou S S, Tian Y F, Liu M X. Principle and application of the weight-of-evidence method in regional landslide susceptibility assessment. Geological Bulletin of China, 2024, 43(7): 1255−1265. DOI: 10.12097/gbc.2023.02.034 |
Based on elaboration of the concept and principle of WoE, Lanzhou urban area, which is highly prone to slides and falls in the Loess Plateau of Northwest China, is taken as example to detail technical process of regional geological hazards susceptibility assessment based on the WoE. GIS tools are used to carry out evaluation index selection and correlation analysis, weight and posterior probability analysis of evidence factors, assessment model verification, and susceptibility degree classification and assessment. The analysis results show that there is no correlation or weak correlation between the factors affecting geological hazards such as slope, slope direction, stratum lithology, faults, waterfalls, green irrigation and land use type, which meets the requirements of mutual independence. AUC (Area Under Curve) of the ROC curve (Receiver Operating Characteristic Curve) of the model is 0.85, which means high prediction accuracy. Theoretical analysis and empirical application have demonstrated that, in comparison with other statistical methods, the WoE takes into account both probability of the presence and absence of geological hazard within the evaluation factors. Thereby, it prevents distortion caused by overestimation of weights when geological hazards are absence. The result of the WoE is the absolute probability of the occurrence of geological hazards, which can serve as a basis for comparing the susceptibility of geological hazards from different areas.
Agterberg F P, Bonham−Carter G F, Cheng Q, et al. 1993. Weights of evidence modeling and weighted logistic regression for mineral potential mapping[C]//Davis J C, Herzfeld U C. Computers in geology-25 years of progress. New York: Oxford University Press: 13−32.
|
Armaş I. 2012. Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania[J]. Natural Hazards, 60: 937−950. doi: 10.1007/s11069-011-9879-4
|
Cheng Q, Agterberg F P. 1999. Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping[J]. Natural Resources Research, 8(1): 27−35. doi: 10.1023/A:1021677510649
|
Dahal R K, Hasegawa S, Nonomura A, et al. 2008. GIS−based weights−of−evidence modelling of rainfall−induced landslides in small catchments for landslide susceptibility mapping[J]. Environmental Geology, 54(2): 311−324. doi: 10.1007/s00254-007-0818-3
|
Goyes−Penafiel P. 2021. Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia[J]. Engineering Geology, 280: 105958. doi: 10.1016/j.enggeo.2020.105958
|
Ilia I, Tsangaratos P. 2016. Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map[J]. Landslides, 13(2): 379−397. doi: 10.1007/s10346-015-0576-3
|
Kobayashi H, Sanga T. 2005. Application of spatial information technology to landslides Landslide vulnerability mapping using GIS and spatial statistical analysis[J]. Journal of the Japan Landslide Society, 42(4): 281−292. doi: 10.3313/jls.42.4_281
|
Lee S, Choi J. 2004. Landslide susceptibility mapping using GIS and the weight−of−evidence model[J]. International Journal of Geographical Information Science, 18(8): 789−814. doi: 10.1080/13658810410001702003
|
Neuhaeuser B, Terhorst B. 2007. Landslide susceptibility assessment using "weights−of−evidence" applied to a study area at the Jurassic escarpment (SW−Germany)[J]. Geomorphology, 86(1/2): 12−24.
|
Velmurugan J, Venkatesan M. 2018. Soft Bayesian model for landslide risk analysis[J]. International Journal of Soft Computing, 13(2): 31−37.
|
Zêzere J L, Ferreira A B, Vieira G, et al. 2000. The use of Bayesian Probability for landslide susceptibility evaluation: a case study in the area north of Lisbon (Portugal) [C]//Bromhead E, Dixon N, Ibsen M L. Landslides in research, theory and practice: Proceedings of the 8th International Symposium on Landslides, Cardiff. London: Thomas Telford: 1635−1640.
|
白光顺, 杨雪梅, 朱杰勇, 等. 2022. 基于证据权法的昆明五华区地质灾害易发性评价[J]. 中国地质灾害与防治学报, 33(5): 128−138.
|
邓勇, 邱瑞山, 罗鑫, 等. 2007. 基于证据权重法的成矿预测——以广东省钨锡矿的成矿预测为例[J]. 地质通报, 26(9): 1228−1234.
|
范海明, 王翔, 茹湘兰. 2017. 基于证据权−奇异性−灰色理论的山西五台地区金矿成矿研究[J]. 地质通报, 36(8): 1462−1466.
|
方然可, 刘艳辉, 苏永超, 等. 2021. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质, 48(1): 181−187.
|
郭富赟. 2019. 兰州市地质灾害特征与风险管控对策[J]. 城市与减灾, (3): 59−63.
|
黎志恒, 张永军, 梁收运. 2014. 兰州城市地质灾害与人类工程活动[J]. 兰州大学学报: 自然科学版, 50(5): 588−593.
|
李媛, 孟晖, 董颖, 等. 2004. 中国地质灾害类型及其特征——基于全国县市地质灾害调查成果分析[J]. 中国地质灾害与防治学报, (2): 32−37.
|
刘帅, 王涛, 曹佳文, 等. 2024. 基于优化随机森林横型的降雨群发滑坡易发性评价——以西秦岭极端降雨事件为例[J]. 地质通报, 43(6): 958−970.
|
饶品增, 曹冉, 蒋卫国. 2017. 基于地理加权回归模型的云南省地质灾害易发性评价[J]. 自然灾害学报, 26(2): 134−143.
|
尚瑾瑜, 张永军, 李松. 2017. 兰州市区地质灾害发育特征及类型研究[J]. 甘肃地质, 26(3): 70−77.
|
孙岩, 王训练, 陈建平, 等. 2010. 基于证据权重法的沱沱河地区铅锌银矿成矿预测[J]. 地质通报, 29(4): 556−564.
|
谭玉敏, 郭栋, 白冰心, 等. 2015. 基于信息量模型的涪陵区地质灾害易发性评价[J]. 地球信息科学学报, 17(12): 1554−1562.
|
王立朝, 陈亮, 侯圣山, 等. 2020. 洮河流域下游地质灾害调查成果报告[R]. 中国地质调查局.
|
吴明堂, 薛正海, 崔振华, 等. 2022. 基于斜坡单元和证据权−Logistic回归的滑坡易发性评价[J]. 人民长江, 53(10): 87−94.
|
许冲, 戴福初, 徐锡伟. 2011. 基于GIS平台与证据权的地震滑坡易发性评价[J]. 地球科学: 中国地质大学学报, 36(6): 1155−1164.
|
杨华阳, 许向宁, 杨鸿发. 2020. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报, 31(3): 20−29.
|
殷跃平. 2022. 地质灾害风险调查评价方法与应用实践[J]. 中国地质灾害与防治学报, 33(4): 5−6.
|
俞布, 潘文卓, 宋健, 等 2012. 杭州市滑坡地质灾害危险性区划与评价[J]. 岩土力学, 33 (S1): 193−199, 216.
|
张艳玲. 2009. 汶川地震区地质灾害易发性快速区划与制图[D]. 中国地质大学(北京)硕士学位论文: 19−23.
|
赵志芳, 党伟, 王瑞雪, 等. 2010. 基于证据权重法的区域地质环境稳定性遥感评价研究[J]. 国土资源遥感, (S1): 9−13.
|
周粤, 王超生, 赵逊, 等. 2022. 怒江支流迪麻洛河流域泥石流易发性评价[J]. 地质通报, 41(4): 702−712.
|
自然资源部. 2021. 地质灾害风险调查技术要求(1∶50000)[S].
|
自然资源部. 2022. 全国地质灾害防治“十四五”规划[R].
|
1. |
孙聿卿,葛永刚,陈兴长,曾璐,梁馨月,冯鑫. 金沙江流域泥石流危险性评价. 地质通报. 2025(Z1): 377-391 .
![]() | |
2. |
吕霞,范刚,刘大瑞,林子钰. 斜坡降雨侵蚀破坏机理现场试验研究——以四川甘洛黑西洛沟滑坡-泥石流残留边坡为例. 中国地质灾害与防治学报. 2024(06): 82-89 .
![]() | |
3. |
李文龙. 机载LiDAR技术在广州黄埔区地质灾害调查中的应用. 中国地质灾害与防治学报. 2024(06): 164-172 .
![]() |