Citation: | GU Alei, REN Junping, WANG jie, ZUO Libo, SUN Hongwei, XU Kangkang, CHEN Jing, EZEKIAH Chikambwe, EVARISTO Kasumba. 2022: The first discovery of Mesoproterozoic gabbro in Nondo area, Northeastern Zambia: Response of the Bangweulu Block to the Columbia supercontinent breakup. Geological Bulletin of China, 41(1): 34-47. DOI: 10.12097/j.issn.1671-2552.2022.01.003 |
The Nondo area is located in the middle east of Bangweulu Block, northeastern Zambia.A Mesoproterozoic mafic magma intrusion event was first discovered in the Nondo area, which is of great significance for the understanding of the evolution of the Proterozoic structure in Bangweulu Block and the reconstruction of Columbia supercontinent.The systematic studies of petrology, LA-MC-ICP-MS zircon U-Pb geochronology, petrogeochemistry and Lu-Hf isotopes were conducted on the gabbro pluton developed in this area.Seventeen zircons from the gabbro show irregular and plate columnar in shape, with zonal and planar structure, and have high Th/U ratios (0.13~1.58), indicating a mafic magma origin.Zircon U-Pb dating yields an average weighted age of 1544±17 Ma, which represents the forming age of gobbro.The pluton is geochemically characterized by low contents of SiO2 (49.99%~50.18%), MgO (2.69%~2.78%) and Mg# (24.88~25.70) contents and high contents of TFeO (14.47%~14.62%) and TiO2 (2.68%~2.76%), and belongs to high Ti intraplate tholeiitic series.Its trace elements are characterized by enrichment of large ion lithophile elements (LILEs, e.g., Rb, Ba, and Pb), depletion of Sr and high field strength elements (HFSEs, e.g., Nb, Ta, and Ti), obvious fractionation of light and heavy rare earth elements with (La/Yb)N=8.53~9.57 and weak Eu negative anomaly (δEu = 0.82~0.86), showing affinity with continental flood basalts (CFB).The zircon Hf isotope results show that the original magma of gabbro was originated from the early Mesoproterozoic depleted mantle and formed in the intraplate extensional environment.Combined with the global tectonic evolution history, it is suggested that the Bangweulu Block should be a part of Paleo-Mesoproterozoic Columbia supercontinent, and the formation of Mesoproterozoic gabbro pluton in the area is probably related to the break-up of the Columbia supercontinent.
Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research, 2002, 5(1) : 5-22. doi: 10.1016/S1342-937X(05)70883-2
|
Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8 Ga orogens: Implications for a Pre-Rodinia supercontinent[J]. Earth-Science Reviews, 2002, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9
|
Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup[J]. Earth-Science Reviews, 2004, 67(1/2) : 91-123.
|
陆松年, 杨春亮, 李怀坤, 等. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘, 2002, 9(4) : 225-233. doi: 10.3321/j.issn:1005-2321.2002.04.002
|
Silveira E M, Söderlund U, Oliveira E P, et al. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 2013, 174: 144-156. doi: 10.1016/j.lithos.2012.06.004
|
Ernst R E, Pereira E, Hamilton M A, et al. Mesoproterozoic intraplate magmatic 'barcode' record of the Angola Portion of the Congo Craton: newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna(Columbia) supercontinent reconstructions[J]. Precambrian Research, 2013, 230: 103-118. doi: 10.1016/j.precamres.2013.01.010
|
Meert J G, Santosh M. The Columbia supercontinent revisited[J]. Gondwana Research, 2017, 50: 67-83. doi: 10.1016/j.gr.2017.04.011
|
张健, 李怀坤, 张传林, 等. 塔里木克拉通东北缘Columbia超大陆裂解事件: 库鲁克塔格地区辉绿岩床的地球化学、锆石U-Pb年代学和Hf-O同位素证据[J]. 地学前缘, 2018, 25(6) : 106-123. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806011.htm
|
耿元生, 旷红伟, 杜利林, 等. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 2019, 35(8) : 2299-2324. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908002.htm
|
赵小明, 胡在龙, 裴毅俊, 等. 海南三亚中元古代变质砾岩的发现及其对Columbia超大陆裂解的指示[J]. 地质通报, 2021, 40(6) : 880-888. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20210605&flag=1
|
张恒, 高林志, 张传恒, 等. 扬子板块西南部古元古代岩浆及变质事件——兼论扬子板块对Nuna超大陆事件的响应[J]. 地质通报, 2019, 38(11) : 1777-1789. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20191102&flag=1
|
赵太平, 庞岚尹, 仇一凡, 等. 古/中元古代界线1.8 Ga[J]. 岩石学报, 2019, 35(8) : 2281-2298. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201908001.htm
|
Feybesse J L, Johan V, Triboulet C, et al. The West Central African Belt: A model of 2.5-2.0 Ga accretion and two-phase orogenic evolution[J]. Precambrian Research, 1998, 87: 161-216.
|
Janasi V A, Freitas V A, Heaman L H. The onset of flood basalt volcanism, Northern Paraná Basin, Brazil: A precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite[J]. Earth and Planetary Science Letters, 2011, 302: 147-153. doi: 10.1016/j.epsl.2010.12.005
|
Schannor M, Lana C, Fonseca M A. São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt[J]. Geoscience Frontiers, 2019, 10(2) : 611-628. doi: 10.1016/j.gsf.2018.02.011
|
De Waele B, Johnson S P, Pisarevsky S A. Palaeoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: Its role in the Rodinia Puzzle[J]. Precambrian Research, 2008, 160(1/2) : 127-141.
|
Danderfer A, De Waele B, Pedreira A J, et al. New geochronological constraints on the geological evolution of Espinhaço Basin within the São Francisco Craton-Brazil[J]. Precambrian Research, 2009, 170: 116-128. doi: 10.1016/j.precamres.2009.01.002
|
Salminen J M, Evans D A D, Trindade R I F, et al. Paleogeography of the Congo/São Francisco Craton at 1.5 Ga: Expanding the Core of Nuna Supercontinent[J]. Precambrian Research, 2016, 286: 195-212. doi: 10.1016/j.precamres.2016.09.011
|
Ernst R E, Okrugin A V, Veselovskiy R V, et al. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks[J]. Russian Geology and Geophysics, 2016, 57(5) : 653-671. doi: 10.1016/j.rgg.2016.01.015
|
Unrug, R. The mid-Proterozoic Mporokoso Group of northern Zambia: Stratigraphy, sedimentation and regional position[J]. Precambrian Research, 1984, 24(2) : 99-121. doi: 10.1016/0301-9268(84)90053-6
|
Brewer M S, Haslam H W, Darbyshire P F P, et al. Rb-Sr age determinations in the Bangweulu Block, Luapula Province, Zambia[M]. London: Institute of Geological Sciences, 1979: 1-100.
|
De Waele B, Liégeois J P, Nemchin A A, et al. Isotopic and geochemical evidence of Proterozoic episodic crustal reworking within the Irumide Belt of South-Central Africa, the Southern metacratonic boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 2006, 148: 225-256. doi: 10.1016/j.precamres.2006.05.006
|
任军平, 王杰, 古阿雷, 等. 赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J]. 地质调查与研究, 2019, 42(3) : 161-186. doi: 10.3969/j.issn.1672-4135.2019.03.001
|
许康康, 刘晓阳, 谢薇, 等. 班韦卢地块和伊鲁米德带区域地质及构造演化特征[J]. 地质与勘探, 2018, 54(1) : 69-81. doi: 10.3969/j.issn.0495-5331.2018.01.008
|
邢仕, 张金达, 任军平, 等. 非洲中南部伊鲁米德构造带演化及成矿作用探讨[J]. 地质调查与研究, 2018, 41(3) : 176-184. doi: 10.3969/j.issn.1672-4135.2018.03.003
|
孙宏伟, 王杰, 任军平, 等. 中非卢菲里安地区铀矿化特征与资源潜力分析[J]. 吉林大学学报(地球科学版), 2020, 50(6) : 1660-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202006005.htm
|
古阿雷, 王杰, 任军平, 等. 赞比亚北部卡帕图地区古元古代花岗岩成因: 岩石地球化学、锆石年代学及Hf同位素约束[J]. 地质学报, 2021, 95(4) : 999-1018. doi: 10.3969/j.issn.0001-5717.2021.04.005
|
古阿雷, 王杰, 任军平, 等. 赞比亚中部泛非期Hook岩基地质特征及成矿潜力分析[J]. 地质调查与研究, 2020, 43(1) : 63-71. doi: 10.3969/j.issn.1672-4135.2020.01.007
|
任军平, 王杰, 孙宏伟, 等. 赞比亚东北部卡萨马群形成环境: 碎屑锆石U-Pb年龄与Hf同位素的限定[J]. 中国地质, 2019, 46(3) : 575-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903010.htm
|
耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10) : 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
|
张玉, 裴先治, 李瑞保, 等. 东昆仑东段阿拉思木辉长岩锆石U-Pb年代学、地球化学特征及洋盆闭合时限界定[J]. 中国地质, 2017, 44(3) : 526-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703011.htm
|
Wilson M. Igneous Petrogenesis: A Global tectonic approach[M]. London: Unwin Hyman, 1989: 1-466.
|
Boynton W V. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Rare Earth Element Geochemistry, 1984: 63-114.
|
Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications of mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 1989, 42: 313-345.
|
Gu A L, Sun J G, Bai L A, et al. Petrogenesis and geodynamic significance of the Ganhe Formation lavas, eastern Great Xing'an Range, China: Evidence from geochemistry and geochronology[J]. Island Arc, 2016, 25(2) : 87-110. doi: 10.1111/iar.12146
|
Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone(Southern Alps)[J]. Contributions to Mineralogy & Petrology, 1999, 134(4) : 380-404.
|
Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622. doi: 10.1007/s00410-002-0364-7
|
Knudsen T L, Griffin W, Hartz E, et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking[J]. Contributions to Mineralogy and Petrology, 2001, 141(1) : 83-94. doi: 10.1007/s004100000220
|
Langmuir C H, Bender J F, Bence A E, et al. Petrogenesis of basalts from the Famous Area: Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1977, 36(1) : 133-156. doi: 10.1016/0012-821X(77)90194-7
|
赵磊, 吴泰然, 罗红玲. 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义[J]. 岩石学报, 2011, 27(10) : 3071-3082. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201110023.htm
|
朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2) : 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802006.htm
|
Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica Et Cosmochimica Acta, 2000, 64(19) : 3413-3432. doi: 10.1016/S0016-7037(00)00440-3
|
吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2) : 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
|
Peter D K, Roland M. Lu-Hf and Sm-Nd Isotope Systems in zircon[J]. Reviews in Mineralogy and Geohemistry, 2003, 53(1) : 327-341. doi: 10.2113/0530327
|
Fitton J G, Saunders A D, Norry M J, et al. Thermal and chemical structure of the Iceland Plume[J]. Earth and Planetary Science Letters, 1997, 153(3/4) : 197-208.
|
Tack L, Wingate M T D, De Waele B, et al. The 1375 Ma Kibaranevent in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180: 63-84. doi: 10.1016/j.precamres.2010.02.022
|
Baratoux L, Söderlund U, Ernst R E, et al. New U-Pb baddeleyite ages of mafc dyke swarms of the West African and Amazonian cratons: Implication for their confguration in supercontinents through time[C]//Srivastava R K, Ernst R E, Peng P. Dyke Swarms of the World: A Modern Perspective. Springer, Singapore, 2019: 263-314.
|
Meschede M. A Method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56(3) : 207-218.
|
Cabanis B, Lecolle M. Le Diagramme La/10-Y/15-Nb/8: Un Outilpour La Discrimination Des Series Volcaniques Et La Mise En Evidence Des Processus De Melande et/ou De Contamination Crustale[J]. Comptes Rendus de I'Academie des Sciences: Serie Ⅱ, 1989, 309: 2023-2029.
|
Chamberlain K R, Schmitt A K, Swapp S M, et al. In Situ U-Pb SIMS(IN-SIMS) micro-baddeleyite dating of mafic rocks: Method with examples[J]. Precambrian Research, 2010, 183(3) : 379-387. doi: 10.1016/j.precamres.2010.05.004
|
Söderlund U, Isachsen C E, Bylund G, et al. U-Pb baddeleyite ages and Hf, Nd isotope chemistry constraining repeated mafic magmatism in the Fennoscandian Shield from 1.6 to 0.9 Ga[J]. Contributions to Mineralogy & Petrology, 2005, 150(2) : 174-194.
|
Paleo-Mesoproterozoic magmatism in the Tarim Craton, NW China: Implications for episodic extension to initial breakup of the Columbia supercontinent[J]. Precambrian Research, 2021, 363: 106337.
|