• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊
YANG Ze, LIU Guodong, DAI Huimin, ZHANG Yihe, XIAO Hongye, YIN Yuchao. 2021: Selenium geochemistry of soil and development potential of Se-rich soil in Xingkai Lake Plain. Geological Bulletin of China, 40(10): 1773-1782. DOI: 10.12097/gbc.dztb-40-10-1773
Citation: YANG Ze, LIU Guodong, DAI Huimin, ZHANG Yihe, XIAO Hongye, YIN Yuchao. 2021: Selenium geochemistry of soil and development potential of Se-rich soil in Xingkai Lake Plain. Geological Bulletin of China, 40(10): 1773-1782. DOI: 10.12097/gbc.dztb-40-10-1773

Selenium geochemistry of soil and development potential of Se-rich soil in Xingkai Lake Plain

More Information
  • Received Date: January 20, 2021
  • Revised Date: May 09, 2021
  • Available Online: August 15, 2023
  • The results of geochemical survey of land quality show that the soil in Xingkai Lake Plain is generally sufficient in selenium, and the area of Se-rich soil is less than 1%. The distribution of Se in soil has a good inheritance from the parent material of soil. The highest average Se content is found in the soils originated from the Neogene Fujin Formation (N1f), with an average value of 0.375 mg/kg. This stratum controls the main distribution of Se-rich soils in the study area. The lowest Se content is found in the soils originated from the Carboniferous Beixing Formation tuff, with an average value of 0.183 mg/kg. Meanwhile, soil Se content is also affected by geochemical environment, soil type, soil properties and other natural conditions. The Se content of white clay soil is the highest, and that of dark brown soil is the lowest.Se is significantly positively correlated with soil Corg, N, P, TFe2O3, S, As, Cr, Cu, Hg, Pb, Cd and Ni, and negatively correlated with pH, CaO, Na2O and Zn.In addition, the comprehensive quality of land in the study area is excellent. The five potential Se-rich areas are in line with the AA green food producing areas, and natural Se-rich rice has been found, which has great potential for the development of Se-rich agricultural products.

  • 吴永尧, 彭振坤, 陈建英, 等. 水稻对环境硒的富集和耐受能力研究[J]. 微量元素与健康研究, 1999, 16(4): 42-44. https://www.cnki.com.cn/Article/CJFDTOTAL-WYJK199904021.htm
    吕瑶瑶, 余涛, 杨忠芳, 等. 大骨节病区硒元素分布的调控机理研究——以四川省阿坝地区为例[J]. 环境化学, 2012, 31(7): 935-944. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201207000.htm
    Zhang B J, Yang L S, Wang W Y, et al. Environmental Se in the Kaschin-Beck disease area, Tibetan Plateau, China[J]. Environmental Geochemistry and Health, 2011, 33(5): 495-501. doi: 10.1007/s10653-010-9366-y
    戴慧敏, 宫传东, 董北, 等. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 2015, 52(6): 153-161 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506015.htm
    赵中秋, 郑海雷, 张春光. 土壤硒及其与植物硒营养的关系[J]. 生态学杂志, 2003, 22(1): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200301006.htm
    Gao J, Liu Y, Huang Y, et al. Daily Se intake in a moderate Se deficiency area of Suzhou, China[J]. Food Chemistry, 2011, 126(3): 1088-1093. doi: 10.1016/j.foodchem.2010.11.137
    奚小环. 多目标的地质大调查——21世纪勘查地球化学的战略选择[J]. 物探与化探, 2007, 31(4): 283-288. doi: 10.3969/j.issn.1000-8918.2007.04.001
    杨忠芳, 奚小环, 成杭新, 等. 区域生态地球化学评价核心与对策[J]. 第四纪研究, 2005, 25(3): 275-275. doi: 10.3321/j.issn:1001-7410.2005.03.002
    刘秀金, 杨柯, 成杭新, 等. 四川省泸州市页岩和碳酸盐岩区水稻根系土-Se含量和生物有效性的控制因素[J]. 地质通报, 2020, 39(12): 1919-1930. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201206&flag=1
    崔小顺, 郑昭贤, 程中双, 等. 穆兴平原北区浅层地下水水化学分布特征及其形成机理[J]. 南水北调与水利科技, 2018, 16(4): 146-153. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201804019.htm
    中华人民共和国国土资源部. 《多目标区域地球化学调查规范(1: 250000) 》(DZ/T 0258-2014)[S]. 北京: 中国标准出版社, 2015.
    中华人民共和国国土资源部. 《土地质量地球化学评价规范》(DZ/T 0295-2016)[S]. 北京: 地质出版社, 2016.
    谭见安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989.
    中华人民共和国质量监督检验检疫总局, 中国国家标准化管理委员会. 《富硒稻谷》(GB/T 22499-2008)[S]. 北京: 中国标准出版社, 2008.
    王昌宇, 张素荣, 刘继红, 等. 河北省饶阳县富锌、硒特色土地及其生态效应评价[J]. 地质调查与研究, 2019, 42(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201901007.htm
    夏学齐, 杨忠芳, 薛圆, 等. 黑龙江省松嫩平原南部土壤硒元素循环特征[J]. 现代地质, 2012, 26(5): 850-858. doi: 10.3969/j.issn.1000-8527.2012.05.002
    迟凤琴, 徐强, 匡恩俊, 等. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 2016, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm
    程伯容, 鞠山见, 岳淑嫆, 等. 我国东北地区土壤中的硒[J]. 土壤学报, 1980, 17(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198001005.htm
    刘铮. 中国土壤微量元素[M]. 南京: 江苏科学技术出版社, 1996: 21-24.
    Lisk D J. Trace Metals in Soils, Plants, and Animals[J]. Advances in Agronomy, 1972, 24: 267-325.
    王美珠, 章明奎. 我国部分高硒低硒土壤的成因初探[J]. 浙江农业大学学报, 1996, 22(1): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY601.020.htm
    严明书, 龚媛媛, 杨乐超, 等. 重庆土壤硒的地球化学特征及经济意义[J]. 物探与化探, 2014, 38(2): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201402021.htm
    郦逸根, 董岩翔, 郑洁, 等. 浙江富硒土壤资源调查与评价[J]. 第四纪研究, 2005, 25(3): 323-330. doi: 10.3321/j.issn:1001-7410.2005.03.008
    魏振山, 涂其军, 唐蜀虹, 等. 天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成因探讨[J]. 物探与化探, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm
    周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952-1959. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201209&flag=1
    Natasha, Shahid M, Niazi N K, et al. A critical review of Se biogeochemical behavior in soil-plant system with an inference to human health[J]. Environment Pollution, 2017, 234: 915-934.
    Xing K, Zhou S, Wu X, et al. Contents and characteristics of Se in soil samples from Dashan Region, a Se-enriched area in China[J]. Soil Science and Plant Nutrition, 2015, 61(6): 889-897. doi: 10.1080/00380768.2015.1075363
    杨忠芳, 余涛, 侯青叶, 等. 海南岛农田土壤Se的地球化学特征[J]. 现代地质, 2012, 26(5): 837-849. doi: 10.3969/j.issn.1000-8527.2012.05.001
    Li Z, Liang D L, Peng Q, et al. Interaction between Se and soil organic matter and its impact on soil Se bioavailability: A review[J]. Geoderma, 2017, 295: 69-79. doi: 10.1016/j.geoderma.2017.02.019
    Wang S S, Liang D, Dan W, et al. Se fractionation and speciation in agriculture soils and accumulation in corn(Zea mays L) under field conditions in Shaanxi Province, China[J]. Science of the Total Environment, 2012, 427: 159-164.
    Gabos M B, Goldberg S, Alleoni L. Modeling selenium(Ⅳ and Ⅵ) adsorption envelopes in selected tropical soils using the constant capacitance model[J]. Environmental Toxicology and Chemistry, 2014, 33(10): 2197-2207. doi: 10.1002/etc.2574
    Goldberg S. Modeling Selenite Adsorption Envelopes on Oxides, Clay Minerals, and Soils using the Triple Layer Model[J]. Soil Science Society of America Journal, 2014, 77(1): 64-71.
    Iida Y, Yamaguchi T, Tanaka T. Sorption behavior of hydroselenide(HSe) onto iron-containing minerals[J]. Journal of Nuclear Science Technology, 2014, 51(3): 305-322. doi: 10.1080/00223131.2014.864457
    Rovira M, Javier Giménez, María Martínez, et al. Sorption of Se(Ⅳ) and Se(Ⅵ) onto natural iron oxides: Goethite and hematite[J]. Journal of Hazardous Materials, 2008, 150(2): 279-284. doi: 10.1016/j.jhazmat.2007.04.098
    Hyun S, Burns P E, Murarka I, et al. Se(Ⅳ) and(Ⅵ) Sorption by Soils Surrounding Fly Ash Management Facilities[J]. Vadose Zone Journal, 2006, 5(4): 1110-1118. doi: 10.2136/vzj2005.0140
    章海波, 骆永明, 吴龙华, 等. 香港土壤研究Ⅱ. 土壤硒的含量、分布及其影响因素[J]. 土壤学报, 2005, 42(3): 404-410. doi: 10.3321/j.issn:0564-3929.2005.03.009
    胡艳华, 王加恩, 蔡子华, 等. 浙北嘉善地区土壤硒的含量、分布及其影响因素初探[J]. 地质科技情报, 2010, 29(6): 84-88. doi: 10.3969/j.issn.1000-7849.2010.06.014
    赵文龙, 胡斌, 王嘉薇, 等. 磷与四价硒的共存对小白菜磷, 硒吸收及转运的影响[J]. 环境科学学报, 2013, 33(7): 2020-2026. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201307033.htm
    周旭, 吕建树. 山东省广饶县土壤重金属来源、分布及生态风险[J]. 地理研究, 2019, 38(2): 224-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201902019.htm
    蔡立梅, 马瑾, 周永章, 等. 东莞市农田土壤和蔬菜重金属的含量特征分析[J]. 地理学报, 2008, 63(9): 994-1003. doi: 10.3321/j.issn:0375-5444.2008.09.009
    Nanos N, Martín J A R. Multiscale analysis of heavy metal content in soils: spatial variability in the Duero river basin(Spain)[J]. Geoderma, 2012, 189: 554-562
    Lyu J S, Liu Y, Zhang Z L, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country(Eastern China) using multivariate and geostatistical approach[J]. Journal of soils and sediments, 2015, 15(1): 163-178. doi: 10.1007/s11368-014-0937-x
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 《食品中污染物限量》(GB 2762-2017)[S]. 2017.
    中华人民共和国农业部. 《绿色食品产地环境质量》(NY/T 391-2013)[S]. 2013.
    汤奇峰, 徐春丽, 刘斯文, 等. 江西赣州市瑞金盆地天然富硒土地资源特征与保护利用[J]. 地质通报, 2020, 39(12): 1932-1943. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20201207&flag=1
    黑龙江省区域地质调查所. 黑龙江省区域地质志. 2018.
    中国地质调查局. 《生态地球化学评价样品分析技术要求》(试行)(DD 2005-03).
    自然资源部中国地质调查局. 《天然富硒土地划定与标识》(试行)(DD 2019-10).
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. 刘博华,吴芳,张绪教,崔加伟,董晓朋. 青藏高原东北缘红寺堡盆地晚更新世沉积物元素地球化学特征及其环境指示意义. 地质通报. 2024(01): 33-45 . 本站查看
    2. 何中波,冀华丽,胡宝群,孙萧,钟军,杨喆,陈虹. 准噶尔盆地北部晚白垩世至新近纪沉积介质环境演化特征及其对铀成矿的制约. 吉林大学学报(地球科学版). 2024(03): 800-810 .
    3. 张耀堂,王万能,赵见波,袁永盛,李锁明,张宏辉,郑洪福,李金旺. 地球化学揭示早—中侏罗世陆相地层气候环境变化特征——以滇中川街盆地老文村剖面为例. 地质论评. 2024(06): 2212-2224 .

    Other cited types(4)

Catalog

    Article views (2479) PDF downloads (2096) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return