• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

额尔齐斯杂岩碎屑锆石U−Pb年龄及其对阿尔泰和东准噶尔地体拼合时限的制约

李昂, 徐严, 韩宝福, 廖闻

李昂, 徐严, 韩宝福, 廖闻. 2024: 额尔齐斯杂岩碎屑锆石U−Pb年龄及其对阿尔泰和东准噶尔地体拼合时限的制约. 地质通报, 43(6): 1032-1046. DOI: 10.12097/gbc.2022.02.003
引用本文: 李昂, 徐严, 韩宝福, 廖闻. 2024: 额尔齐斯杂岩碎屑锆石U−Pb年龄及其对阿尔泰和东准噶尔地体拼合时限的制约. 地质通报, 43(6): 1032-1046. DOI: 10.12097/gbc.2022.02.003
Li A, Xu Y, Han B F, Liao W. Detrital zircon U−Pb ages from the Irtysh complex and its constraints on the amalgamation time of Altai and East Junggar terranes. Geological Bulletin of China, 2024, 43(6): 1032−1046. DOI: 10.12097/gbc.2022.02.003
Citation: Li A, Xu Y, Han B F, Liao W. Detrital zircon U−Pb ages from the Irtysh complex and its constraints on the amalgamation time of Altai and East Junggar terranes. Geological Bulletin of China, 2024, 43(6): 1032−1046. DOI: 10.12097/gbc.2022.02.003

额尔齐斯杂岩碎屑锆石U−Pb年龄及其对阿尔泰和东准噶尔地体拼合时限的制约

基金项目: 国家自然科学基金项目《古亚洲洋南部俯冲起始的三重约束》(批准号:41972234)
详细信息
    作者简介:

    李昂(1995− ),男,在读博士生,构造地质学专业。E−mail:liang1995@pku.edu.cn

    通讯作者:

    韩宝福(1960− ),男,博士,教授,从事区域大地构造研究。E−mail:bfhan@pku.edu.cn

  • 中图分类号: P597+.3

Detrital zircon U−Pb ages from the Irtysh complex and its constraints on the amalgamation time of Altai and East Junggar terranes

  • 摘要:

    额尔齐斯杂岩位于新疆北部的阿尔泰和东准噶尔地体之间,经历了强烈的变质变形作用,记录了2个地体的构造拼合事件。为约束阿尔泰和东准噶尔地体的拼合时限,通过碎屑锆石U−Pb年龄分析探讨沉积物源。从变碎屑岩样品中获得最年轻的碎屑锆石年龄为354 Ma。在综合分析新的和已发表的碎屑锆石和区域构造年代学资料后,认为在额尔齐斯杂岩中,除同时以阿尔泰和东准噶尔地体为物源和以东准噶尔地体为单一物源的2类晚石炭世同碰撞沉积外,还可能包括较早以阿尔泰地体为单一物源的被动陆缘沉积,表明额尔齐斯杂岩形成时,阿尔泰和东准噶尔地体已经拼合。

    Abstract:

    The Irtysh complex is located between Altai and East Junggar terranes in Northern Xinjiang and underwent strong metamorphism and deformation, which recorded the tectonic amalgamation of the two terrains. In order to constrain the amalgamation time of the Altai and East Junggar terrains, we used detrital zircon U−Pb ages to analyze and discuss the provenance. The youngest detrital zircon age obtained from the metaclastic rock sample is 354 Ma. Based on a comprehensive analysis of new and published detrital zircon U−Pb age data from the Irtysh complex and a comparison with regional tectonic and magmatic U−Pb age data, this paper proposes that the Irtysh complex may contain older detritus from the passive continental margin of the Altai terrane, in addition to the Late Carboniferous syn−collisional deposits from both of the Altai and East Junggar terranes and only the East Junggar terrane, suggesting that the Altai and East Junggar terranes had been amalgamated when the Irtysh complex was formed.

  • 额尔齐斯−斋桑带位于西伯利亚大陆和哈萨克斯坦−准噶尔大陆的连接处(图1−A),是额尔齐斯−斋桑洋闭合的位置,在西段以哈萨克斯坦境内的查尔斯克蛇绿混杂岩为代表(Buslov et al., 2001; Safonova et al., 2012),在东段则包括中国境内的布尔津杂岩和额尔齐斯杂岩(Briggs et al., 2007; Li et al., 2015, 2017; Chen et al., 2019; Song et al., 2020)。其中,额尔齐斯杂岩位于阿尔泰和东准噶尔地体之间(图1−B),由绿片岩相—角闪岩相变质岩组成(Briggs et al., 2007; Li et al., 2017, 2019; Chen et al., 2019),经历了复杂的构造变形作用(Li et al., 2017; Hu et al., 2020)。额尔齐斯杂岩的形成与阿尔泰和东准噶尔地体之间的拼合作用有关(Li et al., 2017; Chen et al., 2019; Hu et al., 2020)。

    图  1  额尔齐斯−斋桑带及邻区地质单元划分(A)和阿尔泰地质简图(B)(据Li et al., 2017
    Figure  1.  Tectonic subdivisions of Irtysh-Zaisan Belt and surrounding area(A) and simplified geological map of Altai area (B)

    额尔齐斯杂岩经历了强烈的变质和变形作用改造,副变质岩的沉积序列和原生构造很难识别。前人的碎屑锆石研究表明,变碎屑岩的原岩最大沉积年龄在329~322 Ma之间(Li et al., 2015, 2017, 2019),与阿尔泰物源区具有很强的亲缘性(Li et al., 2017, 2019),但其中是否有东准噶尔物源的参与并不明确。因此,本文选取额尔齐斯杂岩中含钾长石石榴蓝晶夕线石云母片岩开展碎屑锆石测年研究,结合前人资料,进一步探讨变碎屑岩的物源问题及其对阿尔泰和东准噶尔地体拼合的制约。

    额尔齐斯杂岩出露在额尔齐斯−斋桑带东段,南以额尔齐斯断裂与东准噶尔相连,北以富蕴−锡伯杜断裂和阿尔泰相接(图2−A,B)。

    图  2  额尔齐斯−斋桑带东段地质简图(A)(据Li et al., 2017)、额尔齐斯杂岩地质构造简图(B,展示变质分带情况和采样点)(据Li et al., 2017)和剖面图(C)
    Figure  2.  Simplified geological map of the eastern segment of Irtysh-Zaisan Belt(A), simplified geological and structural map of the Irtysh complex in Fuyun area, showing metamorphic zones and sampling sites(B), and the profile (C)

    在东准噶尔的卡拉麦里蛇绿混杂岩带以北地区,自北向南分布有杜拉特弧和野马泉弧,二者之间为阿尔曼太蛇绿岩带。杜拉特弧和野马泉弧均发育泥盆纪—石炭纪火山−沉积序列 (Xiao et al., 2009; Zhang et al., 2009; Tao et al., 2014),但后者还含有少量奥陶纪变火山岩/沉积岩(Li et al., 2014; An et al., 2021)。晚古生代以花岗岩为主的深成岩浆活动强烈(Liu et al., 2013; Wang et al., 2021),其中泥盆纪—早石炭世发育弧岩浆活动(Hong et al., 2017; Wang et al., 2021),二叠纪则以发育后碰撞岩浆活动为特征(李涤等, 2013; Hong et al., 2017; Luo et al., 2017)。

    阿尔泰地体自北向南可以划分为北阿尔泰、西北阿尔泰、中阿尔泰、琼库尔−阿巴宫和南阿尔泰5个单元(Windley et al., 2002; Wei et al., 2007; Broussolle et al., 2019),主要由3个不同的古生代火山−沉积序列组成,分别为寒武纪—志留纪哈巴河群、库鲁米提组和白哈巴组;泥盆纪康布铁堡组和阿尔泰组及石炭纪额尔齐斯杂岩(图1−B)。古生代深成岩在阿尔泰广泛分布(Wang et al., 2009),其中寒武纪—晚泥盆世(507 ~ 370 Ma)发育与俯冲相关的岩浆活动(袁峰等, 2001; Chen et al., 2002; Windley et al., 2002; Hong et al., 2004; 童英等, 2005, 2007; Sun et al., 2008, 2009; He et al., 2015),后碰撞岩浆活动以布尔根碱性花岗岩(358 ~ 354 Ma)为代表(Tong et al., 2012),表明自石炭纪起,阿尔泰南缘可能已转为被动大陆边缘(Hong et al., 2017),但目前尚未有被动陆源沉积的报道。在额尔齐斯−斋桑带西段的卡尔巴—纳雷姆地区,下石炭统塔克尔(Takyr)组为被动陆源沉积(Buslov et al., 2004; Safonova et al., 2012)。到早石炭世晚期,阿尔泰南缘广泛发育挤压构造,岩浆活动较少(Li et al., 2017; Broussolle et al., 2019)。二叠纪,阿尔泰南缘受到区域大规模后碰撞伸展−热事件的影响(Tong et al., 2014; Yang et al., 2015; Broussolle et al., 2019; Liu et al., 2020),产生大量二叠纪花岗岩(童英等, 2006; Briggs et al., 2007),辉长岩−苏长岩的侵入还引发了高温—超高温变质作用(陈立辉等, 2006; 王涛等, 2010; Tong et al., 2014; Yang et al., 2015; Liu et al., 2020)。

    额尔齐斯杂岩主要分布于富蕴−锡伯渡之间,呈北西西—南东东向展布,由片岩、片麻岩、斜长角闪岩、混合岩等组成,以发育近直立的面理为特征(图2−B,C),变质程度具有西低东高的特点。从南北两侧到中部依次出现黑云母带−石榴子石带−十字石带−蓝晶石带−夕线石带的中压相系递增变质带(图2−B,C)。其中,夕线石带较宽,出露范围大,其他几个变质带相对较窄。额尔齐斯杂岩还被多条东西向展布的二叠纪花岗岩体和南北向的花岗岩脉侵入(童英等, 2006; Briggs et al., 2007; Li et al., 2017),并被上二叠统特斯巴汗组砂砾岩角度不整合覆盖(Li et al., 2017, 2019)(图2−B)。

    本文研究的样品(20100401)采自于夕线石带(北纬46°59′51″、东经89°15′02″,图2−B),为含钾长石石榴蓝晶夕线石云母片岩,显微鳞片变晶结构,片状构造,片理产状30°∠80°。野外露头风化面呈灰黄色,新鲜面呈灰白色(图3−A),手标本上可见沿片理方向分布的夕线石。样品发育斑状变晶结构。石榴子石(图3−B,D;约3%)和蓝晶石(图3−C;约3%)为变斑晶,斜长石(图3−C,D;约30%)、黑云母(图3−B~D;约25%)和石英(图3−B,D;约25%)及少量夕线石(图3−B~D;约3%)、钾长石(图3−B;约1%)、磷灰石(图3−B;约1%)等矿物组成基质。石榴子石变斑晶的粒径为500 ~ 1000 μm(图3−B,D),含长石、石英、磷灰石等包裹体(图3−B)。蓝晶石变斑晶的粒径为1000 ~ 1500 μm,边部部分被夕线石替代(图3−C)。基质中片状的黑云母和纤维状夕线石构成面理(图3−B~D),钾长石粒径约为100 μm,与石英、长石等共存。蓝晶石+钾长石是高压麻粒岩相的矿物组合,而蓝晶石和夕线石的存在表明原岩中粘土矿物含量较高。

    图  3  高压麻粒岩样品20100401的野外照片(A)和单偏光(图片上半部分)及正交偏光(图片下半部分)显微照片(B,C,D)
    Figure  3.  Field photograph (A) and single polarization (top half of the image) and orthogonal polarization (bottom half of the image) micrographs (B, C, D) of high-pressure granulite sample 20100401

    岩石Al2O3含量为20.24%,Na2O含量为2.42%,K2O含量为2.75%,化学成分接近上地壳平均值(Taylor et al., 1995)。根据其成分特征,原岩应为粘土岩/杂砂岩或页岩,或者介于泥质沉积岩和砂质沉积岩之间,可能有火山物质的加入。碎屑锆石的粒度为60 ~ 120 μm,表明原岩碎屑物为细砂-粉砂级(图4)。因此,原岩应为泥质细砂/粉砂岩。

    岩石样品经破碎后,采用常规的重液、磁选等方法,分离出锆石颗粒,在双目镜下人工提纯,随机挑选300颗锆石制成环氧树脂靶,并完成抛光和阴极发光(CL)图像采集。锆石LA−MC−ICP−MS U−Pb同位素定年在北京大学造山带与地壳演化重点实验室完成,Nu PlasmaⅡ 质谱仪配置了GeoLas HD激光烧蚀系统。激光束斑直径为10 μm,频率为4 Hz。采用锆石91500作为主标样,锆石GJ−1和Plešovice作为校准标样。采用Iolite 3.71计算锆石U和Pb同位素比值(Paton et al., 2011),采用Isoplot 3.75处理数据并绘制相关图件(Ludwig, 2012)。

    碎屑锆石颗粒呈次圆状—圆状,部分为棱角状,长度为60 ~ 120 μm,宽度为40 ~ 80 μm,长宽比介于1∶1 ~ 2∶1之间。锆石表面光滑,偶见浅坑,沟槽。阴极发光图像显示,锆石由浅色核部和暗色边部组成(图4),多数锆石以核部为主,发育振荡环带(图4),且Th/U值介于0.3 ~ 4.4之间(表1),属于岩浆结晶的产物(Hermann et al., 2001; 李长民, 2009)。锆石边部宽度在3 ~ 15 μm之间,无振荡环带,且Th/U值为0.01,为变质成因(Hermann et al., 2001; 李长民, 2009)。

    对74个锆石核部和1个变质边进行了年龄测定。变质边的206Pb/238U年龄为283 Ma(图4表1)。对于锆石的岩浆核,其中约72%的锆石206Pb/238U年龄集中在390 ~ 354 Ma之间,峰值年龄为380 ~ 370 Ma(图5表1),最年轻的年龄为354 Ma(图5)。约24%的锆石206Pb/238U年龄在450 ~ 390 Ma之间。另有2个前寒武纪的锆石207Pb/206Pb年龄分别为1668 Ma和 2541 Ma(图5表1)。

    表  1  变碎屑岩样品20100401碎屑锆石U−Th−Pb同位素分析结果(mz-7为碎屑锆石边部的变质锆石测试点)
    Table  1.  U−Th−Pb data of detrital zircons from high-pressure granulite sample 20100401
    点号 Th/U 同位素比值 年龄/Ma 谐和度/%
    207Pb/235U 206Pb/238U rho 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 0.81 0.44 0.02 0.06 0.00 0.39 352 47 368.9 10.0 368.3 3.5 99.84
    2 0.73 0.44 0.01 0.06 0.00 0.43 368 32 367.9 8.8 364.3 2.6 99.01
    3 0.75 0.45 0.01 0.06 0.00 0.42 459 37 375.5 9.7 364.4 3.0 96.95
    4 1.06 0.46 0.02 0.06 0.00 0.83 424 41 385.1 11.0 376.7 4.1 97.77
    5 1.64 0.51 0.01 0.07 0.00 0.29 443 28 417.1 9.0 410.4 2.1 98.37
    6 1.31 0.48 0.02 0.06 0.00 0.39 412 43 395.4 10.0 387.8 4.6 98.04
    7 1.56 0.49 0.01 0.06 0.00 0.56 426 46 406.5 8.8 403.5 8.8 99.26
    8 0.91 0.45 0.01 0.06 0.00 0.42 417 22 378.7 3.5 371.0 6.6 97.92
    9 1.39 0.47 0.01 0.06 0.00 0.31 402 28 391.7 4.1 388.9 7.1 99.28
    10 2.16 0.56 0.01 0.07 0.00 0.60 466 37 449.5 6.5 447.0 3.4 99.44
    11 0.64 0.45 0.01 0.06 0.00 0.43 421 48 374.7 7.5 363.8 7.0 97.00
    12 1.13 0.45 0.01 0.06 0.00 0.33 344 47 376.4 6.7 382.1 7.9 98.51
    13 4.40 10.89 0.09 0.47 0.01 0.88 2542 6 2514.6 8.1 2478.0 40.0 97.43
    14 1.16 0.47 0.01 0.06 0.00 0.51 451 34 392.8 5.9 383.2 7.4 97.49
    15 1.11 0.46 0.01 0.06 0.00 0.66 404 39 384.3 7.9 381.2 9.0 99.19
    16 0.91 0.44 0.01 0.06 0.00 0.50 389 32 373.7 5.0 370.9 7.1 99.25
    17 1.98 0.52 0.01 0.07 0.00 0.50 388 41 429.1 7.5 435.7 9.7 98.49
    18 1.00 0.45 0.01 0.06 0.00 0.45 392 38 376.3 6.1 375.7 7.9 99.84
    19 0.78 0.45 0.01 0.06 0.00 0.61 442 30 376.0 5.4 364.7 6.7 96.90
    20 1.90 0.51 0.01 0.07 0.00 0.52 331 44 418.8 8.0 435.6 10.0 96.14
    21 1.24 0.46 0.01 0.06 0.00 0.50 394 44 385.9 6.7 384.7 7.8 99.69
    22 1.17 0.46 0.01 0.06 0.00 0.30 376 38 381.7 5.8 383.4 7.2 99.56
    23 1.28 0.50 0.01 0.06 0.00 0.46 540 47 409.8 7.9 387.8 8.1 94.33
    24 1.58 0.49 0.01 0.07 0.00 0.62 403 25 406.7 5.0 408.5 8.0 99.56
    25 1.41 0.47 0.01 0.06 0.00 0.60 383 42 389.1 6.8 390.8 5.0 99.56
    26 2.27 0.55 0.01 0.07 0.00 0.55 433 39 447.4 6.5 449.6 3.4 99.51
    27 1.08 0.45 0.01 0.06 0.00 0.59 354 54 375.2 8.8 378.4 4.8 99.15
    28 0.61 0.42 0.01 0.06 0.00 0.35 404 40 359.6 5.0 356.9 2.1 99.24
    29 0.83 0.44 0.01 0.06 0.00 0.28 372 54 369.0 7.3 368.8 3.3 99.95
    30 2.01 0.55 0.02 0.07 0.00 0.64 409 47 443.4 9.8 443.7 6.3 99.93
    31 1.49 0.49 0.01 0.06 0.00 0.63 418 48 403.9 8.9 400.8 5.5 99.23
    32 0.95 0.45 0.01 0.06 0.00 0.56 397 36 376.8 5.0 373.8 2.1 99.20
    33 0.61 0.42 0.01 0.06 0.00 0.33 370 45 355.7 6.0 353.7 2.2 99.43
    34 0.86 0.43 0.01 0.06 0.00 0.46 314 54 362.3 7.7 369.3 4.0 98.10
    35 1.34 0.46 0.01 0.06 0.00 0.72 357 38 383.6 6.2 387.9 4.2 98.89
    36 0.90 0.43 0.01 0.06 0.00 0.48 345 37 364.7 4.9 370.2 2.2 98.51
    37 0.62 0.44 0.01 0.06 0.00 0.35 406 42 366.7 6.0 362.6 2.4 98.87
    38 1.52 0.47 0.01 0.06 0.00 0.56 371 40 393.7 5.8 401.5 3.3 98.06
    39 0.90 0.46 0.01 0.06 0.00 0.48 501 35 387.6 5.0 370.7 1.9 95.44
    40 1.12 0.47 0.01 0.06 0.00 0.41 372 50 392.0 8.1 381.5 2.9 97.25
    41 1.42 0.49 0.02 0.06 0.00 0.36 426 63 407.9 10.0 393.1 3.8 96.24
    42 0.90 0.45 0.01 0.06 0.00 0.36 404 56 379.7 8.9 370.1 3.1 97.41
    43 1.70 0.53 0.02 0.07 0.00 0.37 438 56 431.8 10.0 430.0 4.1 99.58
    44 1.15 0.46 0.01 0.06 0.00 0.31 387 52 381.1 8.5 383.0 2.8 99.50
    45 1.27 0.46 0.01 0.06 0.00 0.42 432 52 386.7 8.8 386.1 3.4 99.84
    46 2.31 3.96 0.08 0.28 0.00 0.83 1669 31 1627.4 18.0 1603.0 11.0 95.90
    47 1.47 0.48 0.01 0.06 0.00 0.29 409 57 399.5 8.9 397.1 3.9 99.40
    48 1.25 0.47 0.01 0.06 0.00 0.32 385 52 389.8 8.3 385.4 2.2 98.86
    49 1.15 0.47 0.01 0.06 0.00 0.37 388 52 387.7 8.4 382.6 2.9 98.67
    50 1.18 0.47 0.01 0.06 0.00 0.43 387 51 392.2 8.6 384.1 3.1 97.89
    51 0.98 0.43 0.01 0.06 0.00 0.36 396 53 360.6 8.0 374.5 2.5 96.29
    52 0.99 0.42 0.01 0.06 0.00 0.35 381 55 358.7 8.4 374.7 2.9 95.73
    53 1.49 0.46 0.01 0.06 0.00 0.49 396 48 385.2 8.3 401.1 4.5 96.04
    54 1.64 0.52 0.02 0.07 0.00 0.46 468 68 426.7 11.0 420.4 5.7 98.50
    55 0.82 0.46 0.01 0.06 0.00 0.35 454 60 381.1 9.7 368.4 3.0 96.55
    56 0.79 0.46 0.01 0.06 0.00 0.47 465 48 384.6 7.8 368.0 2.4 95.49
    57 1.04 0.46 0.02 0.06 0.00 0.30 431 81 387.0 12.0 376.3 5.5 97.16
    58 1.38 0.47 0.02 0.06 0.00 0.57 421 59 392.4 10.0 388.1 4.4 98.89
    59 0.95 0.43 0.01 0.06 0.00 0.31 325 47 364.5 7.0 372.8 2.1 97.77
    60 1.12 0.44 0.01 0.06 0.00 0.38 310 53 370.4 8.0 381.8 3.4 97.01
    61 0.95 0.45 0.01 0.06 0.00 0.42 398 56 374.0 8.4 373.7 2.8 99.92
    62 0.34 0.43 0.01 0.06 0.00 0.32 435 59 365.9 8.6 353.5 3.1 96.49
    63 0.64 0.43 0.01 0.06 0.00 0.48 425 43 366.0 6.7 362.9 1.5 99.15
    64 0.61 0.44 0.01 0.06 0.00 0.29 454 46 368.4 7.3 359.5 2.1 97.52
    65 1.40 0.46 0.01 0.06 0.00 0.47 396 54 384.1 8.6 389.6 2.6 98.59
    66 1.06 0.45 0.01 0.06 0.00 0.24 405 48 377.5 7.0 377.2 1.8 99.92
    67 0.96 0.46 0.02 0.06 0.00 0.48 418 78 382.0 13.0 374.1 6.0 97.89
    68 1.13 0.45 0.02 0.06 0.00 0.40 341 77 380.0 12.0 382.3 5.3 99.40
    69 1.11 0.45 0.01 0.06 0.00 0.36 345 60 378.2 9.1 381.0 3.4 99.27
    70 1.03 0.45 0.01 0.06 0.00 0.33 417 47 378.9 7.5 376.2 1.6 99.28
    71 0.87 0.45 0.01 0.06 0.00 0.44 397 38 374.8 4.0 369.8 3.4 98.65
    72 1.85 0.54 0.01 0.07 0.00 0.37 471 42 435.2 6.2 430.6 3.6 98.93
    73 1.09 0.45 0.01 0.06 0.00 0.41 337 55 377.5 7.2 379.5 4.2 99.47
    74 1.52 0.48 0.01 0.06 0.00 0.62 370 40 399.4 6.4 402.7 4.0 99.18
    mz-7 0.01 0.33 0.00 0.04 0.00 0.42 306 29 286.4 3.5 283.0 5.2 98.80
      注:谐和度(年龄< 1000 Ma)= 100%−│[207Pb/235U年龄 (Ma)−206Pb/238U年龄 (Ma)] / [207Pb/235U年龄 (Ma)]│*100%; 谐和度(年龄> 1000 Ma)= 100%−│[207Pb/206Pb年龄 (Ma)−206Pb/238Pb年龄 (Ma)] / [207Pb/206Pb年龄 (Ma)]│*100%
    下载: 导出CSV 
    | 显示表格
    图  4  高压麻粒岩样品20100401代表性碎屑锆石阴极发光图像
    Figure  4.  Cathode luminescence image for representative detrital zircons of high-pressure granulite sample 20100401

    前人的碎屑锆石研究表明,在南侧的黑云母带中,云母片岩(样品L14FY04;矿物组合:石英、长石、黑云母)的原岩最大沉积年龄为322 Ma(Li et al., 2015),主年龄谱峰在330 ~ 320 Ma之间;而产于夕线石带中的石榴子石云母片岩(样品L14FY31和L14FY137;矿物组合为石英、长石、石榴子石、黑云母)的最大沉积年龄分别为329 Ma和326 Ma(Li et al., 2015, 2019),主年龄谱峰均在360 ~ 340 Ma 之间。值得注意的是,这3个样品具有相似的最大沉积年龄和年龄谱特征,且碎屑锆石变质边的年龄均约为295 Ma(Li et al., 2015, 2019),限定原岩沉积时代不早于早石炭世末期,且不晚于早二叠世初期,应为晚石炭世。对比之下,本文样品中最年轻的锆石年龄为354 Ma,主年龄谱峰为380 ~ 370 Ma(图5),与上述样品明显不同,可能反映额尔齐斯杂岩中存在原岩形成时代不同或物源区属性不同的碎屑岩。

    已有的碎屑锆石研究表明,额尔齐斯杂岩的碎屑物质主要来自阿尔泰地体(Li et al., 2017, 2019)。但如果额尔齐斯杂岩的形成与阿尔泰和东准噶尔地体拼合有关(Li et al., 2017; Chen et al., 2019; Hu et al., 2020),额尔齐斯杂岩南北两侧的地体均是可能的物源区。因此,需要进一步分析东准噶尔地体也作为物源区的可能性。

    区域的年代学资料显示,在阿尔泰南部的中阿尔泰和南阿尔泰地体,岩浆岩在350 ~ 320 Ma存在一个明显的间断(图6−A);沉积岩以含有古元古代—中泥盆世为主的碎屑锆石为特征(图6−C,D)。东准噶尔北部杜拉特弧和野马泉弧则缺少390 Ma以前的岩浆活动,晚古生代岩浆活动虽相对连续,但356 ~ 340 Ma的岩浆活动报道较少,而325 ~ 300 Ma的岩浆活动较发育(图6−B);沉积岩中含有泥盆纪到早石炭世的碎屑锆石,缺乏早古生代的碎屑锆石(图6−E)。

    图  5  高压麻粒岩样品20100401碎屑锆石U−Pb年龄频谱图
    Figure  5.  Detrital zircon U-Pb age spectrum of high-pressure granulite sample 20100401

    此外,产出在额尔齐斯杂岩以西的布尔津杂岩,最大沉积年龄为399 Ma,表明其形成于早泥盆世之后(Li et al., 2017),其中含有大量的早古生代碎屑锆石(图7−B),表现出强烈的阿尔泰亲缘性(图7−A,B)。而不整合覆盖在额尔齐斯杂岩之上的特斯巴汗组砂砾岩,最大沉积年龄为293 Ma(Li et al., 2019),下部火山岩夹层全岩Ar−Ar年龄为253 Ma,表明其形成时代为晚二叠世(Li et al., 2019)。碎屑锆石中既有早古生代碎屑锆石,又有早石炭世碎屑锆石,表现出双向物源的特点(图7−A,C)。此外,特斯巴汗组的早二叠世碎屑锆石(图7−C)与区域上后碰撞岩浆活动的时间一致(陈立辉等, 2006; 童英等, 2006; Briggs et al., 2007; 周刚等, 2007; 王涛等, 2010; Zhang et al., 2012; 李香仁等, 2012; Wan et al., 2013; Tong et al., 2014),反映特斯巴汗组沉积时,区域上的后碰撞岩浆岩已成为碎屑物质的来源。

    图  7  碎屑锆石物源综合分析
    A—额尔齐斯−斋桑带东段、阿尔泰南部及东准噶尔北部碎屑锆石样品多维标度图解(据Vermeesch et al., 2016),坐标横轴(距离1)代表峰值年龄的差异度,纵轴(距离2)代表峰值比重的差异度,若样品间无线段连接,代表在物源上无相关性,若样品以实线或虚线连接,则具有极强或较强的相关性;B—布尔津杂岩碎屑锆石图谱;C—特斯巴汗组碎屑锆石图谱;D ~ F—额尔齐斯杂岩碎屑锆石图谱
    Figure  7.  Comprehensive analyses of detrital zircon sources

    在根据碎屑锆石对额尔齐斯杂岩进行物源分析时,要充分考虑额尔齐斯杂岩南北两侧可能物源区的岩浆岩和沉积岩分布。尽管现今出露于地表的中酸性深成岩体,在当时很可能仍然位于地壳深处,不可能是当时的碎屑锆石的物质来源。但是,作为一个岩浆体系,在物源区地壳深处有大量花岗质深成岩侵入的同时,当时的地表应相应地发育以中酸性为主的火山岩。当这些火山岩遭受风化、剥蚀作用时,就可能成为碎屑锆石的潜在物源。因此,阿尔泰南部和东准噶尔北部的火山岩和沉积岩均可以作为可能的物源。由于东准噶尔北部缺乏早古生代的岩浆岩(图6−B)和碎屑锆石(图6−E),而阿尔泰南部这个时代的物源相对丰富(图6−A,C),因此,含钾长石石榴蓝晶夕线石云母片岩(20100401)中的早古生代碎屑锆石只能来源于阿尔泰南部(图7−D)。样品中2颗前寒武纪碎屑锆石(图5)可能是阿尔泰前石炭纪地层(如哈巴河群)再循环的产物(Long et al., 2007; Jiang et al., 2011)(图6−D)。此外,样品中晚古生代的碎屑锆石既可能来自阿尔泰南部,也可能源自东准噶尔北部(图6−A~E),但碎屑锆石多维标度分析的结果显示,来源于阿尔泰南部的可能性更大(图7−A)。这与碎屑锆石以圆状—次圆状为主,部分为棱角状的形态特征及其反映的近源沉积是吻合的。

    在2个石榴子石云母片岩样品(L14FY137和 L14FY31)的碎屑锆石年龄谱中(Li et al., 2015, 2019),早古生代的碎屑锆石(图7−E)只能来源于阿尔泰的火山岩(图6−A)或沉积岩(图6−C),东准噶尔北部缺少这个时代的火山岩(图6−B)和沉积岩(图6−E),因而不能作为物源。由于阿尔泰不发育早石炭世岩浆活动(图6−A,C,D),所以早石炭世(约340 Ma)的碎屑锆石(图7−E)只能来源于东准噶尔(图6−B,E)。结合碎屑锆石年龄谱的多维标度分析,这2个样品具有双向物源的特征(图7−A,E)。但与之不同的是,云母片岩(L14FY04)样品以石炭纪(350 ~ 320 Ma)碎屑锆石为主(Li et al., 2017),缺少年龄大于380 Ma的锆石(图7−F),指示阿尔泰地体几乎没有提供碎屑物质,而东准噶尔地体是其主要物源,具有单向物源的特征(图7−A,F)。

    含钾长石石榴蓝晶夕线石云母片岩(20100401)的物源主要来自阿尔泰地体(图7−A,D),几乎没有东准噶尔地体的贡献。在物源区属性方面,该样品既不同于石榴子石云母片岩样品(图7−E),也明显不同于云母片岩(图7−F),与布尔津杂岩(图7−B)和不整合在额尔齐斯杂岩之上的特斯巴汗组(图7−C)也存在显著差别。所有这些表明,物源区属性是造成碎屑锆石年龄谱存在显著差异的主控因素。

    目前已有的碎屑锆石年龄资料显示,石榴子石云母片岩样品(L14FY137和 L14FY31)的原岩形成于早石炭世谢尔普霍夫阶之后(Li et al., 2015, 2019),云母片岩(L14FY04)的原岩形成于晚石炭世巴什基尔阶之后(Li et al., 2017),而含钾长石石榴蓝晶夕线石云母片岩(20100401)的原岩形成于早石炭世杜内阶之后。其中,含钾长石石榴蓝晶夕线石云母片岩和石榴子石云母片岩均产出在夕线石带内,而且前者的产出位置介于后者和云母片岩之间(图2−B)。这种空间关系似乎意味着额尔齐斯杂岩的原岩可能都是在早石炭世谢尔普霍夫阶之后或者晚石炭世巴什基尔阶之后形成的。不同样品具有明显不同的碎屑锆石年龄谱和最大沉积年龄,可归因于物源区属性的差异,即在碎屑物沉积过程中,物源区发生过重大改变。在这个前提条件下,含钾长石石榴蓝晶夕线石云母片岩的原岩时代就可能介于石榴子石云母片岩和云母片岩的2套原岩之间。相应的物源区变化是,早期是阿尔泰地体和东准噶尔地体同时作为物源区,为额尔齐斯杂岩变碎屑岩的提供碎屑物质,中期只有阿尔泰地体作为唯一的物源区,最后则变为以东准噶尔地体为主的单向物源。物源区的这种变化趋势表明,额尔齐斯杂岩变碎屑岩的原岩开始沉积时,阿尔泰和东准噶尔地体至少已处于拼贴状态。只有这样,2个地体才可能同时作为物源区。但是,在大陆汇聚背景下,短时间内从双向物源快速切换为单向物源,意味着地貌上的急剧变化,尤其是作为上盘的东准噶尔地体不再作为物源区的可能性是很小的。

    然而,额尔齐斯杂岩遭受了很强的变质变形作用。强烈的挤压、剪切和伸展3期构造变形作用和高角闪岩相或麻粒岩相变质作用(Li et al., 2017; Chen et al., 2019; Hu et al., 2020),已经彻底破坏了原岩的沉积序列和原生构造,因而仅根据碎屑锆石年龄推测原岩时代仍然存在很大的不确定性。从变质变形作用产生强烈改造的角度分析,不能排除另外一种可能性的存在,即含钾长石石榴蓝晶夕线石云母片岩的原岩是在早石炭世杜内期—谢尔普霍夫期之间形成的,而石榴子石云母片岩样品(L14FY137和 L14FY31)和云母片岩(L14FY04)的原岩则可能为谢尔普霍夫阶或巴什基尔阶之后的碎屑沉积(Li et al., 2015, 2017, 2019)。在这种情况下,物源区的变化趋势则变为,早期碎屑沉积是以阿尔泰地体作为单一的物源区,中期有阿尔泰地体和东准噶尔地体同时为额尔齐斯杂岩的原岩提供碎屑物质,晚期的单向物源区为东准噶尔地体。在时间上,阿尔泰地体作为单一物源区时,额尔齐斯−斋桑洋北向俯冲已经结束,阿尔泰南缘已经从活动大陆边缘转化为被动大陆边缘,接受了来自阿尔泰地体的碎屑沉积。与此同时,额尔齐斯−斋桑洋持续南向俯冲(Hong et al., 2017),在东准噶尔地体的北缘产生弧岩浆活动(Hong et al., 2017; Wang et al., 2021)。在这个时期,由于额尔齐斯−斋桑洋的分隔作用,东准噶尔地体的北部不可能向阿尔泰南缘提供碎屑物质。因此,含钾长石石榴蓝晶夕线石云母片岩的原岩很有可能是阿尔泰南缘被动陆源沉积的组成部分。而当额尔齐斯杂岩中的变碎屑岩显示出双向物源区特征时,表明额尔齐斯−斋桑洋已经闭合,南北两侧地体可能同时提供碎屑沉积物。碰撞作用可以使较早的被动陆缘沉积和同碰撞沉积通过构造作用叠置在一起,并被埋藏至中地壳层次(如喜马拉雅造山带, Weller et al., 2013; Jessup et al., 2016),发生角闪岩相—麻粒岩相变质作用。在强烈挤压作用下,岩石强烈褶皱、冲断、抬升,造成了不同时期和不同变质程度的变碎屑岩出现在同一地壳层次上。经过强烈的剪切作用之后,发生区域性的地壳伸展作用,后碰撞岩浆活动不但出现在阿尔泰和东准噶尔地体中,还侵入了额尔齐斯杂岩,而阿尔泰南缘幔源岩浆侵入还诱发了局部的超高温变质作用(Tong et al., 2014; Yang et al., 2015; Liu et al., 2020)。在遭受到强烈剥蚀作用后,来自阿尔泰和东准噶尔地体的碎屑物沉积在额尔齐斯杂岩之上形成了晚二叠世特斯巴汗组,呈角度不整合覆盖在强烈变质变形的额尔齐斯杂岩之上。

    显然,与第一种可能性相比,后一种可能性不需要地貌在短时间内快速切换,阿尔泰和东准噶尔地体拼合后,作为上盘的东准噶尔地体一直是物源区,初期和阿尔泰地体一起提供碎屑物质,后来演变为唯一的物源区。尽管2种可能的解释都可以与区域资料相吻合,但后一种解释显然更合理。这就意味着,在晚石炭世,额尔齐斯−斋桑洋的南向俯冲结束后,阿尔泰和东准噶尔的陆−陆碰撞形成了前陆盆地,接受同碰撞碎屑沉积。由于构造叠置作用,同碰撞沉积物和较早在阿尔泰南缘被动陆缘形成的沉积物一起,被深埋至中地壳层次,发生中压相系高级变质作用(Briggs et al., 2007; Chen et al., 2019),在南北向强烈挤压作用下,发生褶皱、冲断、抬升和剥蚀,直到晚二叠世特斯巴汗组沉积(Li et al., 2015, 2017; Hu et al., 2020)。

    通过含钾长石石榴蓝晶夕线石云母片岩的碎屑锆石研究,结合区域资料,本文对额尔齐斯杂岩中变碎屑岩的物源及构造意义取得以下主要认识。

    (1)碎屑锆石年代学和区域资料的综合分析表明,额尔齐斯杂岩是在晚石炭世阿尔泰地体和东准噶尔地体拼合过程中形成的,以前陆盆地的同碰撞沉积为主,包括以阿尔泰和东准噶尔地体为双向物源区的和以东准噶尔地体为单一物源区的两类同碰撞沉积。额尔齐斯杂岩中可能存在较早形成的阿尔泰南缘被动陆缘沉积。

    (2)碰撞作用使额尔齐斯杂岩受到南北两侧的强烈挤压,构造叠置作用使物源迥异的被动陆缘和同碰撞碎屑沉积物被埋深到地壳不同层次,最高达到高角闪岩相和麻粒岩相变质作用,并产生一系列褶皱−逆冲构造,发生强烈抬升和剥蚀,于晚二叠世之前折返到地表。

    致谢:感谢北京大学地球与空间科学学院李楠工程师在锆石LA−MC−ICP−MS U−Pb定年过程中给予的技术指导,以及孙浩硕士和司机李建军在野外工作中提供的帮助;感谢审稿专家对论文的认真评审,所提意见和建议对提升文章质量有很大帮助。

  • 图  1   额尔齐斯−斋桑带及邻区地质单元划分(A)和阿尔泰地质简图(B)(据Li et al., 2017

    Figure  1.   Tectonic subdivisions of Irtysh-Zaisan Belt and surrounding area(A) and simplified geological map of Altai area (B)

    图  2   额尔齐斯−斋桑带东段地质简图(A)(据Li et al., 2017)、额尔齐斯杂岩地质构造简图(B,展示变质分带情况和采样点)(据Li et al., 2017)和剖面图(C)

    Figure  2.   Simplified geological map of the eastern segment of Irtysh-Zaisan Belt(A), simplified geological and structural map of the Irtysh complex in Fuyun area, showing metamorphic zones and sampling sites(B), and the profile (C)

    图  3   高压麻粒岩样品20100401的野外照片(A)和单偏光(图片上半部分)及正交偏光(图片下半部分)显微照片(B,C,D)

    Figure  3.   Field photograph (A) and single polarization (top half of the image) and orthogonal polarization (bottom half of the image) micrographs (B, C, D) of high-pressure granulite sample 20100401

    图  4   高压麻粒岩样品20100401代表性碎屑锆石阴极发光图像

    Figure  4.   Cathode luminescence image for representative detrital zircons of high-pressure granulite sample 20100401

    图  5   高压麻粒岩样品20100401碎屑锆石U−Pb年龄频谱图

    Figure  5.   Detrital zircon U-Pb age spectrum of high-pressure granulite sample 20100401

    图  7   碎屑锆石物源综合分析

    A—额尔齐斯−斋桑带东段、阿尔泰南部及东准噶尔北部碎屑锆石样品多维标度图解(据Vermeesch et al., 2016),坐标横轴(距离1)代表峰值年龄的差异度,纵轴(距离2)代表峰值比重的差异度,若样品间无线段连接,代表在物源上无相关性,若样品以实线或虚线连接,则具有极强或较强的相关性;B—布尔津杂岩碎屑锆石图谱;C—特斯巴汗组碎屑锆石图谱;D ~ F—额尔齐斯杂岩碎屑锆石图谱

    Figure  7.   Comprehensive analyses of detrital zircon sources

    表  1   变碎屑岩样品20100401碎屑锆石U−Th−Pb同位素分析结果(mz-7为碎屑锆石边部的变质锆石测试点)

    Table  1   U−Th−Pb data of detrital zircons from high-pressure granulite sample 20100401

    点号 Th/U 同位素比值 年龄/Ma 谐和度/%
    207Pb/235U 206Pb/238U rho 207Pb/206Pb 207Pb/235U 206Pb/238U
    1 0.81 0.44 0.02 0.06 0.00 0.39 352 47 368.9 10.0 368.3 3.5 99.84
    2 0.73 0.44 0.01 0.06 0.00 0.43 368 32 367.9 8.8 364.3 2.6 99.01
    3 0.75 0.45 0.01 0.06 0.00 0.42 459 37 375.5 9.7 364.4 3.0 96.95
    4 1.06 0.46 0.02 0.06 0.00 0.83 424 41 385.1 11.0 376.7 4.1 97.77
    5 1.64 0.51 0.01 0.07 0.00 0.29 443 28 417.1 9.0 410.4 2.1 98.37
    6 1.31 0.48 0.02 0.06 0.00 0.39 412 43 395.4 10.0 387.8 4.6 98.04
    7 1.56 0.49 0.01 0.06 0.00 0.56 426 46 406.5 8.8 403.5 8.8 99.26
    8 0.91 0.45 0.01 0.06 0.00 0.42 417 22 378.7 3.5 371.0 6.6 97.92
    9 1.39 0.47 0.01 0.06 0.00 0.31 402 28 391.7 4.1 388.9 7.1 99.28
    10 2.16 0.56 0.01 0.07 0.00 0.60 466 37 449.5 6.5 447.0 3.4 99.44
    11 0.64 0.45 0.01 0.06 0.00 0.43 421 48 374.7 7.5 363.8 7.0 97.00
    12 1.13 0.45 0.01 0.06 0.00 0.33 344 47 376.4 6.7 382.1 7.9 98.51
    13 4.40 10.89 0.09 0.47 0.01 0.88 2542 6 2514.6 8.1 2478.0 40.0 97.43
    14 1.16 0.47 0.01 0.06 0.00 0.51 451 34 392.8 5.9 383.2 7.4 97.49
    15 1.11 0.46 0.01 0.06 0.00 0.66 404 39 384.3 7.9 381.2 9.0 99.19
    16 0.91 0.44 0.01 0.06 0.00 0.50 389 32 373.7 5.0 370.9 7.1 99.25
    17 1.98 0.52 0.01 0.07 0.00 0.50 388 41 429.1 7.5 435.7 9.7 98.49
    18 1.00 0.45 0.01 0.06 0.00 0.45 392 38 376.3 6.1 375.7 7.9 99.84
    19 0.78 0.45 0.01 0.06 0.00 0.61 442 30 376.0 5.4 364.7 6.7 96.90
    20 1.90 0.51 0.01 0.07 0.00 0.52 331 44 418.8 8.0 435.6 10.0 96.14
    21 1.24 0.46 0.01 0.06 0.00 0.50 394 44 385.9 6.7 384.7 7.8 99.69
    22 1.17 0.46 0.01 0.06 0.00 0.30 376 38 381.7 5.8 383.4 7.2 99.56
    23 1.28 0.50 0.01 0.06 0.00 0.46 540 47 409.8 7.9 387.8 8.1 94.33
    24 1.58 0.49 0.01 0.07 0.00 0.62 403 25 406.7 5.0 408.5 8.0 99.56
    25 1.41 0.47 0.01 0.06 0.00 0.60 383 42 389.1 6.8 390.8 5.0 99.56
    26 2.27 0.55 0.01 0.07 0.00 0.55 433 39 447.4 6.5 449.6 3.4 99.51
    27 1.08 0.45 0.01 0.06 0.00 0.59 354 54 375.2 8.8 378.4 4.8 99.15
    28 0.61 0.42 0.01 0.06 0.00 0.35 404 40 359.6 5.0 356.9 2.1 99.24
    29 0.83 0.44 0.01 0.06 0.00 0.28 372 54 369.0 7.3 368.8 3.3 99.95
    30 2.01 0.55 0.02 0.07 0.00 0.64 409 47 443.4 9.8 443.7 6.3 99.93
    31 1.49 0.49 0.01 0.06 0.00 0.63 418 48 403.9 8.9 400.8 5.5 99.23
    32 0.95 0.45 0.01 0.06 0.00 0.56 397 36 376.8 5.0 373.8 2.1 99.20
    33 0.61 0.42 0.01 0.06 0.00 0.33 370 45 355.7 6.0 353.7 2.2 99.43
    34 0.86 0.43 0.01 0.06 0.00 0.46 314 54 362.3 7.7 369.3 4.0 98.10
    35 1.34 0.46 0.01 0.06 0.00 0.72 357 38 383.6 6.2 387.9 4.2 98.89
    36 0.90 0.43 0.01 0.06 0.00 0.48 345 37 364.7 4.9 370.2 2.2 98.51
    37 0.62 0.44 0.01 0.06 0.00 0.35 406 42 366.7 6.0 362.6 2.4 98.87
    38 1.52 0.47 0.01 0.06 0.00 0.56 371 40 393.7 5.8 401.5 3.3 98.06
    39 0.90 0.46 0.01 0.06 0.00 0.48 501 35 387.6 5.0 370.7 1.9 95.44
    40 1.12 0.47 0.01 0.06 0.00 0.41 372 50 392.0 8.1 381.5 2.9 97.25
    41 1.42 0.49 0.02 0.06 0.00 0.36 426 63 407.9 10.0 393.1 3.8 96.24
    42 0.90 0.45 0.01 0.06 0.00 0.36 404 56 379.7 8.9 370.1 3.1 97.41
    43 1.70 0.53 0.02 0.07 0.00 0.37 438 56 431.8 10.0 430.0 4.1 99.58
    44 1.15 0.46 0.01 0.06 0.00 0.31 387 52 381.1 8.5 383.0 2.8 99.50
    45 1.27 0.46 0.01 0.06 0.00 0.42 432 52 386.7 8.8 386.1 3.4 99.84
    46 2.31 3.96 0.08 0.28 0.00 0.83 1669 31 1627.4 18.0 1603.0 11.0 95.90
    47 1.47 0.48 0.01 0.06 0.00 0.29 409 57 399.5 8.9 397.1 3.9 99.40
    48 1.25 0.47 0.01 0.06 0.00 0.32 385 52 389.8 8.3 385.4 2.2 98.86
    49 1.15 0.47 0.01 0.06 0.00 0.37 388 52 387.7 8.4 382.6 2.9 98.67
    50 1.18 0.47 0.01 0.06 0.00 0.43 387 51 392.2 8.6 384.1 3.1 97.89
    51 0.98 0.43 0.01 0.06 0.00 0.36 396 53 360.6 8.0 374.5 2.5 96.29
    52 0.99 0.42 0.01 0.06 0.00 0.35 381 55 358.7 8.4 374.7 2.9 95.73
    53 1.49 0.46 0.01 0.06 0.00 0.49 396 48 385.2 8.3 401.1 4.5 96.04
    54 1.64 0.52 0.02 0.07 0.00 0.46 468 68 426.7 11.0 420.4 5.7 98.50
    55 0.82 0.46 0.01 0.06 0.00 0.35 454 60 381.1 9.7 368.4 3.0 96.55
    56 0.79 0.46 0.01 0.06 0.00 0.47 465 48 384.6 7.8 368.0 2.4 95.49
    57 1.04 0.46 0.02 0.06 0.00 0.30 431 81 387.0 12.0 376.3 5.5 97.16
    58 1.38 0.47 0.02 0.06 0.00 0.57 421 59 392.4 10.0 388.1 4.4 98.89
    59 0.95 0.43 0.01 0.06 0.00 0.31 325 47 364.5 7.0 372.8 2.1 97.77
    60 1.12 0.44 0.01 0.06 0.00 0.38 310 53 370.4 8.0 381.8 3.4 97.01
    61 0.95 0.45 0.01 0.06 0.00 0.42 398 56 374.0 8.4 373.7 2.8 99.92
    62 0.34 0.43 0.01 0.06 0.00 0.32 435 59 365.9 8.6 353.5 3.1 96.49
    63 0.64 0.43 0.01 0.06 0.00 0.48 425 43 366.0 6.7 362.9 1.5 99.15
    64 0.61 0.44 0.01 0.06 0.00 0.29 454 46 368.4 7.3 359.5 2.1 97.52
    65 1.40 0.46 0.01 0.06 0.00 0.47 396 54 384.1 8.6 389.6 2.6 98.59
    66 1.06 0.45 0.01 0.06 0.00 0.24 405 48 377.5 7.0 377.2 1.8 99.92
    67 0.96 0.46 0.02 0.06 0.00 0.48 418 78 382.0 13.0 374.1 6.0 97.89
    68 1.13 0.45 0.02 0.06 0.00 0.40 341 77 380.0 12.0 382.3 5.3 99.40
    69 1.11 0.45 0.01 0.06 0.00 0.36 345 60 378.2 9.1 381.0 3.4 99.27
    70 1.03 0.45 0.01 0.06 0.00 0.33 417 47 378.9 7.5 376.2 1.6 99.28
    71 0.87 0.45 0.01 0.06 0.00 0.44 397 38 374.8 4.0 369.8 3.4 98.65
    72 1.85 0.54 0.01 0.07 0.00 0.37 471 42 435.2 6.2 430.6 3.6 98.93
    73 1.09 0.45 0.01 0.06 0.00 0.41 337 55 377.5 7.2 379.5 4.2 99.47
    74 1.52 0.48 0.01 0.06 0.00 0.62 370 40 399.4 6.4 402.7 4.0 99.18
    mz-7 0.01 0.33 0.00 0.04 0.00 0.42 306 29 286.4 3.5 283.0 5.2 98.80
      注:谐和度(年龄< 1000 Ma)= 100%−│[207Pb/235U年龄 (Ma)−206Pb/238U年龄 (Ma)] / [207Pb/235U年龄 (Ma)]│*100%; 谐和度(年龄> 1000 Ma)= 100%−│[207Pb/206Pb年龄 (Ma)−206Pb/238Pb年龄 (Ma)] / [207Pb/206Pb年龄 (Ma)]│*100%
    下载: 导出CSV
  • An R, Zhao G C, Liu Q, et al. 2021. Early Palaeozoic subduction−accretion in East Junggar (NW China): Insights from age, geochemical, and Sr−Nd−Hf isotopic data of andesitic rocks in the northern Yemaquan Arc[J]. Lithos, 380/381: 105892. doi: 10.1016/j.lithos.2020.105892

    Briggs S M, Yin A, Manning C E, et al. 2007. Late Paleozoic tectonic history of the Ertix Fault in the Chinese Altai and its implications for the development of the Central Asian Orogenic System[J]. Geological Society of America Bulletin, 119(7/8): 944−960. doi: 10.1130/B26044.1

    Broussolle A, Sun M, Schulmann K, et al. 2019. Are the Chinese Altai “terranes” the result of juxtaposition of different crustal levels during Late Devonian and Permian orogenesis?[J]. Gondwana Research, 66: 183−206. doi: 10.1016/j.gr.2018.11.003

    Buslov M M, Saphonova I Y, Watanabe T, et al. 2001. Evolution of the Paleo−Asian Ocean (Altai−Sayan Region, Central Asia) and collision of possible Gondwana−derived terranes with the southern marginal part of the Siberian continent[J]. Geosciences Journal, 5(3): 203−224. doi: 10.1007/BF02910304

    Buslov M M, Watanabe T, Fujiwara Y, et al. 2004. Late Paleozoic faults of the Altai region, Central Asia: tectonic pattern and model of formation[J]. Journal of Asian Earth Sciences, 23(5): 655−671. doi: 10.1016/S1367-9120(03)00131-7

    Cai K D, Sun M, Yuan C, et al. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 18(4): 638−652. doi: 10.1016/j.gr.2010.02.010

    Cai K D, Sun M, Yuan C, et al. 2011. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: A review[J]. Russian Geology and Geophysics, 52(12): 1619–1633.

    Cai K D, Sun M, Yuan C, et al. 2012. Carboniferous mantle−derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt[J]. Gondwana Research, 22(2): 681−698. doi: 10.1016/j.gr.2011.11.008

    Chen B, Jahn B M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications[J]. Geological Magazine, 139(1): 1−13. doi: 10.1017/S0016756801006100

    Chen B, Jahn B M. 2004. Genesis of post−collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences, 23: 691−703. doi: 10.1016/S1367-9120(03)00118-4

    Chen M, Sun M, Li P F, et al. 2019. Late Paleozoic Accretionary and Collisional Processes along the Southern Peri−Siberian Orogenic System: New Constraints from Amphibolites within the Irtysh Complex of Chinese Altai[J]. The Journal of Geology, 127(2): 241−262. doi: 10.1086/701253

    Gao F P, Zhou G, Lei Y X, et al. 2010. Early Permian granite age and geochemical characteristics in Shaerbulake of Xinjiang's Altai area and it's geoloigcal significance[J]. Geological Bulletin of China, 29(9): 1281−1293.

    Han B F, Ji J Q, Song B, et al. 2004. SHRIMP zircon U−Pb ages of Kalatongke No. 1 and Huangshandong Cu−Ni−bearing mafic−ultramafic complexes, North Xinjiang, and geological implications[J]. Chinese Science Bulletin, 49(22): 2424−2429.

    He Y L, Sun M, Cai K D, et al. 2015. Petrogenesis of the Devonian high−Mg rock association and its tectonic implication for the Chinese Altai orogenic belt, NW China[J]. Journal of Asian Earth Sciences, 113: 61−74. doi: 10.1016/j.jseaes.2015.02.014

    Hermann J, Rubatto D, Korsakov A, et al. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan)[J]. Contributions to Mineralogy and Petrology, 141(1): 66−82. doi: 10.1007/s004100000218

    Hong D W, Zhang J S, Wang T, et al. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 23(5): 799−813. doi: 10.1016/S1367-9120(03)00134-2

    Hong T, Klemd R, Gao J, et al. 2017. The tectonic evolution of the Irtysh tectonic belt: New zircon U–Pb ages of arc−related and collisional granitoids in the Kalaxiangar tectonic belt, NW China[J]. Lithos, 272/273: 46−68. doi: 10.1016/j.lithos.2016.12.001

    Hu W W, Li P F, Rosenbaum G, et al. 2020. Structural evolution of the eastern segment of the Irtysh Shear Zone: Implications for the collision between the East Junggar Terrane and the Chinese Altai Orogen (northwestern China)[J]. Journal of Structural Geology, 139: 104126. doi: 10.1016/j.jsg.2020.104126

    Jessup M J, Langille J M, Cottle J M, et al. 2016. Crustal thickening, Barrovian metamorphism, and exhumation of midcrustal rocks during doming and extrusion: Insights from the Himalaya, NW India[J]. Tectonics, 35(1): 160−186. doi: 10.1002/2015TC003962

    Jiang Y D, Sun M, Zhao G C, et al. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia[J]. Precambrian Research, 189(1): 140−154.

    Kozakov I K, Didenko A N, Azimov P Y, et al. 2011. Geodynamic settings and formation conditions of crystalline complexes in the south Altai and south Gobi metamorphic belts[J]. Geotectonics, 45(3): 174−194. doi: 10.1134/S0016852111030022

    Li D, He D F, Santosh M, et al. 2014. Petrogenesis of Late Paleozoic volcanics from the Zhaheba depression, East Junggar: Insights into collisional event in an accretionary orogen of Central Asia[J]. Lithos, 184/187: 167−193. doi: 10.1016/j.lithos.2013.10.003

    Li D, He D, Tang Y. 2016. Reconstructing multiple arc−basin systems in the Altai–Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 121: 84−107. doi: 10.1016/j.jseaes.2016.02.010

    Li P F, Sun M, Rosenbaum G, et al. 2015. Structural evolution of the Irtysh Shear Zone (northwestern China) and implications for the amalgamation of arc systems in the Central Asian Orogenic Belt[J]. Journal of Structural Geology, 80: 142−156. doi: 10.1016/j.jsg.2015.08.008

    Li P F, Sun M, Rosenbaum G, et al. 2017. Late Paleozoic closure of the Ob−Zaisan Ocean along the Irtysh shear zone (NW China): Implications for arc amalgamation and oroclinal bending in the Central Asian orogenic belt [J]. Geological Society of America Bulletin, 129: B31541. 31541.

    Li P F, Sun M, Shu C T, et al. 2019. Evolution of the Central Asian Orogenic Belt along the Siberian margin from Neoproterozoic−Early Paleozoic accretion to Devonian trench retreat and a comparison with Phanerozoic eastern Australia[J]. Earth−Science Reviews, 198: 102951. doi: 10.1016/j.earscirev.2019.102951

    Liu W, Liu X J, Liu L J. 2013. Underplating generated A− and I−type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U–Pb ages, petrography, geochemistry and Nd–Sr–Hf isotopes[J]. Lithos, 179: 293−319. doi: 10.1016/j.lithos.2013.08.009

    Liu Z, Bartoli O, Tong L X, et al. 2020. Permian ultrahigh–temperature reworking in the southern Chinese Altai: Evidence from petrology, P–T estimates, zircon and monazite U–Th–Pb geochronology[J]. Gondwana Research, 78: 20−40. doi: 10.1016/j.gr.2019.08.007

    Long X P, Sun M, Yuan C, et al. 2007. Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt [J]. Tectonics, 26(5).

    Long X P, Yuan C, Sun M, et al. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution[J]. Tectonophysics, 480: 213−231. doi: 10.1016/j.tecto.2009.10.013

    Ludwig K R. 2012. Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley CA: Berkeley Geochronology Center Special Publication, 5: 1−75.

    Luo J, Xiao W J, Wakabayashi J, et al. 2017. The Zhaheba ophiolite complex in Eastern Junggar (NW China): Long lived supra−subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids[J]. Gondwana Research, 43: 17−40. doi: 10.1016/j.gr.2015.04.004

    Niu L, Hong T, Xu X W, et al. 2021. Geochronology and trace elements of zircon in the Southern Chinese Altay: Implications for tectonic setting[J]. Geological Journal, 56: 3605−3625. doi: 10.1002/gj.4120

    Paton C, Hellstrom J, Paul B, et al. 2011. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 26(12): 2508−2518. doi: 10.1039/c1ja10172b

    Safonova I Y, Simonov V A, Kurganskaya E V, et al. 2012. Late Paleozoic oceanic basalts hosted by the Char suture−shear zone, East Kazakhstan: Geological position, geochemistry, petrogenesis and tectonic setting[J]. Journal of Asian Earth Sciences, 49: 20−39. doi: 10.1016/j.jseaes.2011.11.015

    Shen X, Zhang H, Wang Q, et al. 2011. Late Devonian–Early Permian A−type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2−type” granites[J]. Journal of Asian Earth Sciences, 42: 986−1007. doi: 10.1016/j.jseaes.2010.10.004

    Song S H, Xiao W J, Chen Y C, et al. 2020. Growth of an accretionary complex in the southern Chinese Altai: Insights from the Palaeozoic Kekesentao ophiolitic mélange and surrounding turbidites[J]. Geological Journal, 56(1): 265−283.

    Sun M, Yuan C, Xiao W J, et al. 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 247(3/4): 352−383. doi: 10.1016/j.chemgeo.2007.10.026

    Sun M, Long X P, Cai K D, et al. 2009. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions[J]. Science in China Series D: Earth Sciences, 52(9): 1345−1358. doi: 10.1007/s11430-009-0110-3

    Tao H F, Sun S, Wang Q C, et al. 2014. Petrography and geochemistry of lower carboniferous greywacke and mudstones in Northeast Junggar, China: Implications for provenance, source weathering, and tectonic setting[J]. Journal of Asian Earth Sciences, 87: 11−25. doi: 10.1016/j.jseaes.2014.02.007

    Taylor S R, Mclennan S M. 1995. The geochemical evolution of the continental crust[J]. Reviews of Geophysics, 33(2): 241−265. doi: 10.1029/95RG00262

    Tong L X, Xu Y G, Cawood P A, et al. 2014. Anticlockwise PT evolution at ~280Ma recorded from ultrahigh−temperature metapelitic granulite in the Chinese Altai orogenic belt, a possible link with the Tarim mantle plume?[J]. Journal of Asian Earth Sciences, 94: 1−11. doi: 10.1016/j.jseaes.2014.07.043

    Tong Y, Wang T, Siebel W, et al. 2012. Recognition of early Carboniferous alkaline granite in the southern Altai orogen: post−orogenic processes constrained by U–Pb zircon ages, Nd isotopes, and geochemical data[J]. International Journal of Earth Sciences, 101(4): 937−950. doi: 10.1007/s00531-011-0700-0

    Tong Y, Wang T, Jahn B M, et al. 2014. Post−accretionary permian granitoids in the Chinese Altai orogen: Geochronology, petrogenesis and tectonic implications[J]. American Journal of Science, 314(1): 80−109. doi: 10.2475/01.2014.03

    Vermeesch P, Resentini A, Garzanti E. 2016. An R package for statistical provenance analysis[J]. Sedimentary Geology, 336: 14−25. doi: 10.1016/j.sedgeo.2016.01.009

    Wan B, Xiao W J, Windley B F, et al. 2013. Permian hornblende gabbros in the Chinese Altai from a subduction−related hydrous parent magma, not from the Tarim mantle plume[J]. Lithos, 5(3): 290−299. doi: 10.1130/L261.1

    Wang T, Hong D W, Jahn B M, et al. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: implications for the tectonic evolution of an accretionary orogeny[J]. The Journal of Geology, 114(6): 735−751. doi: 10.1086/507617

    Wang T, Jahn B M, Kovach V P, et al. 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 110(1): 359−372.

    Wang T, Jahn B M, Kovach V P, et al. 2014a. Mesozoic intraplate granitic magmatism in the Altai accretionary orogen, NW China: implications for the orogenic architecture and crustal growth[J]. American Journal of Science, 314(1): 1−42. doi: 10.2475/01.2014.01

    Wang X H, Xu X W, Zhang B L, et al. 2021. Ore−forming mafic plutons emplaced at syn−collisional compressive setting in Kalatongke Ni–Cu sulphide district, Southern Altay, CAOB: New evidence from the Late Carboniferous granitic porphyries[J]. Geological Journal, 56(9): 4719−4734. doi: 10.1002/gj.4202

    Wang Y, Long X, Wilde S A, et al. 2014b. Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implications for tectonic affinity of the Altai−Mongolia terrane in the Central Asian Orogenic Belt[J]. Lithos, 210–211: 57–68.

    Wei C J, Clarke G, Tian W, et al. 2007. Transition of metamorphic series from the Kyanite− to andalusite−types in the Altai orogen, Xinjiang, China: Evidence from petrography and calculated KMnFMASH and KFMASH phase relations[J]. Lithos, 96(3): 353−374.

    Weller O M, St−Onge M R, Waters D J, et al. 2013. Quantifying Barrovian metamorphism in the Danba Structural Culmination of eastern Tibet[J]. Journal of Metamorphic Geology, 31(9): 909−935. doi: 10.1111/jmg.12050

    Windley B F, Kröner A, Guo J H, et al. 2002. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution[J]. The Journal of Geology, 110: 719−737. doi: 10.1086/342866

    Xiao W J, Windley B F, Yuan C, et al. 2009. Paleozoic multiple subduction−accretion processes of the southern Altaids[J]. American Journal of Science, 309(3): 221−270. doi: 10.2475/03.2009.02

    Xu X W, Li H, Peters S G, et al. 2017. Cu−rich porphyry magmas produced by fractional crystallization of oxidized fertile basaltic magmas (Sangnan, East Junggar, PR China)[J]. Ore Geology Reviews, 91: 296−315. doi: 10.1016/j.oregeorev.2017.09.020

    Yang X Q, Li Z L, Wang H H, et al. 2015. Petrology and geochemistry of ultrahigh−temperature granulites from the South Altay orogenic belt, northwestern China: Implications for metamorphic evolution and protolith composition[J]. Island Arc, 24(2): 169−187. doi: 10.1111/iar.12102

    Yuan C, Sun M, Xiao W, et al. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids[J]. Chemical Geology, 242(1): 22−39.

    Zhang C L, Santosh M, Zou H B, et al. 2012. Revisiting the “Irtish tectonic belt”: Implications for the Paleozoic tectonic evolution of the Altai orogen[J]. Journal of Asian Earth Sciences, 52: 117−133. doi: 10.1016/j.jseaes.2012.02.016

    Zhang C, Liu L F, Santosh M, et al. 2017. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr–Nd–Hf isotopes and trace elements in granitoids of the Chinese Altay[J]. Gondwana Research, 47: 142−160. doi: 10.1016/j.gr.2016.08.009

    Zhang C, Luo Q, Zhang X, et al. 2018. Geochronological, geochemical, and Sr–Nd–Hf isotopic studies of the Aketas adakitic granites in Eastern Junggar: Petrogenesis and tectonic implications[J]. Geological Journal, 53: 80−101. doi: 10.1002/gj.2879

    Zhang Z C, Yan S H, Chen B L, et al. 2006. SHRIMP zircon U−Pb dating for subduction−related granitic rocks in the northern part of east Jungaar, Xinjiang[J]. Chinese Science Bulletin, 51: 952−962. doi: 10.1007/s11434-008-0952-7

    Zhang Z C, Zhou G, Kusky T M, et al. 2009. Late Paleozoic volcanic record of the Eastern Junggar terrane, Xinjiang, Northwestern China: Major and trace element characteristics, Sr–Nd isotopic systematics and implications for tectonic evolution[J]. Gondwana Research, 16(2): 201−215. doi: 10.1016/j.gr.2009.03.004

    Zhang J, Sun M, Schulmann K, et al. 2015. Distinct deformational history of two contrasting tectonic domains in the Chinese Altai: Their significance in understanding accretionary orogenic process[J]. Journal of Structural Geology, 73: 64−82. doi: 10.1016/j.jsg.2015.02.007

    Zheng J, Chai F, Yang F. 2016. The 401–409 Ma Xiaodonggou granitic intrusion: implications for understanding the Devonian Tectonics of the Northwest China Altai orogeny[J]. International Geology Review, 58(5): 540−555. doi: 10.1080/00206814.2015.1095131

    陈立辉, 韩宝福. 2006. 新疆北部乌恰沟地区镁铁质侵入岩的年代学、地球化学和Sr−Nd−Pb同位素组成: 对地幔源区特征和深部过程的约束[J]. 岩石学报, 22(5): 1201−1214. doi: 10.3321/j.issn:1000-0569.2006.05.012
    李长民. 2009. 锆石成因矿物学与锆石微区定年综述[J]. 地质调查与研究, 32(3): 161−174.
    李涤, 何登发, 樊春, 等. 2013. 东准噶尔早二叠世后碰撞岩浆活动: 蕴都卡拉流纹岩SHRIMP U−Pb年代学、地球化学和Hf同位素的制约[J]. 岩石学报, 29(1): 317−337.
    李香仁, 刘锋, 杨富全. 2012. 阿尔泰克因布拉克铜锌矿区二云母正长花岗岩成岩时代及地质意义[J]. 新疆地质, 30(1): 5−11. doi: 10.3969/j.issn.1000-8845.2012.01.002
    刘锋, 李延河, 毛景文, 等. 2008. 阿尔泰造山带阿巴宫花岗岩体锆石SHRIMP年龄及其地质意义[J]. 地球学报, 29(6): 795−804.
    聂峰, 田晓丽, 李振生. 2014. 东准造山带原泥盆系的形成时代及源区: 碎屑锆石U−Pb年代学证据[J]. 地质科学, 49: 695−717.
    汤贺军, 孟贵祥, 王召林. 2021. 新疆东准噶尔扎河坝一带碱性花岗岩锆石U−Pb年代学、Lu−Hf同位素特征及地质意义[J]. 地质论评, 67(S1): 67−68.
    童英, 王涛, 洪大卫, 等. 2005. 阿尔泰造山带西段同造山铁列克花岗岩体锆石U−Pb年龄及其构造意义[J]. 地球学报, 26: 74−77. doi: 10.3321/j.issn:1006-3021.2005.z1.026
    童英, 洪大卫, 王涛, 等. 2006. 阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U−Pb年龄及其地质意义[J]. 岩石矿物学杂志, 25(2): 85−89. doi: 10.3969/j.issn.1000-6524.2006.02.001
    童英, 王涛, 洪大卫, 等. 2007. 中国阿尔泰北部山区早泥盆世花岗岩的年龄、成因及构造意义[J]. 岩石学报, 23(8): 1933−1944. doi: 10.3969/j.issn.1000-0569.2007.08.014
    王涛, 童英, 李舢, 等. 2010. 阿尔泰造山带花岗岩时空演变、构造环境及地壳生长意义——以中国阿尔泰为例[J]. 岩石矿物学杂志, 29(6): 595−618. doi: 10.3969/j.issn.1000-6524.2010.06.002
    王中刚, 1998. 阿尔泰花岗岩类地球化学[M]. 北京:科学出版社.
    相鹏, 张连昌, 吴华英, 等. 2009. 新疆青河卡拉先格尔铜矿带Ⅱ−Ⅲ矿区含矿斑岩锆石年龄及地质意义[J]. 岩石学报, 25: 1474−1483.
    袁峰, 周涛发, 岳书仓. 2001. 阿尔泰诺尔特地区花岗岩形成时代及成因类型[J]. 新疆地质, 19(4): 292−296. doi: 10.3969/j.issn.1000-8845.2001.04.013
    周刚, 张招崇, 王新昆, 等. 2007. 新疆玛因鄂博断裂带中花岗质糜棱岩锆石U−Pb SHRIMP和黑云母40Ar−39Ar年龄及意义[J]. 地质学报, 81(3): 359−369. doi: 10.3321/j.issn:0001-5717.2007.03.008
图(7)  /  表(1)
计量
  • 文章访问数:  4541
  • HTML全文浏览量:  4008
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-08
  • 修回日期:  2022-03-10
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回