阿拉善地区二叠纪—三叠纪构造变形环境与属性:问题与争论

    张进, 王振义, 赵衡, 张北航, 曲军峰, 杨亚琦, 张义平, 赵硕, 刘建峰, 曹鹏, 杨旭, 郑荣国

    张进, 王振义, 赵衡, 张北航, 曲军峰, 杨亚琦, 张义平, 赵硕, 刘建峰, 曹鹏, 杨旭, 郑荣国. 2025: 阿拉善地区二叠纪—三叠纪构造变形环境与属性:问题与争论. 地质通报, 44(1): 1-32. DOI: 10.12097/gbc.2023.10.036
    引用本文: 张进, 王振义, 赵衡, 张北航, 曲军峰, 杨亚琦, 张义平, 赵硕, 刘建峰, 曹鹏, 杨旭, 郑荣国. 2025: 阿拉善地区二叠纪—三叠纪构造变形环境与属性:问题与争论. 地质通报, 44(1): 1-32. DOI: 10.12097/gbc.2023.10.036
    Zhang J, Wang Z Y, Zhao H, Zhang B H, Qu J F, Yang Y Q, Zhang Y P, Zhao S, Liu J F, Cao P, Yang X, Zheng R G. Permian and Triassic tectonic deformation settings and attributes in the Alxa region: Problems and debates. Geological Bulletin of China, 2025, 44(1): 1−32. DOI: 10.12097/gbc.2023.10.036
    Citation: Zhang J, Wang Z Y, Zhao H, Zhang B H, Qu J F, Yang Y Q, Zhang Y P, Zhao S, Liu J F, Cao P, Yang X, Zheng R G. Permian and Triassic tectonic deformation settings and attributes in the Alxa region: Problems and debates. Geological Bulletin of China, 2025, 44(1): 1−32. DOI: 10.12097/gbc.2023.10.036

    阿拉善地区二叠纪—三叠纪构造变形环境与属性:问题与争论

    基金项目: 中国地质科学院基本科研业务费专项《中亚造山带中段晚古生代韧性剪切系统构造特征与剪切带型金矿的形成与保存》(编号:JKYZD202309)、中国地质调查局项目《天山-兴安中东段关键地区成矿系统与找矿预测》(编号:DD20240075)、《北方山系西拉木伦与贺根山基础地质调查》(编号:DD20190004)、《狼山儿驼庙幅、巴彦哈拉幅1∶5万构造填图典型示范试点》(编号:12120115069601)、《北山-阿拉善关键构造带专题地质调查》(编号:DD20230217),国家自然科学基金项目《阿拉善北部蛇绿混杂岩形成机制、变形过程与构造环境》(批准号:4197224)、《中亚造山带中段(北山)俯冲-增生结构与造山带变形:三维大地电磁探测与韧性剪切变形的联合约束》(批准号:U2344215)和《阿拉善地块主要断裂系统性质、阶段和构造背景研究》(批准号:41572190)
    详细信息
      作者简介:

      张进(1973− ),男,博士,研究员,从事造山带变形和区域地质调查研究工作。E−mail:zhangjinem@sina.com

    • 中图分类号: P534.46; P534.51; P542

    Permian and Triassic tectonic deformation settings and attributes in the Alxa region: Problems and debates

    • 摘要:
      研究目的 

      二叠纪—三叠纪是中亚造山带演化的关键阶段,形成了一系列不同性质、机制和时代的变形,可能代表了古亚洲洋俯冲-碰撞-陆内3个重要演化阶段的产物。近年来的工作在中亚造山带中段的阿拉善地区识别出大量的二叠纪—三叠纪变形,但是对这些变形的解释和认识存在很多争论,导致对古亚洲洋关闭时限产生不同认识。

      研究方法 

      系统介绍目前已知阿拉善不同地区二叠纪—三叠纪变形,厘定了该时期阿拉善地区的构造序列和特点。

      研究结果 

      中二叠世晚期(270~260 Ma),在阿拉善北部形成广泛分布的线性褶皱与逆冲构造。晚二叠世末—三叠纪初,形成卷入整个阿拉善地块与中亚造山带的大型韧性剪切变形;晚三叠世,形成了切割造山带的大型左行走滑变形。以上3期变形的切割关系在阿拉善东北部狼山、中部杭乌拉、西部霍布哈尔等地区最典型。系统分析碰撞阶段和陆内阶段的变形特点,认为晚二叠世变形代表了古亚洲洋关闭碰撞阶段的变形,晚二叠世末—三叠纪初的变形代表了造山带形成之后,Pangea超大陆形成的巨型剪切变形,是中亚造山带形成后经历的第一期陆内变形,而晚三叠世变形代表了受控于板块周缘陆陆碰撞的远程效应。

      结论 

      古大洋消失后的碰撞阶段变形与陆内变形有一定的差异,从变形角度可以有效限定古亚洲洋不同阶段的演化。以阿拉善地区为代表的中亚造山带在洋陆转换阶段内连续经历不同性质、不同方向变形的叠加,也是增生型造山带的重要特征。

      Abstract:
      Objective 

      The Permian to Triassic is a key period in the evolution of the Central Asian Orogenic Belt (CAOB), forming a series of deformation with different properties, mechanisms, and stages, which may represent the products of three important stages of evolution in the Paleo Asian Ocean (PAO): subduction, collision and intracontinental deformation. In recent years, a large number of Permian−Triassic deformation have been identified in the Alxa area in the southern margin of the CAOB. However, disputations regarding the interpretation and understanding of the deformation lead to significant differences in the determination of the closure time of the PAO.

      Methods 

      Based on systematic introduction of the Permian−Triassic deformation in different regions of Alxa, the deformation sequences and characteristics of the Alxa region during this period are determined.

      Results 

      In the late Middle Permian (approximately 270~260 Ma), widespread linear fold and thrust belts were formed in the northern part of Alxa. At the end of the Late Permian to the Early Triassic, the entire Alxa Block and the Central Asian Orogenic Belt were involved into a large−scale dextral ductile shear system, which was cut by left lateral strike−slip shear zones formed in the Late Triassic. The cutting relationships are clear in Langshan in the northeastern Alxa, Hangwula in the northern Alxa, and Houbuhaer in the northwestern Alxa. Based on an integrative analysis of the different deformation characteristics between the collision stage and the intracontinental stage, it is believed that the late Permian deformation formed at the collision stage after the final closure of the PAO, while the deformation from the Late Permian to the Early Triassic represents the giant shear deformation formed during the formation of the Pangea Supercontinent after the formation of the orogenic belt, which is the first intracontinental deformation record after the final assemblage of the CAOB. The late Triassic deformation represents a far−field effect induced by the collision at continental margins to the south.

      Conclusions 

      The differences between the deformation formed at the collision stage and at the intracontinental stage can effectively constrain the evolution of different stages of the PAO from the perspective of deformation. The CAOB, represented by the Alxa region, underwent successive superposition of deformation in different properties and directions during the ocean−continent transition, which is an important feature of accretionary orogenic belts.

      创新点

      中亚造山带中段中生代变形属于陆内变形,古亚洲洋在中亚造山带中段关闭时间在晚二叠世。

    • 图  1   阿拉善地区地质图

      a—亚洲构造简图;b—阿拉善及周缘地区地质图

      Figure  1.   Geological map of Alxa region

      图  2   狼山群褶皱及同构造岩体

      a—顺层侵入狼山群第二组砂岩变形花岗岩及年龄;b ~ d—顺层侵入狼山群第二组同构造变形花岗岩及其年龄;e—狼山地区狼山群剖面,位置见图3

      Figure  2.   Folds in the Langshan Group and syntectonic pluton

      图  3   狼山地区地质图

      a—地质图与剖面位置;b—狼山群综合柱状图。CLSZ—中狼山剪切带;WLSZ—西狼山剪切带

      Figure  3.   Geological map of the Langshan area

      图  4   巴彦乌拉−狼山韧性剪切带

      Figure  4.   The Bayanwula−Langshan ductile shear zone

      图  5   阿拉善晚二叠世—早三叠世右行韧性剪切系统(年龄数据据赖新荣等,2007; 韩宝福等,2010; 冉皞等,2012; 史兴俊等,2012, 2020张文等,2013郑荣国等,2013; Dan et al., 2014, 2015a, 2015b, 2016; Lin et al., 2014; Shi et al., 2014; 张伟等,2014; Hu et al., 2015; Wang et al., 2015; Liu et al., 2016a, 2016b, 2017, 2018a, 2018b, 2019a, 2019b; Xue et al., 2017; Zhang et al., 2016b, 2017; Shi et al., 2018; Zheng et al., 2019a, 2019b; Li et al., 2020; Song et al., 2020; Zhao et al., 2020

      a—阿拉善剪切系统与侵入岩分布;b—阿拉善地区侵入岩年龄统计. EJSZ—额济纳剪切带;YGSZ—银根剪切带;TMSSZ—塔木素剪切带;WLJSZ—乌力吉剪切带;LNTS—狼山−那仁哈拉−塔木素剪切带;YBSZ—雅布赖−巴彦诺尔公剪切带;BBSZ—北大山−巴彦诺尔公剪切带;SASZ—阿拉善南缘剪切带;LBSZ—狼山−巴彦乌拉剪切带

      Figure  5.   Late Permian—Early Triassic dextral ductile shear system in Alxa region

      图  6   雅布赖韧性剪切带地质图(年龄数据据叶珂等,2016Liu et al., 2017; Zhao et al., 2022

      F—糜棱岩面理;L—矿物拉伸线理;G—片麻理

      Figure  6.   Geological map of the Yabrai shear zone

      图  7   雅布赖地区三叠纪变形

      a—露头远景;b—志留纪花岗岩内逆冲断层为侏罗系覆盖,赤平投影为逆冲断层产状与反演的古应力场;c—侏罗系覆盖下伏志留纪花岗岩中的双冲构造

      Figure  7.   Triassic deformation in the Yabrai region

      图  8   杭乌拉地区地质图

      a—地质图与二叠系褶皱要素赤平投影;b—杭乌拉剖面(位置见a图);ν—二叠纪辉长岩;δο—二叠纪石英闪长岩

      Figure  8.   Geological map of the Hangwula area

      图  9   杭乌拉南部阿达日嘎二叠系火山碎屑岩与石英闪长岩

      a—侵入中、下二叠统阿其德组上段火山岩碎屑岩未变形的石英闪长岩;b—韧性变形的阿其德组上段砂岩

      Figure  9.   Permian volcanic clastic rocks and quartz diorite in Adariga in the southern Hangwula

      图  10   杭乌拉双冲构造

      a—杭乌拉地区圆藻山群白云质灰岩逆冲于奥陶系硅质岩之上;b—杭乌拉构造窗,两侧高山为新元古界圆藻山群,构造窗为下古生界;c—杭乌拉逆冲双冲构造剖面。O—奥陶系;S—志留系;P—二叠系;Pt3y—新元古界圆藻山组

      Figure  10.   Thrust duplex structures in Hangwula

      图  11   好比如地区地质图

      a—地质图与石炭系−二叠系构造要素赤平投影;b—好比如地区剖面图(剖面位置见a图)。S—志留系;C—石炭系;K—白垩系;Q—第四系;ηγβ—二叠纪黑云母二长花岗岩;ηγ—三叠纪二长花岗岩;γδ—二叠纪辉长岩

      Figure  11.   Geological map of Haobiru region

      图  12   好比如地区逆冲断层

      a—圆藻山群白云质灰岩与寒武系硅质岩断层接触远景;b—断层面擦痕和断层面解;c—断层带角砾岩;d—断层下盘寒武系薄层硅质岩

      Figure  12.   Thrust fault in Haobiru

      图  13   好比如东北莫日格策格地区地层/岩体接触关系

      a—新元古界圆藻山群与泥盆纪花岗岩断层接触;b—断层下盘强烈变形的泥盆纪花岗岩;c—上覆上三叠统珊瑚井组厚层砾岩,黑色为硅质岩,灰色为灰岩砾石,可能来自下伏的圆藻山群;d—圆藻山群与上三叠统珊瑚井砾岩之间的角度不整合面

      Figure  13.   Contact relationship between strata and granite in the Morigecege, northeastern Haobiru region

      图  14   珠斯楞地区地质图

      a—地质图与石炭系−二叠系构造要素赤平投影;b—珠斯楞地区剖面图(剖面位置见图a);Є—寒武系;O2—中奥陶统;S—志留系;D1x—下泥盆统世珠斯楞组;D2y—中泥盆统伊克乌苏组;D3x—上泥盆统西屏山组;C—石炭系;T3s—上三叠统珊瑚井组;Pt3y—新元古界圆藻山组

      Figure  14.   Geological map of Zhusilien

      图  15   珠斯楞逆冲推覆岩体前缘断层

      a—珠斯楞逆冲推覆体前缘远景;b—前缘近景;c—前缘逆冲断层露头和断层面解;d—前缘圆藻山群白云质灰岩飞来峰,下盘为泥盆系

      Figure  15.   Front fault of Zhusilen thrust sheet

      图  16   珠斯楞地区顺层侵入泥盆系变形的花岗岩

      a—顺层侵入泥盆系强劈理化花岗岩;b—强劈理化花岗岩近景

      Figure  16.   Deformed bedding-parallel granite intrusion in the Devonian strata in Zhusilen

      图  17   黑平山岩基周缘韧性剪切带变形特征

      a—花岗糜棱岩;b—石英拉伸线理

      Figure  17.   Deformation characteristics of ductile shear zone around the Heipingshan batholith

      图  18   霍布哈尔—查黑林嘎顺地区地质图

      a—地质图及剖面位置;b—剖面图;c—变形模型

      Figure  18.   Geological map of Huobuhaer—Chaheilingashun area

      图  19   霍布哈尔韧性剪切带变形特征

      a—石英拉伸线理;b—火山岩糜棱岩面理;c—侵入地层的糜棱岩化花岗岩,XZ面示右行的长石旋转碎斑;d—糜棱岩面理褶皱,示右行剪切

      Figure  19.   Deformation characteristics of the Hobuhaer ductile shear zone

      图  20   查黑林嘎顺韧性变形特征

      a—泥盆纪花岗糜棱岩与黑云母矿物线理;b—北山岩群内糜棱岩化灰岩中的剑鞘褶皱;c—北山岩群中的糜棱岩面理;d—XZ面上示左行的石英拖尾

      Figure  20.   Characteristics of ductile deformation in Chaheilingashun

      图  21   阿拉善不同地区低温热年代学数据分布

      Figure  21.   Distribution of low-temperature thermochronological data in different regions of Alxa

      图  22   阿拉善不同地区低温热年代学确定的主要构造−热事件

      C—石炭系;P—二叠系;T—三叠系;J—侏罗系;K—白垩系;Cen.—新生代

      Figure  22.   Main tectono-thermal events determined by low-temperature thermochronology in different regions of Alxa

      图  23   阿拉善北部不同地区晚二叠世褶皱统计

      Figure  23.   Stereographic projection of Late Permian folds in northern Alxa

      图  24   阿拉善地区晚三叠世变形构造模型

      a—阿拉善晚三叠世主要构造;b—书斜变形模型

      Figure  24.   Conceptual model of Late Triassic deformation in the Alxa

    • Badarch G, Cunningham W D, Windley B F. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Science, 21: 87−110. doi: 10.1016/S1367-9120(02)00017-2

      Chen G, Sun J B, Zhou L F, et al. 2007. Fission track age records of Mesozoic tectonic events in the southwestern margin of the Ordos Basin[J]. Science China, 37(suppl.1): 110−118(in Chinese).

      Chen Y, Wu T R, Zhang Z C, et al. 2020. Provenance of the Permo–Carboniferous sediments in the northern Alxa and its tectonic implications for the southernmost Central Asian Orogenic Belt[J]. Geoscience Frontiers, 11: 1415−1429. doi: 10.1016/j.gsf.2019.12.006

      Cleven N R, Lin S, Xiao W. 2015. The Hongliuhe fold−and−thrust belt: Evidence of terminal collision and suture−reactivation after the Early Permian in the Beishan orogenic collage, Northwest China[J]. Gondwana Research, 27: 796−810. doi: 10.1016/j.gr.2013.12.004

      Cui X Y, Zhao Q H, Zhang J, et al. 2018. Late Cretaceous−Cenozoic multi−stage denudation at the western Ordos Block: Constraints by the apatite fission track dating on the Langshan[J]. Acta Geologica Sinica (English Edition), 92(2): 536−555. doi: 10.1111/1755-6724.13541

      Cui X, Wang G H, Wang Z Y, et al. 2019. Discovery of structural schist belt in Huobuhaer area of Ejinaqi, Inner Mongolia: Implication for its tectonic significance[J]. Journal of Mineralogy and Petrology, 39(2): 81−89(in Chinese with English abstract).

      Cui X. 2020. Structural deformation characteristics and its significance in HuoBuHaer of EjNaQi, Inner Mongolia[D]. Doctoral Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

      Cunningham D. 2010. Tectonic setting and structural evolution of the late Cenozoic Gobi Altai orogen[J]. Geological Society, London, Special Publications, 2010, 338: 361–387.

      Cunningham D. 2017. Folded basinal compartments of the Southern Mongolian borderland: A structural archive of the final consolidation of the Central Asian Orogenic Belt[J]. Geosciences, 7(1): 2. doi: 10.3390/geosciences7010002

      Dan W, Li X H, Wang Q, et al. 2014. An Early Permian (ca. 280 Ma) silicic igneous province in the Alxa Block, NW China: A magmatic flare−up triggered by a mantle plume?[J]. Lithos, 204: 144−158. doi: 10.1016/j.lithos.2014.01.018

      Dan W, Li X H, Wang Q, et al. 2015a. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U−Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry[J]. Gondwana Research, 32: 105−121.

      Dan W, Wang Q, Wang X C, et al. 2015b. Overlapping Sr–Nd–Hf–O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust–mantle interaction and implications for the generation of silicic igneous provinces[J]. Lithos, 230: 133−145. doi: 10.1016/j.lithos.2015.05.016

      Dan W, Li X H, Wang Q, et al. 2016. Phanerozoic amalgamation of the Alxa Block and North China Craton: Evidence from Paleozoic granitoids, U−Pb geochronology and Sr–Nd–Pb–Hf–O isotope geochemistry[J]. Gondwana Research, 32: 105−121. doi: 10.1016/j.gr.2015.02.011

      Dang B, Zhao H, Lin G C, et al. 2011. Geochemistry and tectonic setting of Permian volcanic rocks in Yingen−Ejin Banner basin and its neighboring areas, western Inner Mongolia[J]. Geological Bulletin of China, 30(6): 923−931(in Chinese with English abstract).

      Darby B J, Ritts B D. 2002. Mesozoic contractional deformation in the middle of the Asian tectonic collage: The intraplate Western Ordos fold–thrust belt: China[J]. Earth & Planetary Science Letters, 205: 13−24.

      Darby B J, Ritts B D. 2007. Mesozoic structural architecture of the Lang Shan: North−Central China: Intraplate contraction, extension, and synorogenic sedimentation[J]. Journal of Structural Geology, 29: 2006−2016. doi: 10.1016/j.jsg.2007.06.011

      Deng W, Shao Z, Wang Z, et al. 2022. Geochemistry and zircon U–Pb–Hf isotopes of granodioritesin the northern Alxa area: Implications for the Middle–Late Devoniantectonic evolution of the southern Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 111: 2369−2390. doi: 10.1007/s00531-022-02233-x

      Deng W, Shao Z, Xu H, et al. 2023. Late Palaeozoic tectonic evolution of the southern Central Asian Orogenic Belt: Constraints from the Early Permian magmatism in the northern Alxa area[J]. Geological Journal, 58(5): 1−16.

      Dewey J F, Bird J M. 1970. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 75: 2625−2647. doi: 10.1029/JB075i014p02625

      Eizenhöfer P R, Zhao G C, Zhang J, et al. 2014. Final closure of the Paleo Asian Ocean along the Solonker Suture Zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks[J]. Tectonics, 33: 441−463. doi: 10.1002/2013TC003357

      Eizenhöfer P R, Zhao G C. 2018. Solonker Suture in East Asia and its bearing on the final closure of the eastern segment of the Palaeo−Asian Ocean[J]. Earth−Science Reviews, 186: 153−172. doi: 10.1016/j.earscirev.2017.09.010

      Feng J Y, Xiao W J, Windley B, et al. 2013. Field geology, geochronology and geochemistry of mafic–ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids[J]. Journal of Asian Earth Sciences, 78: 114−142. doi: 10.1016/j.jseaes.2013.01.020

      Geng Y S, Zhou X W. 2010. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: Evidence from geochronology[J]. Acta Petrologica et Mineralogica, 29(6): 779−795(in Chinese with English abstract).

      Gong W B, Hu J M, Wu S J, et al. 2017. Deformation characteristics, timing and significance of the Lang Shan sinitral strike−slip ductile shear zone in Inner Mongolia[J]. Earth Science Frontiers, 24(3): 263−275(in Chinese with English abstract).

      Guy A, Schulmann K, Clauer N, et al. 2014. Late Paleozoic–Mesozoic tectonic evolution of the Trans−Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data[J]. Gondwana Research, 25: 309−337. doi: 10.1016/j.gr.2013.03.014

      Han B F, Zhang C, Zhao L, et al. 2010. A preliminary study of granitoids in western Inner Mongolia[J]. Acta Petrologica et Mineralogica, 29(6): 741−749(in Chinese with English abstract).

      Han L L, Chen X H, Shao Z G, et al. 2024. Structural characteristics and time constraint of Late Mesozoic intracontinental deformation in Xishan meiyao area, south of Beishan[J]. Geological Bulletin of China, 43(11): 1950−1969(in Chinese with English abstract).

      Hendrix M S, Graham S A, Amory J Y, et al. 1996. Noyon Uul syncline, southern Mongolia: Lower Mesozoic sedimentary record of the tectonic amalgamation of central Asia[J]. Geological Society of America Bulletin, 108: 1256−1274. doi: 10.1130/0016-7606(1996)108<1256:NUSSML>2.3.CO;2

      Hendrix M S, Beck M A, Badarch G, et al. 2001. Triassic synorogenic sedimentation in southern Mongolia: Early effects of intracontinental deformation[C]//Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Geological Society of America Memoir, 194: 389−412.

      Hou L Y, Zhang C H, Lin Y, et al. 2020. From oblique arc−continent collision to orthogonal plate subduction in the southeastern central Asia Orogenic Belt during Paleozoic: Evidence from superimposed folds at the northern margin of the north China Craton[J]. Journal of Asian Earth Sciences, 200: 104499. doi: 10.1016/j.jseaes.2020.104499

      Hu C S, Li W B, Xu C, et al. 2015. Geochemistry and petrogenesis of Permian granitoids in the northwestern margin of the North China Craton: insights from the Dongshengmiao pluton, Inner Mongolia[J]. International Geology Review, 57: 1843−1860. doi: 10.1080/00206814.2015.1039087

      Hu X M, Garzanti E, Wang J G, et al. 2016. The timing of India−Asia collision onset − Facts, theories, controversies[J]. Earth−Science Reviews, 160: 264−299. doi: 10.1016/j.earscirev.2016.07.014

      Huang J Q. 1960. Preliminary summary of the basic characteristics of geological structures in China[J]. Acta Geologica Sinica, 40(1): 1−31(in Chinese).

      Hui J, Cheng H Y, Zhang J, et al. 2020. Early Cretaceous continent basalts in the Alxa Block, NW China: Geochronology, geochemistry, and tectonic implications[J]. International Geology Review, 63: 882−899.

      Hui J, Zhang K J, Zhang J, et al. 2021. Middle–late Permian high−K adakitic granitoids in the NE Alxa block, northern China: Orogenic record following the final closure of Paleo−Asian Ocean?[J]. Lithos, 400/401: 106379. doi: 10.1016/j.lithos.2021.106379

      Lai X R, Jiang S H, Qiu X P, et al. 2007. 40Ar−39Ar age and geochemical features of Hercynian intermediate acidity rock in Beidashan Rock Belt, Alxa[J]. Acta Geologica Sinica, 81(3): 370−380(in Chinese with English abstract).

      Lamb M A, Hanson A D, Graham S A, et al. 1999. Left−lateral sense offset of Upper Proterozoic to Paleozoic features across the Gobi Onon, Tost, and Zuunbayan faults in southern Mongolia and implications for other central Asian faults[J]. Earth and Planetary Science Letters, 173: 183−194. doi: 10.1016/S0012-821X(99)00227-7

      Lehmann J, Schulmann K, Lexa O, et al. 2010. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 310: 575−628. doi: 10.2475/07.2010.02

      Li R W, Zhang X, Shi Q, et al. 2020. Early Permian to Late Triassic tectonics of the southern Central Asian Orogenic Belt: Geochronological and geochemical constraints from gabbros and granites in the northern Alxa area, NW China[J]. Geological Magazine, 157: 1−17.

      Li P F, Sun M, Yuan C, et al. 2021. Late Paleozoic tectonic transition from subduction to collision in the Chinese Altai and Tianshan (Central Asia): New geochronological constraints[J]. American Journal of Science, 321: 178−205. doi: 10.2475/01.2021.05

      Li G, Liu Z H, Xu Z Y, et al. 2012. Components of the Bainaimiao Thrust and Its Structural Features[J]. Journal of Jilin University (Earth Science Edition), 42(Sup.2): 309−319(in Chinese with English abstract).

      Li M Q, Li G, Li W Q, et al. 2024. Formation of the Permo−Triassic Ondor Sum thrust system and its constraint on Solonker Ocean closure[J]. International Geology Review, 66(3): 659−679. doi: 10.1080/00206814.2023.2207097

      Lin L N, Xiao W J, Wan B, et al. 2014. Geochronology and geological evidence for persistence of south−dipping subduction to Late Permian time, Langshan area, Inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids[J]. American Journal of Science, 314: 679−703. doi: 10.2475/02.2014.08

      Liu M, Zhang D, Xiong G Q, et al. 2016a. Zircon U−Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 120: 139−158. doi: 10.1016/j.jseaes.2016.01.005

      Liu Q, Zhao G C, Sun M, et al. 2016b. Early Paleozoic subduction processes of the Paleo−Asian Ocean: Insights from geochronology and geochemistry of Paleozoic plutons in the Alxa Terrane[J]. Lithos, 262: 546−560. doi: 10.1016/j.lithos.2016.07.041

      Liu Q, Zhao G C, Han Y G, et al. 2017. Timing of the final closure of the Paleo−Asian Ocean in the Alxa Terrane: Constraints from geochronology and geochemistry of Late Carboniferous to Permian gabbros and diorites[J]. Lithos, 274/275: 19−30. doi: 10.1016/j.lithos.2016.12.029

      Liu Q, Zhao G C, Han Y G, et al. 2018a. Geochronology and geochemistry of Paleozoic to Mesozoic granitoids in western Inner Mongolia, China: Implications for the tectonic evolution of the southern Central Asian Orogenic Belt[J]. The Journal of Geology, 126: 451−471. doi: 10.1086/697690

      Liu Q, Zhao G C, Han Y G, et al. 2018b. Geochronology and geochemistry of Permian to Early Triassic granitoids in the Alxa Terrane: Constraints on the final closure of the Paleo−Asian Ocean[J]. Lithosphere, 9: 665−680.

      Liu Q, Zhao G C, Han Y G, et al. 2019a. Timing of the final closure of the middle segment of the Paleo−Asian Ocean: Insights from geochronology and geochemistry of Carboniferous−Triassic volcanosedimentary successions in western Inner Mongolia, China[J]. Geological Society of America Bulletin, 131: 941−965. doi: 10.1130/B32023.1

      Liu Z, Tan S C, Wang G C. et al. 2020. Granitic magmas with enriched isotopic compositions, from enriched mantle source: Implications for continental generation[J]. Lithos, 360: 105445.

      Liu Z, Zhang X, Tan S C, et al. 2019b. The Timing of the Paleo−Asian Oceanic closure: Geochemical constraints from the Jigede gabbro in the Alxa Block[J]. Petrology, 27: 425−437. doi: 10.1134/S0869591119040076

      Liu K, Chen X H, Wang D R, et al. 2024. The Early Cretaceous extensional deformation in the southeastern Beishan Range, central Asia: Constrains from 2D seismic reflection profile interpretation and apatite fission track thermochronology[J]. Journal of Geomechanics, 30(3): 377−393(in Chinese with English abstract).

      Lu J C, Shi J Z, Niu Y Z, et al. 2018. Carboniferous−Permian sequence stratigraphy and sedimentary evolution of Beishan−Yin’e region, western Inner Mongolia[J]. Acta Petrologica Sinica, 34(10): 3101−3115(in Chinese with English abstract).

      Mandl G. 1987. Tectonic deformation of rotating parallel faults—the ’bookshelf’ mechanism[J]. Tectonophysics, 141: 277−316. doi: 10.1016/0040-1951(87)90205-8

      Meng Q R, Hu J M, Jin J Q, et al. 2003. Tectonics of the late Mesozoic wide extensional basin system in the China−Mongolia border region[J]. Basin Research, 15: 397−416. doi: 10.1046/j.1365-2117.2003.00209.x

      Peng H, Wang J Q, Liu C Y, et al. 2023. Mesozoic Tectonothermal Evolution of the Southern Central Asian Orogenic Belt[J]. Journal of Earth Science, 34: 37−53. doi: 10.1007/s12583-020-1053-z

      Ran H, Zhang W J, Liu Z B. 2012. Geochemical characteristics and LA−ICP−MS zircon U−Pb dating of the Late Permian monzogranite in Hanggale, Alax Right Banner, Inner Mongolia[J]. Geological Bulletin of China, 31(10): 1565−1575(in Chinese with English abstract).

      Ren J M. 2015. Study on Permian granitoids in Dazhaganaobao, Ejinaqi, Inner Mongolia[D]. Master Dissertation of Chang’an University (in Chinese with English abstract).

      Ren X C, Xiu J L, Liu L, et al. 2023. Late Paleozoic−Mesozoic structural style, deformation sequence, and formation process and mechanism of the checkboard structure in the eastern Junggar Basin[J]. Journal of Geomechanics, 29(2): 155−173(in Chinese with English abstract).

      Rippington S, Cunningham D, England R, et al. 2013. The crustal assembly of southern Mongolia: New structural, lithological and geochronological data from the Nemegt and Altan ranges[J]. Gondwana Research, 23: 1535−1553. doi: 10.1016/j.gr.2012.09.001

      Ritts B D, Hanson A D, Darby B J, et al. 2004. Sedimentary record of Triassic intraplate extension in North China: Evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan[J]. Tectonophysics, 386: 177−202. doi: 10.1016/j.tecto.2004.06.003

      Şengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364: 299−307. doi: 10.1038/364299a0

      Şengör A M C, Natal’in B A. 1996. Palaeotectonics of Asia: Fragments of a synthesis[C] // Yin A, Harrison T M, Rubey V, et al. The Tectonic Evolution of Asia. Cambridge: Cambridge University Press: 486–640.

      Şengör A M C, Natal’in B A, Sunal G, et al. 2019. The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between ~750 and ~130 Ma Ago[J]. Accretion. Annual Review of Earth and Planetary Sciences, 46: 439−494.

      Shao Z G, Chen X H, Wang Z Z, et al. 2024. Characteristics of Heiyingshan Late Triassic thrust nappe structure in the Beishan orogenic belt and its constraint on the evolution of the orogenic belt[J]. Geological Bulletin of China, 43(11): 1893−1906(in Chinese with English abstract).

      Shi X J, Wang T, Zhang L, et al. 2014. Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro–granodiorite–granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 208/209: 158−177. doi: 10.1016/j.lithos.2014.08.024

      Shi G, Song G, Wang H, et al. 2016. Late Paleozoic tectonics of the Solonker Zone in the Wuliji area, Inner Mongolia, China: Insights from stratigraphic sequence, chronology, and sandstone geochemistry[J]. Journal of Asian Earth Sciences, 127: 100−118. doi: 10.1016/j.jseaes.2016.06.022

      Shi G, Liang C, Wang H, et al. 2018. Superimposed deformation of the Solonker Belt and nearby regions in western Inner Mongolia, China[J]. Geological Magazine, 156: 1−22.

      Shi X J, Tong Y, Wang T, et al. 2012. LA−ICP−MS zircon U−Pb age and geochemistry of the Early Permian Halinudeng granite in northern Alxa area, western Inner Mongolia[J]. Geological Bulletin of China, 31(5): 662−670(in Chinese with English abstract).

      Shi X J, Zhang L, Zhang C G, et al. 2020. Zircon geochronology and geochemistry of the granitoids in Yagan area, northern Alxa and their tectinc implications[J]. Earth Science, 45(7): 2469−2484(in Chinese with English abstract).

      Shu L S, Charvet J, Ma R S. 1998. Study of a large scale Paleozoic dextral strike−slip ductile shear zone along the northern margin of the central Tianshan, Xinjiang[J]. Xinjiang Geology, 16(4): 326−336(in Chinese with English abstract).

      Song J J. 2017. Characteristics of late Paleozoic granite around the Ya Gan fault zone in Northern Alxa Block[D]. Master Dissertation of China University of Geosciences (Beijing) (in Chinese with English abstract).

      Song D F, Xiao W J, Windley B F, et al. 2020. Carboniferous to Early Triassic magmatism and accretion in Alxa (NW China): Implications for accretionary orogenesis of the southern Altaids[J]. Journal of the Geological Society, 177: 997−1012. doi: 10.1144/jgs2020-046

      Song D F, Xiao W J, Windley B F, et al. 2021. Closure of the Paleo−Asian Ocean in the Middle−Late Triassic (Ladinian−Carnian): Evidence from provenance analysis of retroarc sediments[J]. Geophysical Research Letters, 48: 1−12.

      Su H, Chen X H, Yu X Q, et al. 2022. Triassic nappe in the central part of the Southern Central Asian Orogenic Belt (Ejinaq, NW China): Evidence from structural analysis and geothermochronology[J]. Acta Geologica Sinica (English Edition), 97(1): 13−34.

      Sun J P, Dong Y P. 2019a. Middle−Late Triassic sedimentation in the Helanshan tectonic belt: Constrain on the tectono−sedimentary evolution of the Ordos Basin, North China[J]. Geoscience Frontiers, 10: 213−227. doi: 10.1016/j.gsf.2018.05.017

      Sun J P, Dong Y P. 2019b. Triassic tectonic interactions between the Alxa Massif and Ordos Basin: Evidence from integrated provenance analyses on sandstones, North China[J]. Journal of Asian Earth Sciences, 169: 162−181. doi: 10.1016/j.jseaes.2018.08.002

      Sun J P, Dong Y P. 2020. Stratigraphy and geochronology of Permo−Carboniferous strata in the Western North China Craton: Insights into the tectonic evolution of the southern Paleo−Asian Ocean[J]. Gondwana Research, 88: 201−219. doi: 10.1016/j.gr.2020.08.005

      Tang K. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino‐Korean Craton[J]. Tectonics, 9: 249−260. doi: 10.1029/TC009i002p00249

      Tian Z, Xiao W, Shan Y, et al. 2013. Mega−fold interference patterns in the Beishan orogen (NW China) created bychange in plate configuration during Permo−Triassic termination of the Altaids[J]. Journal of Structural Geology, 52: 119−135. doi: 10.1016/j.jsg.2013.03.016

      Tian Z H, Xiao W J, Windley B F, et al. 2021. Two key switches in regional stress field during multi−stage deformation in the Carboniferous–Triassic southernmost Altaids (Beishan, NW China): Response to orocline−related roll−back processes[J]. Geological Society of America Bulletin, 133: 2591−2611. doi: 10.1130/B35898.1

      Tikoff B, Greene D. 1997. Stretching lineations in transpressional shear zones: An example from the Sierra Nevada Batholith, California[J]. Journal of Structural Geology, 19: 29−39. doi: 10.1016/S0191-8141(96)00056-9

      van Hinsbergen D J J, Cunningham D, Straathof G B, et al. 2015. Triassic to Cenozoic multi−stage intra−plate deformation focused near the Bogd Fault system, Gobi Altai, Mongolia[J]. Geoscience Frontiers, 6: 723−740. doi: 10.1016/j.gsf.2014.12.002

      Wang T Y, Wang S Z, Wang J R. 1994. The Formation and Evolution of Paleozoic Continental Crust in Alxa Region[M]. Lanzhou: Lanzhou University Press (in Chinese with English abstract).

      Wang T Y, Zhang M J, Wang J R, et al. 1998a. The characteristics and tectonic implications of the thrust belt in Engerwusu, China[J]. Scientia Geologica Sinica, 33(4): 358−394(in Chinese with English abstract).

      Wang T Y, Gao J P, Wang J R, et al. 1998b. Magmatism of collisional and post−orogenic period in northern Alaxa region in Inner Mongoliaa[J]. Acta Geologica Sinica, 72(2): 126−137(in Chinese with English abstract).

      Wang T, Zheng Y D, Li T B, et al. 2002. Composition and texture of the Yagan metamorphic core complex bordering China and Mongolia[J]. Chinese Journal of Geology, 37(1): 79−85(in Chinese with English abstract).

      Wang T, Zheng Y, Zhang J, et al. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes[J]. Tectonics, 30: TC6007.

      Wang Y, Li J Y, Sun G H. 2008. Postcollisional eastward extrusion and tectonic exhumation along the Eastern Tianshan Orogen, Central Asia: Constraints from dextral strike−slip motion and 40Ar/39Ar geochronological evidence[J]. The Journal of Geology, 116: 599−618. doi: 10.1086/591993

      Wang Y, Sun G H, Li J Y. 2010. U−Pb (SHRIMP) and 40Ar/39Ar geochronological constraints on the evolution of the Xingxingxia shear zone, NW China: A Triassic segment of the Altyn Tagh fault system[J]. Geological Society of America Bulletin, 122: 487−505. doi: 10.1130/B26347.1

      Wang Z H, Wan J L. 2014. Collision−Induced Late Permian−Early Triassic transpressional deformation in the Yanshan Tectonic Belt, North China[J]. The Journal of Geology, 122: 705−716. doi: 10.1086/677843

      Wang Z Z, Han B F, Feng L X, et al. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 97: 337−351. doi: 10.1016/j.jseaes.2014.08.005

      Wang Z Y, Li G Z, Jing H S, et al. 2022. Determination and Geological Significance of Beishan Group in Yagan Area, Ejiana, Inner Mongolia[J]. Earth Science, 47(4): 1177−1193(in Chinese with English abstract).

      Wang W B, Lei C C, Li G, et al. 2023. Structural characteristics of the Wanghushan ductile shear zone in northwestern Inner Mongolia and its geological significance[J]. Acta Geologica Sinica, 97(7): 2141−2156(in Chinese with English abstract).

      Webb L E, Graham S A, Johnson C L, et al. 1999. Occurrence, age, and implications of the Yagan−Onch Hayrhan metamorphic core complex, southern Mongolia[J]. Geology, 27: 143−146.

      Windley B F, Alexeiev D, Xiao W, et al. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022

      Wu T R, He G Q. 1993. Tectonic units and their fundamental characteristics on the northern margin of the Alxa Block[J]. Acta Geologica Sinica, 67(2): 97−108(in Chinese with English abstract).

      Wu T R, He G Q, Zhang C. 1998. On Paleozoic Tectonics in the Alxa Region, Inner Mongolia, China[J]. Acta Geologica Sinica (English Edition), 72(3): 256−263. doi: 10.1111/j.1755-6724.1998.tb00402.x

      Wu F Y, Yang J H, Xu YG, et al. 2019. Destruction of the North China Craton in the Mesozoic[J]. Annual Review of Earth and Planetary Sciences, 47: 173−195. doi: 10.1146/annurev-earth-053018-060342

      Xiao W J, Windley B F, Huang B C, et al. 2009. End−Permian to mid−Triassic termination of the accretionary processes of the southern Altaids: Implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia[J]. International Journal of Earth Sciences, 98: 1189−1217. doi: 10.1007/s00531-008-0407-z

      Xiao W J, Mao Q G, Windley B F, et al. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594. doi: 10.2475/10.2010.12

      Xiao W J, Han C M, Liu W, et al. 2014. How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China)?[J]. Geoscience Frontier, 5: 525−536. doi: 10.1016/j.gsf.2014.04.002

      Xiao W J, Windley B F, Sun S, et al. 2015. A Tale of Amalgamation of Three Permo−Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 43: 477−507. doi: 10.1146/annurev-earth-060614-105254

      Xie L, Yin H Q, Zhou H R, et al. 2014. Permian radiolarians from the Engeerwusu suture zone in Alxa area of Inner Mongolia and its geological significance[J]. Geological Bulletin of China, 33(5): 691−697(in Chinese with English abstract).

      Xu B, Charvet J, Chen Y, et al. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23: 1342−1364. doi: 10.1016/j.gr.2012.05.015

      Xue S, Ling M X, Liu Y L, et al. 2017. The genesis of Early Carboniferous adakitic rocks at the southern margin of the Alxa Block, North China[J]. Lithos, 278/281: 181−194. doi: 10.1016/j.lithos.2017.01.012

      Yang Z D, Pan X S, Yang Y F. 1988. Geological structural characteristics and mineral resources of Alxa Block and adjacent areas[M]. Beijing: Science Press (in Chinese).

      Ye K, Zhang L, Wang T, et al. 2016. Geochronology, geochemistry and zircon Hf isotope of the Permian intermediate−acid igneous rocks from the Yabulai Mountain in western Alxa, Inner Mongolia, and their tectonic implications[J]. Acta Petrologica et Mineralogica, 35(6): 901−928(in Chinese with English abstract).

      Yin H, Zhou H, Zhang W, et al. 2016. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation[J]. Geoscience Frontiers, 7: 733−741. doi: 10.1016/j.gsf.2015.08.008

      Yu J X, Zheng W J, Kirby E, et al. 2016. Kinematics of late Quaternary slip along the Yabrai fault: implications for Cenozoic tectonics across the Gobi Alashan block, China[J]. Lithosphere, 8: 199−218. doi: 10.1130/L509.1

      Yu W, Shao Z G, Niu M L, et al. 2023. Intracontinental evolution of the southern Central Asian Orogenic Belt: Evidence from Late Triassic nappe structure in the northern Alxa region, NW China[J]. Journal of Asian Earth Sciences, 243: 105468. doi: 10.1016/j.jseaes.2022.105468

      Yuan W, Yang Z Y. 2015. The Alashan terrane was not part of North China by the late Devonian: Evidence from detrital zircon U–Pb geochronology and Hf isotopes[J]. Gondwana Research, 27: 1270−1282. doi: 10.1016/j.gr.2013.12.009

      Yue Y G, Dong Y P, Wang R S, et al. 2018. Geochemical characteristics and their geological implications of the basalt from the Rujigou area, Helan Mountain[J]. Chinese Journal of Geology, 53(3): 1157−1170(in Chinese with English abstract).

      Zhang J, Li J Y, Ma Z J, et al. 2009. The tectonic setting of the Triassic basin in the Helanshan Mts[J]. Acta Geologica Sinica, 83(9): 1233−1246(in Chinese with English abstract).

      Zhang J, Cunningham D. 2012. Kilometer−scale refolded folds caused by strike−slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31: TC3009.

      Zhang J, Li J Y, Xiao W X, et al. 2013. Kinematics and geochronology of multistage ductile deformation along the eastern Alxa block, NW China: New constraints on the relationship between the North China Plate and the Alxa block[J]. Journal of Structural Geology, 57: 38−57. doi: 10.1016/j.jsg.2013.10.002

      Zhang J, Li J Y, Li Y F, et al. 2014. Mesozoic−Cenozoic multi−stage intraplate deformation events in the Langshan region and their tectonic implications[J]. Acta Geologica Sinica (English Edition), 88: 78−102. doi: 10.1111/1755-6724.12184

      Zhang J, Zhang Y P, Xiao W X, et al. 2015a. Linking the Alxa Terrane to the eastern Gondwana during the Early Paleozoic: Constraints from detrital zircon U–Pb ages and Cambrian sedimentary records[J]. Gondwana Research, 28: 1168−1182. doi: 10.1016/j.gr.2014.09.012

      Zhang J J, Wang T, Zhang L, et al. 2015b. Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: constraints on the southern boundary of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 108: 150−169. doi: 10.1016/j.jseaes.2015.04.019

      Zhang J, Li J Y, Zhang B H, et al. 2016a. Timing of amalgamation of the Alxa Block and the North China Block: Constraints based on detrital zircon U–Pb ages and sedimentologic and structural evidence[J]. Tectonophysics, 668/669: 65−81. doi: 10.1016/j.tecto.2015.12.006

      Zhang J J, Wang T, Castro A, et al. 2016b. Multiple mixing and hybridization from magma source to final emplacement in the Permian Yamatu pluton, the northern Alxa Block, China[J]. Journal of Petrology, 57: 933−979. doi: 10.1093/petrology/egw028

      Zhang J, Qu J F, Zhang Q L, et al. 2018. The structural mapping in exposed bedrock areas: methods, practice and exploration[J]. Geological Bulletin of China, 37(2/3): 192−221(in Chinese with English abstract).

      Zhang J, Yun L, Zhang B H, et al. 2020. Deformation at the easternmost Altyn Tagh fault: Constraints on the growth of the northern Qinghai−Tibetan Plateau[J]. Acta Geologica Sinica (English Edition), 94: 988−1006. doi: 10.1111/1755-6724.14555

      Zhang J, Qu J F, Liu J F, et al. 2021. The evolution of the Xar Moron tectonic belt in the eastern Central Asian Orogenic Belt: Constraints from evidences of deformation and low−temperature thermochronology[J]. Sedimentary Geology and Tethyan Geology, 41(2): 190−217(in Chinese with English abstract).

      Zhang J, Wang Y N, Qu J F, et al. 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review[J]. International Geology Review, 63: 1490−1520. doi: 10.1080/00206814.2020.1783583

      Zhang B H, Zhang J, Zhao H, et al. 2021b. Kinematics and geochronology of Late Paleozoic–Early Mesozoic ductile deformation in the Alxa Block, NW China: New constraints on the evolution of the Central Asian Orogenic Belt[J]. Lithosphere, 2021: 3365581. doi: 10.2113/2021/3365581

      Zhang J, Cunningham D, Yun L, et al. 2021c. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597

      Zhang J, Qu J F, Zhao H, et al. 2022. Deformation in subduction−accretionary complex belts: Characteristics, mechanism and differentiation from late−stage event[J]. Earth Science Frontier, 29(2): 56−78(in Chinese with English abstract).

      Zhang J, Qu J F, Zhang B H, et al. 2022a. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic[J]. American Journal of Science, 322: 851−897. doi: 10.2475/07.2022.01

      Zhang J, Cunningham D, Qu J F, et al. 2022b. Poly−phase structural evolution of the northeastern Alxa Block, China: Constraining the Paleozoic−Recent history of the southern central Asian Orogenic belt[J]. Gondwana Research, 105: 25−50. doi: 10.1016/j.gr.2021.12.007

      Zhang B H, Zhang J, Zheng R G, et al. 2022c. Paleozoic tectonic evolution of the central part of the southern central Asian Orogenic Belt: Constraints from the detrital zircon U−Pb ages and sedimentary characteristics[J]. Gondwana Research, 101: 1−20. doi: 10.1016/j.gr.2021.07.019

      Zhang J, Zhang B H, Zhao H, et al. 2023a. Late Cenozoic deformation characteristics and mechanism of the Beishan−Alxa region[J]. Earth Science Frontier, 30(5): 334−357(in Chinese with English abstract).

      Zhang J, Qu J F, Zhao H, et al. 2023b. Formation, mechanism and tectonic implication of a large ductile strike−slip duplex in the middle segment of Central Asian Orogenic Belt[J]. Mineral Exploration, 14(4): 519−540(in Chinese with English abstract).

      Zhang W, Wu T R, Feng J C, et al. 2013. Time constraints for the closing of the Paleo−Asian Ocean in the Northern Alxa Region: Evidence from Wuliji granites[J]. Science China: Earth Sciences, 56(1): 153−164 (in Chinese with English abstract). doi: 10.1007/s11430-012-4435-y

      Zhang W, Wang J R, Chen W F, et al. 2014. The discovery of the Carboniferous adakite and its tectonic implications in AlxaYouqi[J]. Geological Journal of China Universities, 20(3): 378−387(in Chinese with English abstract).

      Zhang W, Pease V, Meng Q, et al. 2017. Age and petrogenesis of late Paleozoic granites from the northernmost Alxa region, northwest China, and implications for the tectonic evolution of the region[J]. International Journal of Earth Sciences, 106: 79−96. doi: 10.1007/s00531-016-1297-0

      Zhang Y Q, Zhang C H, Hou L Y, et al. 2019. Superposed folding since the Permian on both sides of the Xar Moron Suture, southeastern Inner Mongolia: implications for syn− and post−collision geodynamic process[J]. Earth Science Frontiers, 26(2): 264−280(in Chinese with English abstract).

      Zhang B H, Zhang J, Qu J F, et al. 2021. Intracontinental deformation, paleo−stress field and tectonic setting in northeastern Alxa Block since Late Mesozoic[J]. Geological Bulletin of China, 40(1): 110−124(in Chinese with English abstract).

      Zhang D K, Wang Q C, Qin X H, et al. 2016. Structural and magmatic control of the Zhulazhaga gold deposit in Inner Mongolia[J]. Geology and Resources, 25(2): 125−129(in Chinese with English abstract).

      Zhang J X, Gong J H. 2018. Revisiting the nature and affinity of the Alxa Block[J]. Acta Petrologica Sinica, 34(4): 940−962(in Chinese with English abstract).

      Zhang S M, He Z Y, Hu E H, et al. 2018. The discovery of Mesozoic overthrust nappe tectonics and an analysis of its control of mineralization in Shapoquan area, Ejin Banner, Inner Mongolia[J]. Geological Bulletin of China, 37(2/3): 435−455(in Chinese with English abstract).

      Zhang S M, Ge Z Y, Zhao P J, et al. 2021. Zircon U−Pb Chronology and Geochemistry of the Wuliji Intrusions in the Northern Alxa Block: Constraints on the Tectonic Evolution of the Southern Altaids[J]. Acta Geoscientica Sinica, 46(1): 101−121(in Chinese with English abstract).

      Zhang S H. 2019. Geological characteristics and later reformation of the Permo−Carboniferous basin in Yingen−Ejina area, NW China[D]. Doctoral Dissertation of Northwest University (in Chinese with English abstract).

      Zhao X C, Liu C Y, Wang J Q, et al. 2020. Geochemistry, geochronology and Hf isotope of granitoids in the northern Alxa region: Implications for the Late Paleozoic tectonic evolution of the Central Asian Orogenic Belt[J]. Geoscience Frontiers, 11: 1711−1725. doi: 10.1016/j.gsf.2020.01.009

      Zhao H, Zhang J, Qu J F, et al. 2022. Geometry, kinematics and chronology of the Yabrai shear zone in the Alxa Block: constraints on the late Paleozoic dextral shear system in the southern margin of the Central Asian orogenic belt[J]. Journal of Structural Geology, 158: 104575. doi: 10.1016/j.jsg.2022.104575

      Zheng R G, Wu T R, Zhang W, et al. 2013. Geochronology and geochemistry of the Yagan granite in the northern margin of the Alxa block: Constraints on the tectonic evolution of the southern Altaids[J]. Acta Petrologica Sinica, 29(8): 2665−2675(in Chinese with English abstract).

      Zheng R G, Wu T R, Zhang W, et al. 2014. Late Paleozoic subduction system in the northern margin of the Alxa block, Altaids: geochronological and geochemical evidences from ophiolites[J]. Gondwana Research, 25: 842−858. doi: 10.1016/j.gr.2013.05.011

      Zheng R G, Li J Y, Xiao W J, et al. 2018. A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB[J]. Geoscience Frontiers, 9: 1355−1367. doi: 10.1016/j.gsf.2018.02.014

      Zheng R G, Li J Y, Zhang J, et al. 2019a. Early Carboniferous high Ba–Sr granitoid in southern Langshan of northeastern Alxa: Implications for accretionary tectonics along the southern Central Asian Orogenic Belt[J]. Acta Geologica Sinica (English Edition), 93: 820−844. doi: 10.1111/1755-6724.13803

      Zheng R G, Zhang J, Xiao W J. 2019b. Association of Permian gabbro and granite in the Langshan, southern Central Asian Orogenic Belt: Age, Origin, and tectonic implications[J]. Lithos, 348/349: 1−17.

      Zheng Y D, Wang S Z, Wang Y F. 1991. An enormous thrust nappe and extensional metamorphic core complex newly discovered in Sina−Mongolian boundary area[J]. Science in China, Series B, 34: 1145–1154.

      Zheng Y D, Zhang Q, Wang Y, et al. 1996. Great Jurassic thrust sheets in Beishan (North Mountains)—Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18: 1111−1126. doi: 10.1016/0191-8141(96)00038-7

      Zhou L F, Zhao C Y, Guo Z M. 1995. Formation and evolution of the sedimentary basins in Alaxa and adjacent regions[M]. Xi'an: Northwest University Press (in Chinese).

      Zhou Y Z, Han B F, Zhang B, et al. 2012. The Yingba shear zone on the Sino−Mongolian border: southwestern extension of the Zuunbayan fault from Mongolia to China and implications for Late Mesozoic intracontinental extension in Eastern Asia[J]. Tectonophysics, 574/575: 118−132. doi: 10.1016/j.tecto.2012.08.042

      Zhou Y Z, Han B F, Xu K, et al. 2014. Late Paleozoic−Mesozoic tectonomagmatic events in the Yingba area, western Inner Mongolia, China, and its geological implications[J]. Acta Geologica Sinica, 88(1): 25−35(in Chinese with English abstract).

      Zhou Z G, Zhang D, Gu Y C, et al. 2018. Characteristics of Bainaimiao Thrust Belt along Central Inner Mongolia in North China and its Geological Significance[J]. Geotectonica et Metallogenia, 42(1): 1−17(in Chinese with English abstract).

      Zuo G C, Feng Y Z, Liu C Y, et al. 1992. A new discovery of early Yanshanian strike−slip compressional nappe zones on middle−southern segment of Beishan Mts, Gansu[J]. Scientia Geologica Sinica, 27(4): 309−316(in Chinese with English abstract).

      陈刚, 孙建博, 周立发, 等. 2007. 鄂尔多斯盆地西南缘中生代构造事件的裂变径迹年龄记录[J]. 中国科学(D辑), 37(增刊1): 110−118.
      崔骁, 王根厚, 王振义, 等. 2019. 内蒙额济纳旗霍布哈尔地区构造片岩带的发现及其构造意义[J]. 矿物岩石, 39(2): 81−89.
      崔骁. 2020. 内蒙额济纳旗霍布哈尔地区构造变形特征及其意义[D]. 中国地质大学(北京)博士学位论文.
      党犇, 赵虹, 林广春, 等. 2011. 内蒙古西部银根-额济纳旗盆地及邻区二叠纪火山岩的地球化学特征和构造环境[J]. 地质通报, 30(6): 923−931.
      耿元生, 周喜文. 2010. 阿拉善地区新元古代岩浆事件及其地质意义[J]. 岩石矿物学杂志, 29(6): 779−795.
      公王斌, 胡健民, 吴素娟, 等. 2017. 内蒙古狼山左行走滑韧性剪切带变形特征、时间及意义[J]. 地学前缘, 24(3): 263−275.
      韩宝福, 张臣, 赵磊, 等. 2010. 内蒙古西部呼伦陶勒盖地区花岗岩类的初步研究[J]. 岩石矿物学杂志, 29(6): 741−749.
      韩乐乐, 陈宣华, 邵兆刚, 等. 2024. 北山南部西山煤窑地区晚中生代陆内构造变形特征与时限约束[J]. 地质通报, 43(11): 1950−1969.
      黄汲清. 1960. 中国地质构造基本特征的初步总结[J]. 地质学报, 40(1): 1−31.
      李刚, 刘正宏, 徐仲元, 等. 2012. 内蒙古白乃庙逆冲推覆构造的组成及其构造特征[J]. 吉林大学学报(地球科学版), 42(增刊2): 309−319.
      赖新荣, 江思宏, 邱小平, 等. 2007. 阿拉善北大山岩带海西期中酸性岩40Ar/39Ar年龄及其地球化学特征[J]. 地质学报, 81(3): 370−380.
      刘奎, 陈宣华, 王德润, 等. 2024. 北山东南部早白垩世伸展构造变形: 二维反射地震剖面解释与磷灰石裂变径迹测年的制约[J]. 地质力学学报, 30(3): 377−393.
      卢进才, 史冀忠, 牛亚卓, 等. 2018. 内蒙古西部北山—银额地区石炭纪—二叠纪层序地层与沉积演化[J]. 岩石学报, 34(10): 3101−3115.
      冉皞, 张维杰, 刘治博. 2012. 内蒙古阿拉善右旗杭嘎勒晚二叠世二长花岗岩地球化学特征和LA–ICP–MS锆石U–Pb定年[J]. 地质通报, 31(10): 1565−1575.
      任建梅. 2015. 内蒙古额济纳旗大扎干敖包花岗岩类研究[D]. 长安大学硕士学位论文.
      任新成, 修金磊, 刘等. 2023. 准噶尔东部晚古生代—中生代构造样式、变形序列及棋盘格构造的形成过程与机制[J]. 地质力学学报, 29(2): 155−173. doi: 10.12090/j.issn.1006-6616.2022113
      邵兆刚, 陈宣华, 王增振, 等. 2024. 北山造山带黑鹰山晚三叠世逆冲推覆构造特征及其对造山带演化的制约[J]. 地质通报, 43(11): 1893−1906.
      史兴俊, 童英, 王涛, 等. 2012. 内蒙古西部阿拉善地区哈里努登花岗岩LA–ICP–MS锆石U–Pb年龄和地球化学特征[J]. 地质通报, 31(5): 662−670.
      史兴俊, 张磊, 张辰光, 等. 2020. 阿拉善北部亚干地区花岗岩锆石年代学、地球化学特征及其构造意义[J]. 地球科学, 45(7): 2469−2484.
      舒良树, 夏飞雅克, 马瑞士. 1998. 中天山北缘大型右旋走滑韧剪带研究[J]. 新疆地质, 16(4): 326−336.
      宋嘉佳. 2017. 阿拉善北缘地块北部雅干断裂带周缘晚古生代花岗岩体特征[D]. 中国地质大学(北京)硕士学位论文.
      王廷印, 王士政, 王金荣. 1994. 阿拉善地区古生代陆壳的形成和演化[M]. 兰州: 兰州大学出版社.
      王廷印, 张铭杰, 王金荣, 等. 1998a. 恩格尔乌苏冲断带特征及大地构造意义[J]. 地质科学, 33(4): 358−394.
      王廷印, 高军平, 王金荣, 等. 1998b. 内蒙古阿拉善北部地区碰撞期和后造山期岩浆作用[J]. 地质学报, 72(2): 126−137.
      王振义, 李钢柱, 丁海生, 等. 2022. 内蒙古额济纳旗雅干地区北山岩群的厘定及其地质意义[J]. 地球科学, 47(4): 1177−1193.
      王涛, 郑亚东, 李天斌, 等. 2002. 中蒙边界区亚干变质核杂岩的组成与结构[J]. 地质科学, 37(1): 79−85.
      王文宝, 雷聪聪, 李刚, 等. 2023. 内蒙古西北部望湖山韧性剪切带构造特征及其地质意义[J]. 地质学报, 97(7): 2141−2156.
      吴泰然, 何国琦. 1993. 内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J]. 地质学报, 67(2): 97−108.
      谢力, 尹海权, 周洪瑞, 等. 2014. 内蒙古阿拉善地区恩格尔乌苏缝合带二叠纪放射虫及其地质意义[J]. 地质通报, 33(5): 691−697.
      杨振德, 潘行适, 杨易福. 1988. 阿拉善断块及邻区地质构造特征与矿产[M]. 北京: 科学出版社.
      叶珂, 张磊, 王涛, 等. 2016. 阿拉善雅布赖山二叠纪中酸性岩浆岩年代学、地球化学、锆石 Hf 同位素特征及构造意义[J]. 岩石矿物学杂志, 35(6): 901−928.
      岳远刚, 董云鹏, 王润三, 等. 2018. 贺兰山汝箕沟玄武岩地球化学特征及其地质意义[J]. 地质科学, 53(3): 1157−1170.
      张进, 李锦轶, 马宗晋, 等. 2009. 贺兰山三叠纪盆地构造属性再分析[J]. 地质学报, 83(9): 1233−1246.
      张进, 曲军峰, 张庆龙, 等. 2018. 基岩区构造地质填图方法、内容与实践[J]. 地质通报, 37(2/3): 192−221.
      张进, 曲军峰, 刘建峰, 等. 2021. 中亚造山带东段西拉木伦构造带的性质与演化: 来自变形和低温热年代学的约束[J]. 沉积与特提斯地质, 41(2): 190−217.
      张进, 曲军峰, 赵衡, 等. 2022. 俯冲增生杂岩带变形特征、成因机制及与后期变形的区别[J]. 地学前缘, 29(2): 56−78.
      张进, 张北航, 赵衡, 等. 2023a. 北山-阿拉善晚新生代变形的特征与机制[J]. 地学前缘, 30(5): 334−357.
      张进, 曲军峰, 赵衡, 等. 2023b. 中亚造山带中部大型韧性走滑双重构造的形成、机制与涵义[J]. 矿产勘查, 14(4): 519−540.
      张北航, 张进, 曲军峰, 等. 2021. 阿拉善东北缘晚中生代以来陆内变形、古应力特征及构造背景[J]. 地质通报, 40(1): 110−124.
      张道阔, 王庆超, 秦向红, 等. 2016. 内蒙古朱拉扎嘎金矿构造、岩浆控矿作用[J]. 地质与资源, 25(2): 125−129.
      张少华. 2019. 银额地区石炭—二叠纪盆地地质特征与后期改造[D]. 西北大学博士学位论文.
      张善明, 贺中银, 胡二红, 等. 2018. 内蒙古额济纳旗沙坡泉地区发现中生代逆冲推覆构造及其控矿作用[J]. 地质通报, 37(2/3): 435−455.
      张善明, 贺中银, 赵鹏彬, 等. 2021. 阿拉善地块北缘乌力吉岩体锆石 U−Pb年代学、地球化学及其对区域构造演化的制约[J]. 地球科学, 46(1): 101−121.
      张欲清, 张长厚, 侯丽玉, 等. 2019. 内蒙古东南部西拉木伦缝合带两侧二叠纪以来的叠加褶皱变形: 对同碰撞和碰撞后变形的启示[J]. 地学前缘, 26(2): 264−280.
      张建新, 宫江华. 2018. 阿拉善地块性质和归属的再认识[J]. 岩石学报, 34(4): 940−962.
      张伟, 王金荣, 陈万峰, 等. 2014. 阿拉善右旗地区晚石炭世埃达克岩的发现及其大地构造意义[J]. 高校地质学报, 20(3): 378−387.
      张文, 吴泰然, 冯继承, 等. 2013. 阿拉善地块北缘古大洋闭合的时间制约: 来自乌力吉花岗岩体的证据[J]. 中国科学: 地球科学, 43(8): 1299−1311.
      郑荣国, 吴泰然, 张文, 等. 2013. 阿拉善地块北缘雅干花岗岩体地球化学、地质年代学及其对区域构造演化制约[J]. 岩石学报, 29(8): 2665−2675.
      周立发, 赵重远, 郭忠铭. 1995. 阿拉善及邻区沉积盆地的形成与演化[M]. 西安: 西北大学出版社.
      周印章, 韩宝福, 徐钊, 等. 2014. 内蒙古西部英巴地区晚古生代—中生代构造岩浆事件及其地质意义[J]. 地质学报, 88(1): 25−35.
      周志广, 张达, 谷永昌, 等. 2018. 内蒙古白乃庙逆冲推覆构造特征及其地质意义[J]. 大地构造与成矿学, 42(1): 1−17.
      左国朝, 冯永忠, 刘春燕, 等. 1992. 甘蒙北山中南带新发现燕山早期走滑挤压推覆构造带[J]. 地质科学, 27(4): 309−316.
    图(24)
    计量
    • 文章访问数:  1820
    • HTML全文浏览量:  295
    • PDF下载量:  719
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-30
    • 修回日期:  2023-11-24
    • 刊出日期:  2025-01-14

    目录

      /

      返回文章
      返回