• 中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库核心期刊

基于改进信息量模型的地质灾害易发性评价以西藏察隅县G219国道沿线为例

曹苏傲, 郭振, 陈佳乐

曹苏傲, 郭振, 陈佳乐. 2025: 基于改进信息量模型的地质灾害易发性评价——以西藏察隅县G219国道沿线为例. 地质通报, 44(1): 185-200. DOI: 10.12097/gbc.2023.10.024
引用本文: 曹苏傲, 郭振, 陈佳乐. 2025: 基于改进信息量模型的地质灾害易发性评价——以西藏察隅县G219国道沿线为例. 地质通报, 44(1): 185-200. DOI: 10.12097/gbc.2023.10.024
Cao S A, Guo Z, Chen J L. Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang. Geological Bulletin of China, 2025, 44(1): 185−200. DOI: 10.12097/gbc.2023.10.024
Citation: Cao S A, Guo Z, Chen J L. Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang. Geological Bulletin of China, 2025, 44(1): 185−200. DOI: 10.12097/gbc.2023.10.024

基于改进信息量模型的地质灾害易发性评价——以西藏察隅县G219国道沿线为例

基金项目: 西藏自治区自然资源厅项目《西藏自治区地质灾害防治体系2021年度(第二批)建设项目四标段:林芝市波密县、察隅县、墨脱县地质灾害风险调查评价》(编号:54000021210200001372)
详细信息
    作者简介:

    曹苏傲(1969− ),男,高级工程师,从事地质灾害调查评价研究。E−mail:438846095@qq.com

    通讯作者:

    郭振(1986− ),男,硕士,工程师,从事工程地质研究。E−mail:392494222@qq.com

  • 中图分类号: P694; P642.2

Geological hazard susceptibility evaluation based on improved information model: A case study of the G219 National Highway in Zayu County, Xizang

  • 摘要:
    研究目的 

    公路建设引起道路沿线地质灾害频发。道路沿线地质灾害易发性评价是地质灾害应急救援中的关键问题,其评价结果可为灾害防范和应急决策提供科学依据,有助于减少灾害带来的潜在损失。

    研究方法 

    察隅县G219国道沿线共发育地质灾害85处(其中滑坡9处、崩塌31处、泥石流45处)。根据地质灾害的发育特征,选取水系线密度、道路线密度、地震峰值加速度、地震反应谱特征、岩组、地貌、DEM、平面曲率、剖面曲率、坡向和坡度11个影响因素作为评价因子,将地质灾害点核密度分析与信息量法相结合,改进信息量法模型,并运用GIS技术对研究区域的地质灾害易发性进行评价。

    研究结果 

    研究表明,基于改进的信息量法模型的易发性评价结果与实际灾害分布情况高度吻合。模型评价精度较高,AUC值达到0.836,表明模型对地质灾害易发性的预测能力显著。

    结论 

    改进的信息量法模型在评价地质灾害易发性方面表现出更优的精度,可为察隅县及其附近区域的城镇规划建设和地质灾害风险管理提供可靠的科学依据。

    Abstract:
    Objective 

    Due to the impact of highway construction, geological hazards along roadways occur frequently. The susceptibility evaluation of geological hazards along roadways is a key issue in emergency response and rescue. The evaluation results can provide a scientific basis for disaster prevention and emergency decision-making, helping to mitigate potential losses caused by such hazards.

    Methods 

    Along the G219 Highway in Zayu County, 85 geological disaster sites were identified (including 9 landslides, 31 collapses, and 45 debris flows). Based on the developmental characteristics of geological disasters, 11 influencing factors were selected as evaluation indicators: drainage density, road density, peak ground acceleration, seismic response spectrum characteristics, rock groups, geomorphology, DEM, plan curvature, profile curvature, aspect, and slope. A modified information value model combining geological disaster kernel density analysis with the information value method was developed. GIS technology was applied to evaluate the susceptibility of geological disasters in the study area.

    Results 

    The results show that the susceptibility evaluation based on the modified information value model aligns closely with the actual distribution of geological disasters. The model demonstrated high predictive accuracy, with an AUC value of 0.836, indicating its significant capability in assessing geological disaster susceptibility.

    Conclusions 

    The modified information value model provides superior evaluation accuracy and offers reliable scientific support for urban planning, construction, and geological disaster risk management in Zayu County and surrounding areas.

    创新点

    核密度分析与信息量法结合用于察隅县G219国道沿线地质灾害易发性评价。

  • 图  1   研究区地质灾害分布图

    Figure  1.   Distribution of geological hazards in the study area

    图  2   研究区地质灾害发育情况

    Figure  2.   The development of geological hazards in the study area

    图  3   评价因子分布图

    a—坡度;b—坡向;c—剖面曲率;d—平面曲率;e—水系线密度;f—道路线密度;g—地震峰值加速度;h—地震反应谱特征;i—岩组;j—DEM;k—降雨量;l—地貌

    Figure  3.   Evaluation factor

    图  4   基于改进信息量模型的地质灾害易发性评价框架流程图

    Figure  4.   Flow chart of geological hazard susceptibility assessment framework based on improved information model

    图  5   基于信息量法地质灾害易发性分区图

    Figure  5.   Geological hazard susceptibility zoning map based on information method

    图  6   基于信息量法地质灾害易发性评价

    Figure  6.   Geological hazard susceptibility evaluation based on information method

    图  7   察隅县地质灾害点核密度估计

    Figure  7.   Nuclear density estimation of geological disaster sites in Zayu County

    图  8   基于改进信息量法的地质灾害易发性分区图

    Figure  8.   Geological hazard susceptibility zoning map based on improved information method

    图  9   基于改进信息量法的察隅县G219国道沿线地质灾害易发性分区图

    Figure  9.   Geological hazard susceptibility zoning map along G219 National Highway in Zayu County based on improved information method

    图  10   随机检验样本分布

    Figure  10.   Distribution of random test samples

    图  11   信息量法和改进信息量法ROC曲线

    Figure  11.   ROC curves of information method and improved information method

    表  1   察隅县G219国道沿线地质灾害规模等级

    Table  1   Geological disaster scale level along the G219 National Highway in Zayu County

    灾害类型 大型 中型 小型 合计
    滑坡 0 2 7 9
    崩塌 0 18 13 31
    泥石流 1 8 36 45
    合计 1 28 56 85
    下载: 导出CSV

    表  2   察隅县G219国道沿线地质灾害现状稳定性与发展趋势

    Table  2   The stability and development trend of geological disasters along the National Highway G219 in Zayu County

    状态 稳定性 滑坡 崩塌 泥石流 合计
    现状稳定性不稳定126\27
    较稳定35715
    稳定5\3843
    发展趋势不稳定127\28
    较稳定841830
    稳定\\2727
    下载: 导出CSV

    表  3   相关性分析矩阵

    Table  3   Correlation analysis matrix

    因子 a b c d e f g h i j k l
    a 1 0.2790 0.0150 0.0800 0.0345 −0.0002 −0.0081 −0.326 −0.0310 −0.0175 −0.0001 0.0346
    b 0.2790 1 −0.0507 −0.1151 −0.0413 −0.1001 −0.0538 −0.2844 −0.0126 −0.0301 −0.0088 −0.0586
    c 0.0150 −0.0507 1 0.2991 0.0531 0.1175 0.1022 −0.1320 −0.0276 0.0321 0.0079 0.0862
    d 0.0800 −0.1151 0.2991 1 0.0746 0.2185 −0.0210 0.1465 0.0019 −0.0131 −0.0146 −0.0684
    e 0.0345 −0.0413 0.0531 0.0746 1 0.2798 0.6667 −0.4106 −0.0264 0.0331 0.0395 0.1196
    f −0.0002 −0.1001 0.1175 0.2185 0.2798 1 0.2403 0.0445 −0.0051 0.0109 −0.0042 0.0090
    g −0.0081 −0.0538 0.1022 −0.0210 0.6667 0.2403 1 −0.6120 −0.0342 0.0044 0.0269 0.1160
    h −0.3266 −0.2844 −0.1320 0.1465 −0.4106 0.0445 −0.6120 1 0.0534 0.0100 −0.0184 −0.1416
    i −0.0310 −0.0126 −0.0276 0.0019 −0.0264 −0.0051 −0.0342 0.0534 1 0.2679 −0.0206 −0.2962
    j −0.0175 −0.0301 0.0321 −0.0131 0.0331 0.0109 0.0044 0.0100 0.26790 1 −0.0344 0.1158
    k −0.0001 −0.0088 0.0079 −0.0146 0.0395 −0.0042 0.0269 −0.0184 −0.0206 −0.0344 1 0.0289
    l 0.0346 −0.0586 0.0862 −0.0684 0.1196 0.0090 0.1160 −0.1416 −0.2962 0.1158 0.0289 1
      注:a—水系线密度;b—道路线密度; c—地震峰值加速度;d—地震反应谱特征; e—岩组;f—地貌; g—降雨量; h—DEM; i—平面曲率; j—剖面曲率; k—坡向; l—坡度
    下载: 导出CSV

    表  4   主成分分析结果

    Table  4   Results of principal component analysis

    因子特征值特征值占比特征值累计占比
    水系线密度439.84646.38%46.38%
    道路线密度367.88038.79%85.18%
    坡度75.4377.96%93.13%
    岩组18.3251.93%95.07%
    地震峰值加速度14.2361.50%96.57%
    地貌13.0911.38%97.95%
    DEM10.8951.15%99.10%
    平面曲率6.3830.67%99.77%
    剖面曲率1.3230.14%99.91%
    坡向0.6060.06%99.97%
    地震反应谱特征0.2500.03%100.00%
    下载: 导出CSV

    表  5   评价因子各分区区间信息量

    Table  5   Information value of each zone of evaluation factor

    因子 分区区间 信息量
    DEM0~16000.3102
    1600~23002.3956
    2300~29000.5967
    2900~3500−2.4469
    3500~69000
    剖面曲率0~50.2742
    5~10−0.1723
    10~15−0.2335
    15~200.0451
    20~30−0.94
    30~580
    地貌中山地貌0.7517
    低山地貌1.7254
    其他0
    地震反应谱特征周期0.40.4844
    0.450.4842
    地震峰值加速度0.150.0297
    0.201.0226
    坡向0~900.5252
    90~180−0.5728
    180~270−0.3118
    270~3600.032
    坡度0~101.3547
    10~200.6354
    20~30−0.123
    30~40−0.8226
    40~50−0.4084
    50~90−0.6364
    工程地质岩组坚硬块状花岗者闪长岩岩组0.563
    软硬相间层状砂岩板岩泥岩岩组0.0301
    冰山0.3581
    较坚硬-较软弱层状、薄层状片岩岩组1.2453
    其他0
    平面曲率0~10−0.0391
    10~20−0.0279
    20~30−0.3062
    30~40−0.5248
    40~500.1163
    50~600.4755
    60~900.5718
    水系线密度0~0.08−3.7177
    0.08~0.24−2.4331
    0.24~0.420.6696
    0.42~0.621.6218
    0.62~1.40.7205
    道路线密度0~0.28−2.8886
    0.28~0.871.8923
    0.87~1.642.4519
    1.64~2.852.1497
    2.85~7.32.8018
    下载: 导出CSV

    表  6   基于信息量法的分区占比

    Table  6   Partition ratio based on information method

    易发分区 信息量范围 面积占比 灾害点数量/个
    高易发区 2.1280~15.3661 9.19% 83
    中易发区 −2.6555~2.1280 24.45% 2
    低易发区 −5.9929~−2.6555 37.84% 0
    非易发区 −13.0013~−5.9929 29.52% 0
    下载: 导出CSV

    表  7   基于信息量法的分区占比(国道G219沿线)

    Table  7   Partition ratio based on information method (along National Highway G219)

    易发分区 信息量范围 面积占比 灾害点数量/个
    高易发区 7.3162~15.3661 20.32% 63
    中易发区 −2.6555~7.3162 30.52% 20
    低易发区 −5.9929~−2.6555 28.87% 2
    非易发区 −10.2920~−5.9929 20.29% 0
    下载: 导出CSV

    表  8   基于改进信息量法的分区占比

    Table  8   Partition ratio based on improved information method

    易发分区 改进信息量范围 面积占比 灾害点数量/个
    高易发区 160.8139~320.371 1.15% 55
    中易发区 75.3815~160.8139 3.65% 23
    低易发区 22.6144~75.3815 10.25% 7
    非易发区 0~22.6144 84.95% 0
    下载: 导出CSV

    表  9   基于改进信息量法的分区占比(国道G219沿线)

    Table  9   Partition ratio based on improved information method (along National Highway G219)

    易发分区 改进信息量范围 面积占比 灾害点数量/个
    高易发区 201.0584~320.371 11.56% 36
    中易发区 115.6555~201.0584 19.20% 36
    低易发区 41.5559~115.6555 20.59% 11
    非易发区 0.11~−41.5559 48.65% 2
    下载: 导出CSV
  • Chen J G, Zhong L X. 2023. Assessment of rockfall susceptibility along the expressway based on the CF−AHP coupling model: A case study of the Tucheng−Wanglong section of the Rongzun expressway[J]. The Chinese Journal of Geological Hazard and Control, 34(6): 105−115 (in Chinese with English abstract).

    Dias H C, Hölbling D, Grohmann C H, 2021. Landslide susceptibility mapping in Brazil: A review[J]. Geosciences, 11(10): 425.

    Feng W, Tang Y M, Ma H N. 2021. Comprehensive risk assessment of multi−hazard natural disastersin Xianyang City based on AHP[J]. Northwestern Geology, 54(2): 282−288(in Chinese with English abstract).

    Fleuchaus P, Blum P, Wilde M, et al. 2021. Retrospective evaluation of landslide susceptibility maps and review of validation practice[J]. Environmental Earth Sciences, 80: 1−15. doi: 10.1007/s12665-020-09327-2

    Hao Q, Wei K, Zhao Z W, et al. 2023. Evaluation of geological hazard susceptibility of debris flow based on slope unit: A case study of Xintai City, Shandong Province[J]. Huabei Natural Resources, (2): 106−111(in Chinese with English abstract).

    Hou R N, Li Z, Chen N S, et al. 2023. Modeling of debris flow susceptibility assessmentl in Tianshan based on watershed unit and stacking ensemble algorithm[J]. Earth Science, 48(5): 1892−1907 (in Chinese with English abstract).

    Huang X P, Zheng L, Du J, et al. 2023. Regional rockfall hazard susceptibility assessment considering combination modes of rock mass dis−l continuities[J]. Safety and Environmental Engineering, 30(1): 163−172(in Chinese with English abstract).

    Kang Y H, Wang Y Y, Xia Z J, et al. 2018. Identification and classification of Wuhan urban districts based on POI[J]. Journal of Gcomatics, (1): 81−85 (in Chinese with English abstract).

    Lan Z X, Zheng B, Liao D W, et al. 2023. Risk assessment of geological disasters in Dayu town, Sandu county, Guizhou province based on information quantity method and slope unit[J]. Ground Water, 45(5): 160−163 (in Chinese with English abstract).

    Li S, Shang Y J, Wei, S Y, et al. 2020. Study on the susceptibility and causes of geohazards of Karakoram highway[J]. Xinjiang Geology, 38(4): 532−538(in Chinese with English abstract).

    Meng X R, Pei X J, Liu Q H, et al. 2016. GIS−Based susceptibility assessment of geological hazards along the road from Dujiangyan to Wenchuan by factor analysis[J]. The Chinese Journal of Geological Hazard and Control, 27(3): 106−115(in Chinese with English abstract).

    Sun B, Zhu C B, Kang X B, et al. 2022. Susceptibility assessment of debris flows based on information model in Dongchuan, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 33(5): 119−127(in Chinese with English abstract).

    Wei Y, 2020. Geological Disaster Susceptibility assessment along expressway in Southwest Mountain area: A case study of Panzhihua−Yanyuan expressway[D]. Master’s Thesis of Chengdu University of Technology (in Chinese with English abstract).

    Wu X, Song Y, Chen W, et al. 2023. Analysis of geological hazard susceptibility of landslides in Muli County based on random forest algorithm[J]. Sustainability, 15(5): 4328. doi: 10.3390/su15054328

    Xu Z H, 2020. Susceptibility Evaluation of geological hazards in Zhen'an section of 345 national highway[D]. Master’s Thesis of Xi 'an University of Science and Technology (in Chinese with English abstract).

    Yang R, Yu C Y, Wang Y, 2023. Susceptibility evaluation of geological disaster based on weighted information and GIS method: A case study of Yushe County[J]. Mining Research and Development, 43(2): 163−170(in Chinese with English abstract).

    Zeng B, Yang M Y, Shao C J, et al. 2018. Susceptibility assessment of karst collapse of Hangchang Expressway Projects based on analytic hierarchy process[J]. Safety and Environmental Engineering, 25(1): 29−38 (in Chinese with English abstract).

    Zhang T. 2015. Research on risk evoluation of geological disasters in Tianshan Highway in Xinjiang[D]. Master’s Thesis of Chongqing Jiaotong Univerisity (in Chinese with English abstract).

    Zhou Y, Wang Y S, Zhao X, et al. 2022. Susceptibility assessment of debris flow in Dimaluo River, branch of Nujiang River[J]. Geological Bulletin of China, 41(4): 702−712 (in Chinese with English abstract).

    Zhu M L, Tang X L, Yang W L, et al. 2023. Application of optimised SVM model to mudslide susceptibility[J]. Foreign Electronic Measurement Technology, 42(6): 163−170 (in Chinese with English abstract).

    陈建国, 钟连祥. 2023. 基于CF-AHP耦合模型的高速公路沿线崩塌地质灾害易发性评价——以蓉遵高速公路土城−旺隆段为例[J]. 中国地质灾害与防治学报, 34(6): 105−115.
    冯卫, 唐亚明, 马红娜, 等. 2021. 基于层次分析法的咸阳市多灾种自然灾害综合风险评价[J]. 西北地质, 54(2): 282−288.
    郝骐, 魏凯, 赵志伟, 等. 2023. 基于斜坡单元的泥石流地质灾害易发性评价——以山东新泰市为例[J]. 华北自然资源, (2): 106−111.
    侯儒宁, 李志, 陈宁生, 等. 2023. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模[J]. 地球科学, 48(5): 1892−1907.
    黄肖萍, 郑莉, 杜娟, 等. 2023. 考虑岩体结构面组合的区域崩塌灾害易发性评价[J]. 安全与环境工程, 30(1): 163−172.
    康雨豪, 王玥瑶, 夏竹君, 等. 2018. 利用POI数据的武汉城市功能区划分与识别[J]. 测绘地理信息, (1): 81−85.
    兰中孝, 郑冰, 廖德武, 等. 2023. 基于信息量法与斜坡单元的贵州省三都县打鱼镇地质灾害风险评价[J]. 地下水, 45(5): 160−163.
    李坤, 尚彦军, 魏思宇, 等. 2020. 喀喇昆仑公路国内段地质灾害易发性评价及成因分析[J]. 新疆地质, 38(4): 532−538. doi: 10.3969/j.issn.1000-8845.2020.04.018
    孟祥瑞, 裴向军, 刘清华, 等. 2016. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报, 27(3): 106−115.
    孙滨, 祝传兵, 康晓波, 等. 2022. 基于信息量模型的云南东川泥石流易发性评价[J]. 中国地质灾害与防治学报, 33(5): 119−127.
    魏雨. 2020. 西南山区高速公路沿线地质灾害易发性评价——以攀枝花至盐源高速为例[D]. 成都理工大学硕士学位论文.
    徐志浩. 2020.345国道镇安段公路地质灾害易发性评价[D]. 西安科技大学硕士学位论文.
    杨锐, 于春勇, 汪洋. 2023. 基于加权信息量和GIS方法的地质灾害易发性评价——以榆社县为例[J]. 矿业研究与开发, 43(2): 163−170.
    曾斌, 杨木易, 邵长杰, 等. 2018. 基于层次分析法的杭长高速岩溶塌陷易发性评价[J]. 安全与环境工程, 25(1): 29−38.
    张婷. 2015. 新疆天山公路地质灾害危险性评价研究[D]. 重庆交通大学硕士学位论文.
    周粤, 王运生, 赵逊, 等. 2022. 怒江支流迪麻洛河流域泥石流易发性评价[J]. 地质通报, 41(4): 702−712.
    朱木雷, 谭晓玲, 杨伟良, 等. 2023. 优化SVM模型在泥石流易发性中的应用[J]. 国外电子测量技术, 42(6): 163−170.
图(11)  /  表(9)
计量
  • 文章访问数:  1169
  • HTML全文浏览量:  228
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2024-03-09
  • 刊出日期:  2025-01-14

目录

    /

    返回文章
    返回