Source and evolution of ore-forming fluids in the Huangtian tungsten deposit in southeastern Yunnan: Constraints from geochemistry characteristics of scheelite
-
摘要:
荒田钨矿床位于滇东南老君山多金属成矿区北缘,是近年来新发现的一处大型白钨矿床。白钨矿从早到晚共划分为2个阶段:白钨矿-萤石-石英阶段(白钨矿Ⅰ)、白钨矿-碳酸盐阶段(白钨矿Ⅱ);根据产状又分为4种类型:白钨矿Ⅰ-a、白钨矿Ⅰ-b、白钨矿Ⅱ-a、白钨矿Ⅱ-b。白钨矿Ⅰ-b、Ⅱ发育明显的振荡环带。为确定成矿流体来源及演化,在详细的钻孔岩心编录和矿物显微组构研究的基础上,利用LA-ICP-MS分析了不同阶段白钨矿中的微量及稀土元素。结果显示:白钨矿的稀土元素主要受3Ca2+=2REE3++□Ca(此处"□"指Ca的空位)的替换机制控制,稀土元素在白钨矿中的分布存在明显的不均一现象,但均为LREE富集型,与老君山花岗岩的球粒陨石配分模式类似,白钨矿LREE-MREE-HREE图解及Sm/Nd值显示,其与老君山花岗岩密切相关。除早期白钨矿Ⅰ-a部分测试点显示负Eu异常外,其余测试点均显示正Eu异常,Eu的价态也由Eu3+为主转变为Eu2+为主。白钨矿中Mo含量逐渐降低,表明成矿流体从早期到晚期氧逸度逐渐降低。此外,白钨矿中Sr含量(36.6×10-6~619×10-6,平均值206.25×10-6)较高,矿床围岩主要为海相沉积碳酸盐岩,推测水岩反应为成矿流体提供了大量的Sr和Ca。
Abstract:The Huangtian tungsten deposit is located in the northern margin of the Laojunshan polymetallic metallogenic zone in southeastern Yunnan. It is a newly discovered large-scale scheelite deposit in recent years. Scheelite is divided into two stages from early to late: scheelite-fluorite-quartz stage(scheelite Ⅰ), scheelite-carbonate stage(scheelite Ⅱ); Four types: scheelite Ⅰ-a, scheelite Ⅰ-b, scheelite Ⅱ-a, scheelite Ⅱ-b. The scheelite Ⅰ-b and Ⅱ have obvious oscillating rings. In order to determine the source and evolution of its ore-forming fluids, based on the detailed borehole core cataloging and the study of mineral microfabrication, LA-ICP-MS was used to analyze the trace and rare earth elements in scheelite at different stages. Our data show that the rare earth elements in scheelite are mainly controlled by the substitution mechanism of 3Ca2+=2REE3++□Ca, the distribution of rare earth elements in scheelite is obviously inhomogeneous, but they are all LREE-enriched types, similar to the chondrite partition pattern of the Laojunshan granite. The LREE-MREE-HREE diagram of scheelite and the Sm/Nd ratio show that it is closely related to the Laojunshan granite. Except for some test points of early scheelite Ⅰ-a, which showed negative Eu anomaly, the rest of the test points showed positive Eu anomaly, Eu also changes from the Eu3+ dominated to Eu2+ dominated. and the content of Mo in scheelite also changed. It gradually decreases, indicating that the oxygen fugacity of the ore-forming fluid decreases gradually from the early stage to the late stage. In addition, the Sr content(36.6×10-6~619×10-6, average 206.25×10-6)in scheelite is relatively high, and the surrounding rocks of the deposit are mainly marine sedimentary carbonate rocks. It is speculated that the water-rock reaction is as follows: Ore-forming fluids provide a large amount of Sr and Ca.
-
Keywords:
- Southeast Yunnan /
- scheelite ore-forming fluids /
- LA-ICP-MS /
- trace elements /
- rare earth elements
-
致谢: 感谢文山州大豪矿业公司、福建省闽西地质大队西畴项目部全体工程师及钱国华高级工程师对野外工作的支持帮助;感谢福州大学紫金地质与矿业学院单思齐、周小深硕士及实验员陈素余对室内实验的帮助;感谢审稿专家对本文提出的诸多宝贵意见。
-
图 1 滇东南大地构造略图(a, 据林全胜, 2013)和老君山区域地质图(b, 据Han et al., 2020)
Figure 1. Generalized tectonic map of southeastern Yunnan(a) and geological map of Laojun Mountain region(b)
图 2 荒田矿床地质简图(据林全胜, 2014)
2l—中寒武统龙哈组; 2t—中寒武统田蓬组;1—硅质岩;2—钨矿体及编号;3—逆断层及编号;4—逆冲推覆断层及编号;5—滑脱断层及编号;6—正断层及编号;7—钻孔勘探线及编号Figure 2. Generalized geological map of Huangtian deposit
图 7 WO3-Mo图解(a)、La/Ho-Y/Ho图解(b)、Ho-Y图解(c)和Tb/La-Tb/Ca图解(d)
(底图据Möller et al., 1976; Schönenberger et al., 2008; 李洪英等, 2021)
Figure 7. Diagrams of WO3-Mo(a), La/Ho-Y/Ho(b), Ho-Y(c), and Tb/La-Tb/Ca(d)
表 1 白钨矿样品采集位置及特征
Table 1 Sampling location and characteristics of scheelite
样品编号 取样位置 特征 HT01 ZK2004(32 m) 白钨矿Ⅱ-b,白钨矿呈脉状沿方解石、白云石边缘分布 HT03 ZK2004(368.3 m) 白钨矿Ⅱ-a,白钨矿赋存于石英-碳酸盐脉中 HT04 ZK2004(380 m) 白钨矿Ⅱ-a,白钨矿赋存于石英-碳酸盐脉中 HT05 ZK2004(389 m) 白钨矿Ⅰ-b,白钨矿与萤石、石英伴/共生 HT07 ZK1011(182.65 m) 白钨矿Ⅰ-a,颗粒较大,单个白钨矿分析多个测点 HT10 ZK1011(309.5 m) 白钨矿Ⅰ-a,颗粒较大,白钨矿与萤石伴生,被石英包裹 表 2 荒田矿床白钨矿及围岩稀土元素含量
Table 2 Contents of rare earth elements in scheelite and surrounding rock of Huangtian deposit
10-6 样号 测点 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/HREE LaN/YbN δEu δCe HT07-1 1 6.62 6.24 0.35 1.00 0.10 0.13 0.15 0.02 0.05 0.02 0.05 0.01 0.09 0.01 0.38 14.83 14.44 0.40 36.17 50.94 3.13 0.64 2 8.99 16.40 1.62 5.80 1.50 0.40 1.63 0.23 1.48 0.19 0.62 0.06 0.28 0.03 3.23 39.25 34.74 4.51 7.70 23.03 0.77 0.98 3 0.67 1.35 0.18 0.77 0.14 0.07 0.22 0.03 0.17 0.02 0.05 0.01 0.05 - 0.42 3.71 3.17 0.54 5.93 10.28 1.31 0.94 4 1.40 2.69 0.33 1.28 0.40 0.13 0.42 0.06 0.28 0.05 0.07 0.01 0.05 - 0.74 7.17 6.23 0.94 6.65 21.51 0.99 0.94 5 8.83 14.6 1.39 5.54 1.35 0.48 1.18 0.21 1.13 0.21 0.41 0.05 0.30 0.05 3.82 35.71 32.19 3.53 9.13 21.46 1.13 0.92 6 4.96 7.51 0.73 2.35 0.60 0.24 0.58 0.09 0.37 0.07 0.14 0.02 0.10 0.01 1.15 17.76 16.39 1.38 11.91 35.30 1.24 0.86 7 1.49 5.89 1.12 6.10 1.69 0.50 2.14 0.29 1.79 0.33 0.73 0.10 0.36 0.05 6.79 22.58 16.80 5.78 2.90 2.98 0.81 1.07 HT07-2-1 1 4.36 5.20 0.35 0.79 0.15 0.17 0.18 0.02 0.12 0.02 0.06 0.01 0.065 0.01 0.60 11.51 11.03 0.48 23.18 48.33 3.06 0.77 2 16.70 20.30 1.49 3.77 0.32 0.46 0.29 0.05 0.28 0.06 0.14 0.03 0.19 0.02 1.52 44.08 43.02 1.06 40.72 61.50 4.55 0.77 3 0.59 1.99 0.41 2.45 0.64 0.26 0.93 0.10 0.62 0.11 0.34 0.03 0.11 0.03 2.98 8.61 6.35 2.26 2.81 3.96 1.05 0.96 4 0.01 0.39 0.12 0.86 0.18 0.05 0.17 0.02 0.12 0.02 0.05 0.01 0.05 - 0.57 2.14 1.70 0.44 3.88 1.54 0.89 0.78 5 10.70 27.00 3.76 18.40 4.74 1.31 5.76 0.86 5.29 0.98 2.20 0.27 1.39 0.18 18.4 82.89 65.96 16.93 3.90 5.51 0.77 1.04 HT07-2-2 1 8.77 9.01 0.68 2.18 0.32 0.23 0.26 0.08 0.36 0.06 0.20 0.02 0.14 0.02 1.37 22.34 21.20 1.14 18.61 44.76 2.40 0.67 2 4.15 8.84 1.17 5.09 1.57 0.64 1.63 0.26 1.52 0.25 0.67 0.08 0.30 0.05 5.09 26.23 21.46 4.77 4.50 9.84 1.21 0.97 3 1.69 4.24 0.60 3.30 1.29 0.33 1.25 0.17 1.18 0.21 0.41 0.04 0.17 0.01 3.68 14.90 11.46 3.44 3.33 7.01 0.78 1.03 4 10.9 20.9 2.50 10.8 3.40 2.65 3.44 0.55 3.18 0.53 1.45 0.21 1.58 0.21 13.3 62.30 51.15 11.15 4.59 4.94 2.34 0.94 5 1.09 2.28 0.32 1.38 0.26 0.11 0.41 0.06 0.32 0.04 0.11 0.02 0.13 0.01 1.55 6.57 5.45 1.12 4.87 5.87 1.07 0.93 6 1.92 3.71 0.70 4.12 1.63 0.59 1.85 0.27 1.39 0.25 0.54 0.05 0.25 0.03 3.61 17.31 12.67 4.64 2.73 5.53 1.04 0.78 HT07-2-3 1 4.59 29.90 7.61 51.00 18.3 3.47 18.1 2.71 14.5 2.38 4.48 0.41 1.63 0.14 28.5 159.26 114.92 44.34 2.59 2.02 0.58 0.98 2 0.69 1.44 0.17 0.83 0.04 0.08 0.13 0.02 0.14 0.03 0.07 0.01 0.08 0.01 0.84 3.75 3.26 0.49 6.63 6.61 3.00 0.99 3 0.71 1.74 0.31 2.31 0.80 0.40 0.90 0.13 0.75 0.15 0.25 0.03 0.17 - 2.50 8.65 6.28 2.37 2.64 2.97 1.42 0.90 4 0.50 1.50 0.31 1.51 0.59 0.20 0.88 0.12 0.73 0.12 0.25 0.02 0.07 - 2.34 6.80 4.60 2.20 2.10 5.33 0.83 0.91 5 8.35 19.40 2.88 13.40 3.87 2.18 3.97 0.60 3.46 0.54 1.37 0.12 0.64 0.05 10.5 60.86 50.11 10.75 4.66 9.38 1.69 0.97 HT10 1 30.20 39.40 3.03 8.90 2.29 3.47 2.72 0.45 3.11 0.50 1.63 0.28 1.92 0.31 22.4 98.22 87.31 10.91 8.00 11.30 4.25 0.81 2 10.70 30.10 4.90 24.00 7.34 3.90 8.62 1.56 8.69 1.77 4.76 0.53 3.31 0.39 36.7 110.63 81.00 29.63 2.73 2.32 1.50 1.02 3 8.06 27.80 4.75 22.10 6.65 3.33 8.15 1.39 8.50 1.84 4.07 0.52 2.63 0.31 33.0 100.17 72.76 27.41 2.66 2.20 1.38 1.08 HT05 1 1.64 1.67 0.23 1.48 0.91 0.45 1.33 0.22 1.39 0.18 0.48 0.05 0.20 0.01 3.14 10.24 6.38 3.86 1.65 5.96 1.26 0.59 2 0.97 1.54 0.15 0.45 0.16 0.06 0.17 0.03 0.10 0.03 0.05 0.01 0.09 0.01 1.27 3.81 3.33 0.48 6.86 7.55 1.19 0.88 3 0.41 0.98 0.12 0.51 0.01 0.04 0.17 0.02 0.17 0.04 0.09 0.01 0.07 0.01 1.28 2.65 2.07 0.58 3.54 4.08 1.37 1.08 4 0.31 1.08 0.26 1.90 1.24 0.69 1.70 0.32 1.89 0.41 0.83 0.08 0.22 0.03 4.51 10.95 5.49 5.46 1.00 1.01 1.47 0.86 5 0.74 1.62 0.23 1.14 0.31 0.19 0.51 0.09 0.45 0.01 0.18 0.02 0.11 0.01 2.19 5.68 4.22 1.46 2.88 4.62 1.43 0.96 6 0.89 1.53 0.24 1.59 0.58 0.27 0.62 0.12 0.90 0.17 0.27 0.04 0.19 - 2.96 7.41 5.10 2.31 2.21 3.33 1.39 0.80 7 3.36 4.55 0.51 2.38 0.90 0.47 0.95 0.15 0.91 0.17 0.41 0.04 0.20 0.02 3.00 15.02 12.16 2.86 4.25 11.99 1.54 0.76 HT03 1 0.38 0.97 0.14 0.71 0.33 0.21 0.24 0.04 0.24 0.04 0.10 - 0.04 - 1.83 3.43 2.73 0.70 3.91 7.00 2.23 1.03 2 0.20 0.29 0.03 0.06 - 0.02 - 0.01 0.07 0.01 - - 0.01 - 0.44 0.70 0.60 0.10 5.67 10.61 2.60 0.86 3 0.48 0.88 0.13 0.68 0.16 0.20 0.23 0.01 0.25 0.01 0.03 0.01 - - 1.59 3.07 2.53 0.54 4.68 - 3.09 0.85 HT04 1 1.01 1.05 0.10 0.25 0.10 0.08 0.07 0.02 0.10 0.02 0.03 0.01 0.07 - 1.03 2.90 2.59 0.31 8.21 10.36 3.09 0.64 2 0.35 0.35 0.03 0.20 0.01 0.06 0.09 0.01 0.03 0.01 0.02 0.01 - 0.01 0.91 1.17 0.99 0.18 5.34 70.06 4.27 0.65 3 2.85 3.60 0.35 1.37 0.33 0.21 0.41 0.04 0.23 0.09 0.14 0.03 0.04 0.02 2.41 9.72 8.72 1.00 8.71 47.02 1.73 0.75 HT01 1 7.21 11.5 1.41 7.62 1.42 1.48 2.02 0.23 1.80 0.27 0.58 0.02 0.22 0.03 12.5 35.85 30.68 5.16 5.94 23.56 2.67 0.83 2 1.83 2.58 0.32 1.25 0.24 0.21 0.30 0.08 0.34 0.03 0.15 0.02 0.07 0.02 2.73 7.41 6.42 0.99 6.48 19.67 2.36 0.76 3 3.53 6.10 0.73 3.11 0.68 0.70 0.80 0.12 0.57 0.14 0.30 0.03 0.16 0.01 6.35 16.98 14.85 2.13 6.97 15.65 2.91 0.88 4 1.81 2.67 0.30 1.53 0.31 0.20 0.57 0.07 0.21 0.05 0.14 0.01 0.04 - 2.96 7.92 6.83 1.09 6.24 31.04 1.44 0.81 5 11.5 24.1 3.38 15.1 3.60 2.81 4.10 0.64 3.17 0.54 1.07 0.14 0.52 0.05 18.1 70.62 60.39 10.22 5.91 15.89 2.23 0.94 6 12.2 22.6 2.85 13.4 3.80 2.48 3.75 0.49 3.12 0.53 1.06 0.11 0.61 0.05 18.3 67.11 57.39 9.72 5.90 14.45 1.99 0.91 绢云千枚岩 58.10 110.50 12.25 46.10 8.50 1.46 7.40 1.17 7.26 1.50 4.21 0.65 3.96 0.61 41.40 263.67 236.91 26.76 8.85 10.5 0.55 0.97 绢云大理岩 9.10 20.70 2.60 10.60 2.52 0.71 2.79 0.46 2.88 0.57 1.57 0.23 1.42 0.21 16.70 56.36 46.23 10.13 4.56 4.60 0.81 1.03 大理岩 1.60 3.10 0.38 1.50 0.29 0.22 0.30 0.05 0.31 0.06 0.18 0.03 0.15 0.02 1.80 8.19 7.09 1.10 6.45 7.65 2.26 0.94 大理岩 0.90 1.50 0.18 0.70 0.11 0.03 0.10 0.01 0.11 0.02 0.06 0.01 0.04 0.01 0.60 3.78 3.42 0.36 9.50 16.14 0.86 0.86 注:“-”为低于检测限 表 3 荒田白钨矿微量元素含量
Table 3 The content of trace elements in Huangtian scheelite
10-6 样号 测点 Mo Li Na Cr Mn Co Ni Cu Zn Ga As Rb Sr Zr Nb Ag Cd Sn Sb Cs Ba Hf Ta Bi Pb Th U HT07-1 1 133 0.03 0.74 - 1.69 - - 0.026 - 0.03 - 0.03 126 9.17 1.32 - - 0.17 0.03 0.01 - - 0.11 0.01 0.05 - 0.27 2 141 0.21 5.94 - 0.10 0.04 - - - - - 0.01 89.40 9.16 1.32 0.01 - 0.10 0.02 0.01 0.17 - 0.11 - 0.03 0.01 0.37 3 108 0.07 8.16 - 2.04 0.02 - 0.28 0.28 0.02 0.83 0.03 97.90 9.08 1.24 - 0.06 - 0.03 - 0.22 - 0.09 - 0.03 - 0.26 4 115 0.01 3.71 - 3.13 0.04 0.01 0.27 - 0.05 0.29 - 101 8.18 1.31 0.04 0.18 0.18 - 0.01 0.08 0.01 0.12 0.01 0.01 - 0.50 5 107 0.27 4.45 0.29 7.50 0.05 0.06 - 0.09 0.04 0.14 - 275 9.54 1.21 - - - 0.02 0.01 0.27 0.01 0.13 - 0.06 0.01 0.92 6 114 0.31 0.74 0.38 5.97 - 0.53 0.10 - 0.02 0.32 0.03 288 8.85 1.26 - 0.12 0.01 - - 0.27 0.01 0.093 - 0.04 0.02 0.81 7 97.10 0.24 - 0.55 45.36 0.05 - 0.44 0.12 0.10 1.66 - 162 7.50 1.32 - - 0.15 0.21 0.01 0.74 - 0.12 - 0.04 - 0.69 HT07-2-1 1 68.40 - 7.42 - 1.02 - - - - 0.02 - - 73 8.25 1.23 - 0.06 - 0.01 0.03 0.18 0.01 0.13 - 0.02 - 0.28 2 79.40 0.05 5.19 1.32 2.36 0.04 0.29 - 0.12 0.16 - 0.08 115 9.73 1.19 - 0.06 0.17 0.02 - 0.10 - 0.13 - 0.09 - 0.76 3 78 0.06 7.42 0.65 2.96 - - 0.11 0.27 - 0.36 - 136 8.90 1.30 - 0.12 0.06 - 0.03 0.35 - 0.11 - 0.06 0.01 0.33 4 69.70 - 1.48 1.14 1.02 0.03 - 0.04 0.32 0.01 0.24 - 59.30 9.28 1.37 0.06 0.12 0.18 0.03 0.03 0.02 0.01 0.12 - - 0.01 0.26 5 128 - 3.71 0.31 7.39 0.02 - - 0.37 0.28 0.08 0.03 386 8.84 1.20 - - 0.24 0.17 - 3.47 0.01 0.11 0.01 0.83 0.04 0.75 HT07-2-2 1 167 0.10 9.65 12.50 2.82 - 0.27 0.20 - 0.03 0.89 - 158 9.29 1.30 - - 0.09 0.05 0.01 0.05 - 0.12 - 0.16 - 0.39 2 101 0.10 1.48 1.01 2.09 0.02 0.19 0.01 0.17 0.17 1.20 0.02 233 9.04 1.29 0.02 0.12 - - - 0.30 - 0.10 0.01 0.09 0.01 0.55 3 113 - 5.94 - 3.09 - 0.02 0.08 0.04 0.11 - - 110 8.76 1.19 0.03 - - - 0.03 0.66 0.01 0.12 - 0.03 0.01 0.67 4 48.80 0.22 8.90 0.91 1.07 - 0.20 0.05 - 0.16 1.12 - 150 9.38 1.32 - - - 0.05 - 0.51 0.11 0.11 - 0.05 0.01 1.46 5 66.20 - 8.90 0.02 3.18 - - - 0.17 - 0.28 0.06 144 9.15 1.37 0.01 - 0.30 0.03 - 0.23 0.01 0.11 0.01 0.02 0.01 0.40 6 93.90 0.10 2.23 1.77 3.43 - 0.20 0.16 - 0.09 0.50 0.05 293 9.37 1.22 0.03 - 0.13 - 0.01 0.33 0.01 0.14 - 0.09 0.01 0.31 HT07-2-3 139.80 0.04 5.19 1.13 1.62 - 1.10 0.42 0.24 0.28 0.29 0.11 117 9.39 1.36 - - - - 0.11 2.24 - 0.10 0.01 0.22 0.06 0.70 2 103 0.04 8.16 0.76 5.32 - 0.68 - 0.43 0.07 - 0.04 198 8.96 1.23 0.04 - 0.19 - 0.02 0.23 - 0.10 - 0.29 0.01 0.23 3 115 - 8.16 0.08 3.41 - - 0.51 - 0.06 0.38 - 205 9.16 1.22 0.03 - 0.27 0.04 0.02 0.24 - 0.12 0.01 0.17 0.01 0.26 4 101 0.24 7.42 - 8.78 0.01 - - 0.26 0.02 0.66 - 306 8.11 1.33 0.01 0.06 0.36 - 0.01 0.16 0.01 0.11 0.05 0.54 0.03 0.09 5 56.10 0.19 5.19 0.47 1.14 - 0.22 0.10 0.38 0.17 0.26 0.01 142 9.00 1.31 0.01 0.24 0.20 0.47 - 1.25 - 0.12 0.08 2.46 0.03 0.43 HT10 1 24.20 - 40.81 - 1.12 0.03 1.03 0.02 0.34 0.33 0.46 0.01 125 9.27 1.39 - - 0.10 0.16 0.03 0.30 0.01 0.11 0.02 0.21 0.16 0.87 2 16.70 0.38 17.81 0.12 0.75 0.02 - 0.23 0.22 0.28 1.20 0.07 153 9.49 1.21 - 0.12 0.19 0.03 0.02 0.22 - 0.12 0.01 0.19 0.03 0.74 3 76.30 - 26.71 - 0.61 0.02 0.39 0.03 - 0.35 1.00 0.06 120 10.10 1.37 0.01 - 0.19 0.06 - 1.27 0.01 0.12 0.01 0.25 0.20 0.73 HT05 1 8.46 - 6.68 - - 0.02 - 0.06 - 0.04 - 0.01 101 9.27 1.24 - - - - - 0.10 - 0.13 - 0.03 0.02 0.59 2 0.38 - 6.68 0.06 0.18 - - - 0.33 0.07 - - 54.90 8.85 1.20 0.03 0.06 0.13 0.04 - 0.12 - 0.12 - 0.02 0.05 0.34 3 0.75 - 4.45 0.23 0.26 - - 0.43 0.11 - - - 36.60 8.93 1.30 0.01 0.23 0.15 - - 0.20 - 0.08 - 0.06 0.03 0.38 4 14.0 0.22 5.19 0.12 - - 0.41 - 0.11 0.10 - 0.04 47.40 9.28 1.28 - 0.12 - - - 0.75 - 0.10 0.01 0.24 - 0.35 5 4.06 - 8.16 - 2.61 - 0.01 0.24 0.38 0.11 - 0.02 57 9.99 1.28 0.01 - 0.05 - - 0.42 - 0.11 - 0.05 0.02 0.44 6 4.35 0.60 2.97 - 2.57 0.03 - 0.20 0.02 0.24 - 0.09 44.40 9.31 1.23 - - 0.27 0.20 0.10 0.53 - 0.11 - 0.08 0.02 1.06 7 9.24 - 4.45 - 0.31 - - 0.16 0.06 0.03 - 0.08 71.90 8.97 1.32 0.04 - - 0.25 - - 0.02 0.14 0.01 0.26 0.02 3.91 HT03 1 0.06 0.01 - - 1.75 0.05 - - 0.11 0.06 1.96 0.02 127 8.09 1.16 0.02 - 0.09 0.02 - 0.06 0.02 0.11 - 0.11 0.01 2.44 2 1.09 0.03 3.71 0.80 0.53 0.04 - - 0.22 0.13 - - 145 9.15 1.19 0.06 0.80 0.51 0.05 0.07 - - 0.10 0.01 - - 0.86 3 5.15 0.36 14.10 0.14 4.47 - 0.70 - 0.63 - - - 91.20 8.70 1.30 0.02 0.14 0.28 0.12 0.04 0.24 - 0.12 0.01 0.03 - 0.70 HT04 1 2.57 0.31 4.45 0.01 0.10 - 0.46 0.20 - - - 0.07 54.40 8.32 1.30 0.04 0.01 - - 0.02 0.14 - 0.11 0.01 0.00 - 1.20 2 0.70 - 3.71 0.24 1.31 0.04 0.65 - 0.22 0.04 - - 58.90 9.03 1.24 - 0.24 0.25 - 0.03 0.04 - 0.09 - 0.01 - 1.11 3 4.76 - - - 2.30 0.08 0.68 0.08 0.36 - 1.48 0.22 130 9.13 1.23 0.04 - - 0.04 - - - 0.07 0.01 0.07 0.01 2.30 HT01 1 0.19 - 1.48 0.49 1.87 - - - 0.56 0.35 - 0.13 533 9.24 1.32 0.14 0.49 0.24 0.12 0.05 0.24 - 0.08 - 0.04 0.78 2.78 2 - 0.38 - - 0.34 - 0.38 - - 0.05 1.35 - 619 8.97 1.20 0.03 - 0.04 - - - 0.01 0.10 0.04 1.85 0.19 0.71 3 - 0.22 - 0.12 - - - 0.35 4.92 0.12 - - 544 8.13 1.21 - 0.12 - - 0.11 0.20 - 0.08 0.01 0.17 0.40 1.51 4 0.06 0.26 - 0.35 - 0.01 1.15 - 0.27 - 2.09 0.08 451 8.87 1.04 - 0.35 0.02 0.12 - - - 0.10 - 0.06 0.19 0.79 5 0.62 0.34 8.16 - 15.29 0.04 - 0.53 0.29 0.31 0.57 0.44 378 9.61 1.19 0.02 - 0.08 0.12 0.25 0.33 - 0.09 - 0.09 0.96 2.93 6 0.54 1.80 2.23 0.01 0.24 0.07 - 0.64 0.64 0.56 2.26 0.99 455 8.99 1.21 - 0.01 0.55 0.13 0.34 1.59 0.03 0.10 - 0.62 1.11 2.84 注:“-”为低于检测限 -
Anders E, Grevesse N. Abundances of the elements: meteoritic and solar[J]. Geochimica et Cosmochimica Acta, 1989, 53: 197-214. doi: 10.1016/0016-7037(89)90286-X
Bau M, Möller P. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 1992, 45(3): 231-246.
Brugger J L, Lahaye Y, Costa S. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems(Mt. Charlotte and Drysdale gold deposits, Western Australia) [J]. Contributions to Mineralogy and Petrology, 2000a, 139(3): 251-264. doi: 10.1007/s004100000135
Brugger J, Bettiol A A, Costa S, et al. Mapping REE distribution in scheelite using luminescence[J]. Mineralogical Magazine, 2000b, 64(5): 891-903. doi: 10.1180/002646100549724
Brugger J, Mass R, Lahaye Y, et al. Origins of Nd-Sr-Pb isotopic variations insingle scheelite grains from Archaean gold deposits Western Australia[J]. Chemical Geology, 2002, 182: 203-225. doi: 10.1016/S0009-2541(01)00290-X
Brugger J, Etschmann B, Pownceby M, et al. Oxidation state of europium in scheelite: tracking fluid-rock interaction in gold deposits[J]. Chemical Geology, 2008, 257: 26-33. doi: 10.1016/j.chemgeo.2008.08.003
Burt D M. Compositional and phase relations among rare earth elements[J]. Reviews in Mineralogy & Geochemistry, 1989, 21: 259-307.
Cao J, Yang X, Zhang D, et al. In situ trace elements and Sr isotopes in scheelite and S-Pb isotopes in sulfides from the Shiweidong W-Cu deposit, giant Dahutang ore field: implications to the fluid evolution and ore genesis[J]. Ore Geology Reviews, 2020, 125: 103696. doi: 10.1016/j.oregeorev.2020.103696
Cottrant J F. Cristallochimie et géochimie des terres rares dans la scheelite: Application à quelques gisements francais[D]. Ph. D thesis, University of Paris-Ⅵ, 1981.
Dostal J, Kontak D J, Chatterjee A K. Trace element geochemistry of scheelite andrutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, NovaScotia, Canada: genetic implications[J]. Mineralogy Petrology, 2009, 97(1/2), 95-109.
Einaudi M T, Meinert L D, Newberry R J. Skarn deposits[J]. Economic Geology, 75th Anniversary, 1981, 317-391.
Ghaderi M, Palin J M, Campbell I H, et al. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia[J]. Economy Geology, 1999, 94: 423-437. doi: 10.2113/gsecongeo.94.3.423
Han R S, Ren T, Li W C, et al. Discovery of the large-scale Huangtian scheelite deposit and implication for the structural control tungsten mineralization in southeastern Yunnan, south China[J]. Ore Geology Reviews, 2020, 121: 103480 doi: 10.1016/j.oregeorev.2020.103480
Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4): 489-508.
Li X Y, Gao J F, Zhang R Q, et al. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite[J]. Ore Geology Reviews, 2018, 99: 180-194. doi: 10.1016/j.oregeorev.2018.06.005
Liu B, Li H, Wu Q H, et al. Fluid evolution of Triassic and Jurassic W mineralization in the Xitian ore field, South China: Constraints from scheelite geochemistry and microthermometry[J]. Lithos, 2019, 330/331: 1-15. doi: 10.1016/j.lithos.2019.02.003
Liu W, Etschmann B, Migdisov A, et al. Revisiting the hydrothermal geochemistry of europium(Ⅱ/Ⅲ) in light of new in situ XAS spectroscopy results[J]. Chemical Geology, 2017, 459: 61-74. doi: 10.1016/j.chemgeo.2017.04.005
Liu Y S, Hu Z C, GaoS, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
Möller P, Parekh P P, Schneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis[J]. Mineralium Deposita, 1976, 11(1): 111-116. doi: 10.1007/BF00203098
Nassau K, Loiacono G M. Calcium tungstate-Ⅲ: trivalent rare earth substitution[J]. Journal of Physics and Chemistry of Solids, 1963, 24: 1503-1510. doi: 10.1016/0022-3697(63)90090-8
Poulin R S, McDonald A M, Kontak D J, et al. On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments[J]. Canadian Mineralogist, 2016, 54(5): 1147-1173. doi: 10.3749/canmin.1500023
Raimbault L, Baumer A, Dubru M, et al. REE fractionation between scheelite and apatite in hydrothermal conditions[J]. American Mineralogist, 1993, 78: 1275-1285.
Schönenberger J, Köhler J, Markl G. REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland[J]. Chemical Geology, 2008, 247(1): 16-35.
Schwinn G, Markl G. REE systematics in hydrothermal fluorite[J]. Chemical Geology, 2005, 216(3): 225-248.
Song G X, Qin K Z, Li G M, et al. Scheelite elemental and isotopic signatures: implications for the genesis of skarn-type W-Mo deposits in theChizhou Area, Anhui Province, Eastern China[J]. American Mineralogist, 2014, 99: 303-317. doi: 10.2138/am.2014.4431
Sun K K, Chen B. Trace elements and Sr-Nd isotopes of scheelite: implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China[J]. American Mineralogist, 2017, 102: 1114-1128.
Sun K K, Chen B, Deng J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China: evidence from scheelite geochemistry[J]. Ore Geology Reviews, 2019, 107: 14-29. doi: 10.1016/j.oregeorev.2019.02.017
Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67: 70-78. doi: 10.1016/0012-821X(84)90039-6
Timofeev A, Migdisov A A, Williams-Jones A. An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature[J]. Geochimica et Cosmochimica Acta, 2017, 197: 294-304. doi: 10.1016/j.gca.2016.10.027
Wang C Y, Han R S, Huang J G, et al, The40Ar-39Ar dating of biotite in ore veins and zircon U-Pb dating of porphyrtic granite dyke in the Nanyangtian tungsten deposit in SE Yunnan, China[J]. Ore Geology Reviews, 2019, 114: 103-133.
Zhang Q, Zhang R Q, Gao J F, et al. In-situ LA-ICP-MS trace element analyses of scheelite and wolframite: Constraints on the genesis of veinlet-disseminated and vein-type tungsten deposits, South China[J]. Ore Geology Reviews, 2018, 99: 166-179. doi: 10.1016/j.oregeorev.2018.06.004
蔡倩茹, 燕永锋, 杨光树, 等. 滇东南南秧田矽卡岩型钨矿床成矿演化[J]. 矿床地质, 2018, 37(1): 116-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801009.htm 陈长发, 高剑峰, 张清清, 等. 赣北石门寺钨多金属矿床成矿流体演化过程: 白钨矿微区成分限定[J]. 矿床地质, 2021, 40(2): 293-310. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202102007.htm 程彦博, 毛景文, 陈小林, 等. 滇东南薄竹山花岗岩的LA-ICP-MS锆石U-Pb定年及地质意义[J]. 吉林大学学报(地球科学版), 2010, 40(4): 869-878. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201004018.htm 杜胜江, 温汉捷, 张锦让, 等. 滇东南老君山矿集区马卡钨铍稀有金属矿床花岗岩年代学归属[J]. 矿物学报, 2022, 42(3): 257-269. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202203001.htm 冯佳睿, 毛景文, 裴荣富, 等. 滇东南老君山南秧田钨矿床的成矿流体和成矿作用[J]. 矿床地质, 2011, 30(3): 403-419. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201103004.htm 官容生. 滇东南地区各主要花岗岩体基本特征及相互关系[J]. 云南地质, 1993, 4: 373-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199304005.htm 蓝江波, 刘玉平, 叶霖, 等. 滇东南燕山晚期老君山花岗岩的地球化学特征与年龄谱系[J]. 矿物学报, 2016, 36(4): 441-454. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201604001.htm 李洪英, 杨磊, 陈剑锋, 等. 江南古陆西段木瓜园钨矿床成矿流体演化过程研究[J]. 岩石学报, 2021, 37(3): 911-926. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202103016.htm 林全胜. 云南西畴红石岩喷流沉积型铅锌铜矿地质特征及找矿意义[J]. 福建地质, 2013, 32(3): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201303002.htm 林全胜. 云南西畴荒田矿区萤石白钨矿地质特征及成因初探[J]. 福建地质, 2014, 33(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDZ201401001.htm 刘玉平, 李正祥, 叶霖, 等. 滇东南老君山矿集区钨成矿作用Ar-Ar年代学[J]. 矿物学报, 2011, 31(S1): 617-618. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1320.htm 刘艳宾, 莫宣学, 张达, 等. 滇东南老君山地区晚白垩世花岗岩的成因[J]. 岩石学报, 2014, 30(11): 3271-3286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201411013.htm 刘英俊, 马东升. 钨的地球化学[M]. 北京: 科学出版社, 1987: 1-232. 马东升. 钨的地球化学研究进展[J]. 高校地质学报, 2009, 15(1): 19-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200901002.htm 毛景文, 程彦博, 郭春丽, 等. 云南个旧锡矿田: 矿床模型及若干问题讨论[J]. 地质学报, 2008, (11): 1455-1467. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200811002.htm 彭建堂, 张东亮, 胡瑞忠, 等. 湘西渣滓溪钨锑矿床白钨矿中稀土元素的不均匀分布及其地质意义[J]. 地质论评, 2010, 56(6): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006007.htm 秦德先, 黎应书, 谈树成, 等. 云南个旧锡矿的成矿时代[J]. 地质科学, 2006, (1): 122-132. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200601010.htm 阙朝阳, 张达, 狄永军, 等, 滇东南麻栗坡南温河—洒西一带钨矿控矿要素及深部找矿突破[J]. 地学前缘, 2014, 21(2): 286-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201402025.htm 沈宏飞, 李立兴, 李厚民, 等. 湘南中生代钨锡大规模成矿控制因素: 锆石年龄和微量元素的启示[J]. 地质通报, 2022, 41(2/3): 461-512. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2022020324&flag=1 双燕, 毕献武, 胡瑞忠, 等. 芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J]. 矿物岩石, 2006, 26(2): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200602008.htm 孙海瑞, 黄智龙, 周家喜, 等. 热液矿床中萤石的稀土元素地球化学及其地质意义[J]. 岩石矿物学杂志, 2014, 33(1): 185-193. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201401016.htm 王建伟. 矿产资源地质调查综合评价模型研究[D]. 成都理工大学硕士学位论文, 2015. 许赛华, 任涛, 吕昶良, 等. 滇东南白垩纪高分异S型花岗岩研究进展[J]. 矿物学报, 2019, 39(2): 149-165. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201902003.htm 叶霖, 鲍谈, 刘玉平, 等. 云南都龙锡锌矿床中白钨矿微量元素及稀土元素地球化学[J]. 南京大学学报(自然科学), 2018, 54(2): 245-258. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ201802003.htm 云南省地矿局. 云南省区域地质志[M]. 北京: 地质出版社, 1994. 曾志刚, 李朝阳, 刘玉平, 等. 滇东南南秧田两种不同成因类型白钨矿的稀土元素地球化学特征[J]. 地质地球化学, 1998, 2: 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199802005.htm 张东亮, 彭建堂, 符亚洲, 等. 湖南香花铺钨矿床含钙矿物的稀土元素地球化学[J]. 岩石学报, 2012, 28(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201008.htm 朱乔乔, 谢桂青, 韩颖霄. 湖北大冶铜山口铜(钼) 矿床中钨矿化特征及其地质意义[J]. 地球科学, 2019, 44(2): 441-455. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201902008.htm