浙江治岭头地区玄武岩U-Pb年龄、地球化学特征及构造背景

    刘汉仑, 毛景文, 段士刚, 王梦琦, 王英超, 董泽宝

    刘汉仑, 毛景文, 段士刚, 王梦琦, 王英超, 董泽宝. 2023: 浙江治岭头地区玄武岩U-Pb年龄、地球化学特征及构造背景. 地质通报, 42(5): 753-770. DOI: 10.12097/j.issn.1671-2552.2023.05.008
    引用本文: 刘汉仑, 毛景文, 段士刚, 王梦琦, 王英超, 董泽宝. 2023: 浙江治岭头地区玄武岩U-Pb年龄、地球化学特征及构造背景. 地质通报, 42(5): 753-770. DOI: 10.12097/j.issn.1671-2552.2023.05.008
    LIU Hanlun, MAO Jingwen, DUAN Shigang, WANG Mengqi, WANG Yingchao, DONG Zebao. 2023: U-Pb age, geochemistry characteristics and tectonic setting of basalt in the Zhilingtou area, Zhejiang Province. Geological Bulletin of China, 42(5): 753-770. DOI: 10.12097/j.issn.1671-2552.2023.05.008
    Citation: LIU Hanlun, MAO Jingwen, DUAN Shigang, WANG Mengqi, WANG Yingchao, DONG Zebao. 2023: U-Pb age, geochemistry characteristics and tectonic setting of basalt in the Zhilingtou area, Zhejiang Province. Geological Bulletin of China, 42(5): 753-770. DOI: 10.12097/j.issn.1671-2552.2023.05.008

    浙江治岭头地区玄武岩U-Pb年龄、地球化学特征及构造背景

    基金项目: 

    国家自然科学基金国际(地区)合作与交流项目《太平洋东西两岸中新生代锡矿和铜矿成矿规律和成矿背景对比研究》 41820104010

    中国地质科学院基本科研业务项目《浙中火山岩区快速找矿方法研究和应用示范》 KK2014

    详细信息
      作者简介:

      刘汉仑(1993-),男,在读博士生,矿物学、岩石学、矿床学专业。E-mail:975114711@qq.com

      通讯作者:

      毛景文(1956-),男,教授,从事矿床研究及区域成矿专业。E-mail:jingwenmao@263.net

      段士刚(1983-),男,副研究员,从事区域地质调查、矿产勘查、成矿作用等工作。E-mail:dsg1102231@163.com

    • 中图分类号: P597+.3;P534.53;P588.14+5

    U-Pb age, geochemistry characteristics and tectonic setting of basalt in the Zhilingtou area, Zhejiang Province

    • 摘要:

      为加深对华南地区东部白垩纪构造演化及壳幔作用的认识,对浙江省治岭头地区发育的玄武岩进行了U-Pb年龄、地球化学和Sr-Nd-Hf同位素分析。玄武岩呈块状构造,斑状结构,斑晶以斜长石、角闪石为主。LA-ICP-MS锆石U-Pb定年结果显示年龄为101±1 Ma,为早白垩世岩浆活动的产物。岩石地球化学分析结果表明,玄武岩整体具有富碱、高K2O/Na2O、高K2O+Na2O值和高Al2O3含量的特征,富集大离子亲石元素(Rb、Sr等)及轻稀土元素,亏损高场强元素(Nb、Ta、Ti、Hf等),稀土元素配分曲线整体右倾,具有微弱的正Eu异常,应属于钾玄岩系列。岩浆演化过程中经历了一定程度的分离结晶作用,Th/La、Th/Ce、Lu/Yb等值更接近于幔源岩浆的比值;(87Sr/86Sr)i=0.70729~0.71029, εNd(t)值及εHf(t)值范围分别为-19.7~-11.8和-9.7~-0.8,指示玄武岩源区具有EMⅠ富集地幔的特征,地壳物质亦有少量参与。结合华南地区晚中生代基性岩浆时空分布及地球化学特征,随着古太平洋板块的持续后撤作用,华南地区早白垩世为弧后扩张环境,由俯冲板片脱水产生的流体交代地幔形成的EMⅠ型富集地幔部分熔融,喷出地表形成了治岭头地区的玄武岩。

      Abstract:

      In order to deepen the understanding of the Cretaceous tectonic setting in the eastern part of South China, the petrological, geochemical and Sr-Nd-Hf isotope analyzes of the basalt in the Zhilingtou area of Zhejiang Province were carried out.The basalt are massive and porphyritic, and the phenocrysts consist of plagioclase and hornblende.LA-ICP-MS zircon U-Pb dating shows that the age is 101±1 Ma, which is the product of Early Cretaceous magmatic activity.The results of geochemical analyzes show that the basalt has the characteristics of rich alkali, high K2O/Na2O ratio, high K2O+Na2O value, and high Al2O3 content, enrichment in large ion lithophile elements(Rb, Sr)and light rare earth elements, depletion in high field strength elements(Nb, Ta, Ti, Hf).The distribution curve of rare earth elements is generally right-sloping, with a weak positive Eu anomaly, which should belong to potash basalt series, and has experienced a certain degree of fractional crystallization during the magma evolution process.The ratios of Th/La, Th/Ce and Lu/Yb are closer to the ratio of mantle-derived magma.(87Sr/86Sr)i=0.70729-0.71029, εNd(t) and εHf(t) values range from -19.7 to -11.8 and -9.7 to -0.8, respectively, indicating that the source area of basalt has the characteristics of EMⅠ-enriched mantle, and a small amount of crustal material is also involved.Structural discriminant diagrams show that basalt was formed in an intraplate extensional environment.In combination with the spatiotemporal distribution and geochemical characteristics of Late Mesozoic basic magma in South China, and with the continuous rollback of the paleo-Pacific plate, South China was a backarc spreading tectonic environment in the Early Cretaceous.The EMⅠ-type enriched mantle formed by fluid metasomatism generated by dehydration of subduction plates partially melted and ejected from the surface to form the basalt in the Zhilingtou area.

    • 图  1   治岭头地区大地构造位置图(a, 王永彬, 2014)及地质简图(b, Hua et al., 2000; Wang et al., 2020)

      Pt1b—古元古界八都群; K1d—下白垩统大爽组; K1g—下白垩统馆头组; K1λπ—早白垩世次火山岩; λπ—晚侏罗世花岗岩; —霏细岩; αμ—安山玢岩

      Figure  1.   Geotectonic map(a) and regional geological map(b) of the Zhilingtou area

      图  2   治岭头地区ZK2007柱状图(a)和玄武岩岩心镜下显微照片(b~e)

      b—玄武岩岩心手标本照片; c—角闪石斑晶(正交偏光); d、e—斜长石斑晶已部分蚀变成绿泥石(正交偏光);Amp—角闪石;Pl—斜长石;Chl—绿泥石

      Figure  2.   Histogram of ZK2007(a) and core and photomicrographs(b~e) of the basalt in the Zhilingtou area

      图  3   治岭头地区玄武岩样品锆石阴极发光(CL)图像和U-Pb年龄值

      Figure  3.   Cathodoluminescence images and zircon U-Pb ages of basalt in the Zhilingtou area

      图  4   治岭头地区玄武岩样品锆石U-Pb年龄谐和图及年龄加权平均值

      Figure  4.   U-Pb concordia and weighted average age diagrams for zircon from the basalt in the Zhilingtou area

      图  5   治岭头地区玄武岩Nb/Y-Zr/TiO2图解(a, 底图据Winchester et al., 1977)和SiO2-K2O图解(b, 底图据Peccerillo et al., 1976)

      Figure  5.   Diagrams of Nb/Y-Zr/TiO2(a) and SiO2-K2O(b)for basalt in the Zhilingtou area

      图  6   治岭头地区玄武岩微量元素原始地幔标准化蛛网图(a, 标准值据Taylor et al., 1985)和稀土元素球粒陨石标准化分布型式图(b, 标准值据Sun et al., 1989)

      Figure  6.   Primitive mantle-normalized trace element spider diagram(a) and chondrite-normalized REE patterns diagram(b)

      图  7   治岭头地区玄武岩Ta/Yb-Ce/Yb(a)和Ta/Yb-Th/Yb(b)图解(底图据Müller et al., 1995)

      Figure  7.   Diagrams of Ta/Yb-Ce/Yb(a) and Ta/Yb-Th/Yb(b) for basalt in the Zhilingtou area

      图  8   治岭头地区玄武岩SiO2-87Sr/86Sr(t)图解(a)和SiO2-εNd(t)图解(b)

      Figure  8.   Diagrams of SiO2-87Sr/86Sr(t)(a) and SiO2-εNd(t)(b)for basalt in the Zhilingtou area

      图  9   治岭头地区玄武岩CaO/Al2O3-CaO图解(a)和MgO-Ni图解(b)

      Figure  9.   Diagrams of CaO/Al2O3-CaO(a) and MgO-Ni(b)for basalt in the Zhilingtou area

      图  10   治岭头地区玄武岩年龄t-εNd(t)图解(a, 底图据Wu et al., 2007)和(87Sr/86Sr)i-εNd(t)图解(b, 底图据Mahoney et al., 1997)

      Figure  10.   Diagrams of t-εNd(t)(a) and(87Sr/86Sr)i-εNd(t)(b)for basalt in the Zhilingtou area

      图  11   治岭头地区玄武岩Sm/Yb-La/Sm图解(底图据Mahoney et al., 1997)

      Figure  11.   Diagram of Sm/Yb-La/Sm of basalt in the Zhilingtou area

      图  12   治岭头地区玄武岩(Tb/Yb)P-(Yb/Sm)P图解(底图据Zhang et al., 2006; 标准值据Sun et al., 1989) (模拟源区指假定源区位平均亏损地幔(Workman et al., 2005)和富集地幔橄榄岩(Ito et al., 2005)1:1的混合,分配系数据Salters et al., 2004)

      Figure  12.   Diagram of (Tb/Yb)P-(Yb/Sm)P of basalt in the Zhilingtou area

      图  13   治岭头地区玄武岩源区及成因判别图解(a底图据Cheng et al., 2017;b底图据刘茜, 2013)

      Figure  13.   Diagrams of Th/Zr-Nb/Zr(a) and Th/La-Rb/La(b)for basalt in the Zhilingtou area

      图  14   中国东南沿海地区晚白垩世地球动力学模式示意图(据Li et al., 2007修改)

      Figure  14.   Schematic geodynamic model for the formation of the Late Cretaceous in coastal SE China

      表  1   治岭头地区玄武岩LA-ICP-MS锆石U-Th-Pb定年分析结果

      Table  1   LA-ICP-MS U-Th-Pb age data of zircon from basalt in the Zhilingtou area

      序号 含量/10-6 Th/U 同位素比值 年龄/Ma
      Pb U Th 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U
      01 10 676 474 0.70 0.0476 0.0014 0.1031 0.0033 0.0157 0.0002 80 25 100 1 100 3
      02 24 913 785 0.86 0.0500 0.0009 0.1086 0.0032 0.0158 0.0002 183 68 101 1 105 3
      03 21 1009 910 0.90 0.0498 0.0013 0.1086 0.0032 0.0158 0.0002 250 78 100 2 106 4
      04 6 322 351 1.09 0.0513 0.0017 0.1099 0.0038 0.0157 0.0002 211 47 101 1 105 2
      05 24 954 1313 1.38 0.0502 0.0009 0.1089 0.0023 0.0157 0.0001 280 67 101 1 108 3
      06 22 650 813 1.25 0.0503 0.0012 0.1118 0.0029 0.0161 0.0002 209 56 103 1 108 3
      07 22 224 815 3.63 0.0477 0.0010 0.1026 0.00240 0.0156 0.0002 83 84 100 1 99 2
      08 19 1147 915 0.80 0.0499 0.0011 0.1078 0.0027 0.0157 0.0002 191 21 100 1 104 3
      09 20 1099 984 0.90 0.0510 0.0010 0.1116 0.0024 0.0159 0.0002 239 46 102 1 107 2
      10 14 728 754 1.03 0.0506 0.0013 0.1092 0.0033 0.0156 0.0002 233 61 100 1 105 3
      11 28 1050 1543 1.47 0.0503 0.0010 0.1110 0.0025 0.0160 0.0001 209 44 102 1 107 2
      下载: 导出CSV

      表  2   治岭头地区玄武岩样品主量、微量和稀土元素分析结果

      Table  2   Whole-rock major, trace and rare earth elements of basalt in the Zhilingtou area

      样品号 SiO2 TiO2 Al2O3 TFeO MnO MgO CaO Na2O K2O P2O5 烧失量 总计
      20-19-1 50.68 1.35 17.33 8.61 0.13 4.29 8.23 3.18 2.44 0.42 3.01 99.67
      20-19-2 50.51 1.35 17.27 8.65 0.13 4.24 8.41 3.10 2.42 0.43 2.89 99.40
      20-19-3 51.07 1.35 17.33 8.65 0.13 4.35 7.89 3.22 2.53 0.42 2.95 99.89
      20-19-4 51.56 1.37 17.53 8.77 0.13 4.42 7.91 3.15 2.43 0.42 2.51 100.20
      20-19-5 50.97 1.34 17.66 8.79 0.14 4.12 9.30 2.72 2.29 0.41 2.21 99.95
      样品号 FeO K2O+Na2O K2O/Na2O A/NK A/CNK AR Mg# La Ce Pr Nd Sm
      20-19-1 4.76 5.62 0.77 2.20 0.76 1.56 47.04 30.4 66.4 7.82 28.7 6.26
      20-19-2 4.67 5.52 0.78 2.24 0.75 1.55 46.63 30.0 64.8 7.36 27.3 5.93
      20-19-3 4.88 5.75 0.79 2.15 0.77 1.59 47.27 31.0 66.3 7.50 27.5 5.98
      20-19-4 4.74 5.58 0.77 2.24 0.79 1.56 47.32 30.8 66.8 7.52 27.6 5.95
      20-19-5 4.21 5.01 0.84 2.54 0.74 1.46 45.52 30.9 67.9 7.48 27.2 5.88
      样品号 Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE HREE
      20-19-1 1.97 5.16 0.72 3.94 0.75 1.91 0.27 1.65 0.25 156.20 141.55 14.65
      20-19-2 1.98 5.04 0.70 3.86 0.73 1.94 0.27 1.65 0.25 151.81 137.37 14.44
      20-19-3 1.97 5.09 0.71 3.92 0.75 1.92 0.27 1.68 0.25 154.84 140.25 14.59
      20-19-4 2.02 5.12 0.70 3.97 0.74 1.97 0.28 1.71 0.26 155.44 140.69 14.75
      20-19-5 1.94 5.05 0.71 3.97 0.74 1.97 0.27 1.69 0.26 155.96 141.30 14.66
      样品号 LREE/HREE (La/Sm)N (Gd/Yb)N (La/Yb)N δEu Sc V Cr Co Ni Ga Ge
      20-19-1 9.66 3.14 2.59 13.22 1.06 18.5 235 40 25.9 18.5 24.4 0.08
      20-19-2 9.51 3.27 2.53 13.04 1.11 18.4 240 110 24.5 16.2 22.9 0.07
      20-19-3 9.61 3.35 2.51 13.24 1.10 17.8 241 40 24.9 16.3 22.8 <0.05
      20-19-4 9.54 3.34 2.48 12.92 1.12 18.4 239 30 25.4 15.9 22.9 < 0.05
      20-19-5 9.64 3.39 2.47 13.12 1.09 16.5 254 30 24.1 16.2 24.4 < 0.05
      样品号 Rb Sr Zr Nb Ba Hf Ta Pb Th U Cs Y
      20-19-1 102.5 1200 160 10.0 548 3.9 0.4 5.0 5.42 0.97 0.33 20.4
      20-19-2 100.5 1210 155 9.3 530 3.8 0.4 5.1 5.56 0.95 0.31 19.1
      20-19-3 108.5 1150 162 9.8 582 4.0 0.5 4.4 5.64 0.99 0.33 20.0
      20-19-4 101.5 1235 163 9.9 513 4.0 0.4 4.7 5.80 0.98 0.33 19.5
      20-19-5 94.4 1490 160 9.7 494 3.9 0.5 6.1 5.67 1.00 0.27 19.9
      注:主量元素含量单位为%,微量和稀土元素含量单位为10-6
      下载: 导出CSV

      表  3   治岭头地区玄武岩Sr-Nd同位素分析结果

      Table  3   Sr-Nd isotope compositions of the basalt in the Zhilingtou area

      样品号 年龄/Ma Rb/10-6 Sr/10-6 87Sr/86Sr (87Sr/86Sr)i Sm/10-6 Nd/10-6 147Sm/144Nd 143Nd/144Nd (143Nd/144Nd)i εNd(t) fSm/Nd
      ZLT20-14 101 102.5 1200 0.707685 0.70733 6.26 28.7 0.1319 0.511886 0.511799 -13.83 -0.33
      ZLT20-15 101 100.5 1210 0.707632 0.70729 5.93 27.3 0.1313 0.511992 0.511905 -11.77 -0.33
      ZLT20-16 101 108.5 1150 0.710376 0.70998 5.98 27.5 0.1315 0.511618 0.511531 -19.06 -0.33
      ZLT20-17 101 101.5 1235 0.710337 0.71 5.95 27.6 0.1303 0.511584 0.511498 -19.71 -0.34
      ZLT20-18 101 94.4 1490 0.710558 0.71029 5.88 27.2 0.1307 0.511637 0.511551 -18.67 -0.34
      下载: 导出CSV

      表  4   治岭头地区玄武岩锆石Lu-Hf同位素分析结果

      Table  4   Lu-Hf isotope data for zircons from the basalt in the Zhilingtou area

      序号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf εHf(0) εHf(t) fLu/Hf
      1 116.4 0.044939 0.000997 0.001232 0.000026 0.282536 0.000017 -8.3 -5.9 0.6 -0.96
      2 100.4 0.049299 0.000156 0.001435 0.000004 0.282609 0.000024 -5.8 -3.7 0.8 -0.96
      4 100.23 0.032189 0.000034 0.001118 0.000003 0.282653 0.000018 -4.2 -2.1 0.6 -0.97
      5 100.2 0.068132 0.000696 0.002412 0.000025 0.282647 0.000027 -4.4 -2.4 1.0 -0.93
      6 100.7 0.046265 0.000226 0.001478 0.000005 0.282689 0.000023 -2.9 -0.8 0.8 -0.96
      7 100.5 0.039732 0.000215 0.001696 0.000010 0.282555 0.000024 -7.7 -5.6 0.8 -0.95
      8 103.1 0.073881 0.000188 0.002522 0.000003 0.282636 0.000024 -4.8 -2.7 0.8 -0.92
      9 100.0 0.057750 0.000076 0.001792 0.000002 0.282669 0.000023 -3.6 -1.6 0.8 -0.95
      10 100.34 0.040778 0.000578 0.001571 0.000030 0.282587 0.000019 -6.5 -4.4 0.7 -0.95
      12 99.8 0.029538 0.000058 0.001376 0.000002 0.282617 0.000029 -5.5 -3.4 1.0 -0.96
      13 102.2 0.070001 0.000224 0.002788 0.000007 0.282438 0.000045 -11.8 -9.8 1.6 -0.92
      下载: 导出CSV
    • Belousova E, Griffin W, O' Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rocktype[J]. Contrib. Mineral Petrol., 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7

      Bienvenu P, Bougault H, Joron M, et al. MORB alteration: rare-earth element/non-rare-earth hygromagmaphile elementfractionation[J]. Chemical Geology., 1990, 82: 1-14. doi: 10.1016/0009-2541(90)90070-N

      Carter A, Roques D, Bristow C, et al. Understanding Mesozoic accretion in Southeast Asia: significance of Triassic thermotectonism(Indosinian orogeny)in Vietnam[J]. Geology, 2001, 29, 211-214. http://searg.rhul.ac.uk/pubs/carter_etal_2011%20Mesozoic%20accretion%20in%20Southeast%20Asia.pdf

      Chen Y J, Santosh M. Triassic tectonics and mineral systems in the Qinling Orogen, central China[J]. Geol. J., 2014, 49: 338-358. doi: 10.1002/gj.2618

      Cheng Z, Zhang Z, Chai F, et al. Carboniferous porphyry Cu-Au deposits in the Almalyk orefield, Uzbekistan: the Sarycheku and Kalmakyr examples[J]. International Geology Review, 2017, 60(1): 1-20 doi: 10.1080/00206814.2017.1309996

      Collins W J. Nature of extensional accretionary orogens[J]. Tectonics, 2002, 21(4): 6. [10.1029/2000TC001272]. http://www.onacademic.com/detail/journal_1000035524857710_e564.html

      Daux V, Crovisier J L, Hemond C, et al. Geochemical evolution of basaltic rocks subjected to weathering: fate of the major elements, rare earth elements, andthorium[J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4941-4954. doi: 10.1016/0016-7037(94)90223-2

      Duan X Z, Zhang H F, Santosh M, et al. The transformation of the lithospheric mantle beneath South China Block(SCB): Constraints from petrological and geochemical studies of Daoxian and Ningyuan basalts and their meltinclusions[J]. International Geology Review, 2020, 62(4): 479-502. doi: 10.1080/00206814.2019.1621778

      Fabries J, Bodinier J L, Dupuy C, et al. Evidence for mantle metasomati Sm in the orogenic-type sipnel iherzolite bodu from Caussou(northeastern Pyrene es, France)[J]. Journal Petrology, 1989, 30: 199-229. doi: 10.1093/petrology/30.1.199

      Faure M, Shu L, Wang B, et al. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terra Nova, 2009, 21: 360-368. doi: 10.1111/j.1365-3121.2009.00888.x

      Fitton J G, James D, Kempton P D, et al. The role of lithosphere mantle in the generation of Late Cenozoic basic magmas in the Western United States[J]. Journal of Petrology, 1988, (1): 331-349. doi: 10.1093/petrology/special_volume.1.331

      Gilder S A, Gill J, Coe R S. Isotopic and palaeomagnetic constraints on the Mesozoic tectonic evolution of south China[J]. Journal of Geophysics Research, 1996, 101: 16137-16154. doi: 10.1029/96JB00662

      Green D H, Wallance M E. Mantle metasematism by ephemeral carbonationmelts[J]. Nature, 1988, 336: 459-462. doi: 10.1038/336459a0

      Green T H. Island arc and continent-building magmatism-A review of petrogenic models based on experimental petrology andgeochemistry[J]. Tectonophysics, 1980, 63(1): 367-385. http://www.onacademic.com/detail/journal_1000035690299610_119c.html

      Hart S R. Heterogeneous mantle domains: signature, genesis and mixing chronologies Earth Planet[J]. Science Letters, 1988, 90: 273-296. http://www.sciencedirect.com/science/article/pii/0012821X88901318

      He Z Y, Xu X S. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of paleo-Pacific platesubduction[J]. Chemical Geology, 2012, 328: 208-221. doi: 10.1016/j.chemgeo.2011.09.014

      Hollanda M H B M, Pimentel M M. Lithosphere-asthenosphere interaction and the origin of Cretaceous tholeiitie magmatism in Northeastern Brazil: Sr-Nd-Pb isotopicevidence[J]. Lithos, 2006, 86: 34-49. doi: 10.1016/j.lithos.2005.04.004

      Hou K J, Li Y H, Tian Y R. In situ U-Pb zircon dating using laser ablation-mult ion couting ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492. doi: 10.3969/j.issn.0258-7106.2009.04.010

      Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23: 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025

      Hsü K J, Shu S, Li J. Mesozoic overthrust tectonics in south China[J]. Geology, 1988, 16(5): 418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2

      Hua J X, Chen S H, Du Y S. Geological and Characteristics and the Metallogenic mode of Zhilingtou Pb-Zn-S deposit, Zhejiang[J]. Geology and Prospecting, 2000, (6): 44-47.

      Ito G, Mahoney J J. Flow and melting of a heterogeneous mantle: 1. Importance to the geochemistry of ocean island and mid-ocean ridge basalts[J]. Earth and Planetary Science Letters, 2005, 230: 29-46. doi: 10.1016/j.epsl.2004.10.035

      Jahn B M. Mesozoic thermal events in Southeast China[J]. Nature, 1974, 248: 480-483. doi: 10.1038/248480a0

      Jahn B M, Zhou X H M, Li J L. Formation and tectonic evolution of Southeastern China and Taiwan: Isotopic and geochemical constraints[J]. Tectonophysics, 1990, 183: 145-160. doi: 10.1016/0040-1951(90)90413-3

      Jiang S H, Liang Q L, Bagas L, et al. Geodynamic setting of the Zijinshan porphyry-epithermal Cu-Au-Mo-Ag ore system, sw Fujian Province, China: constrains from the geochronology and geochemistry of the igneousrocks[J]. Ore Geology Reviews, 2013, 53: 287-305. doi: 10.1016/j.oregeorev.2013.02.001

      Jiang Y H, Jiang S Y, Dai B Z, et al. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, southeast China: Implications for a continental arc torifting[J]. Lithos, 2009, 107(3/4): 185-204. http://www.onacademic.com/detail/journal_1000035065893210_4eef.html

      Jiang Y H, Wang G C, Liu Z, et al. Repeated slab advance-retreat of the Palaeo-Pacific plate underneath SEChina[J]. Int. Geol. Rev., 2015, 57(4): 472-491. doi: 10.1080/00206814.2015.1017775

      Keppler H. Constraints from partitioning experiments on the composition of subduction-zonefluids[J]. Nature, 1996, 380: 237-240. doi: 10.1038/380237a0

      Lapierre H, Jahn B M, Charvet J, et al. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang Province and their relationship with the tectonic activity in southeastern China[J]. Tectonophysics, 1997, 274: 321-338. doi: 10.1016/S0040-1951(97)00009-7

      Lepvrier C, Maluski H, Van Tich V, et al. The early Triassic Indosinian orogeny in Vietnam(Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina[J]. Tectonophysics, 2004, 393: 87-118. doi: 10.1016/j.tecto.2004.07.030

      Li B, Jiang S Y. Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu-Mo deposits in the Zijinshan ore district, Fujian province, SE China: a multi-isotope and trace elementinvestigation[J]. Ore Geology Reviews, 2017, 88: 753-767. doi: 10.1016/j.oregeorev.2017.02.009

      Li C, Van d H R D. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltimetomography[J]. Journal of Petrology, 2010, 27(3): 745. http://www.osti.gov/cgi-bin/eprints/redirectEprintsUrl?http%3A%2F%2Fquake.mit.edu%2Fhilstgroup%2Frobspage%2FPapersPDF%2F2010JGR_Tomo_Asia_Li.pdf

      Li S G, Chen Y Z, Ge N J, et al. Isotopic ages of metavolcanic rocks and megacryst mylonite in the Badu group in Southwestern Zhejiang Province and their implications for tectonics[J]. Acta Petrol. Sin., 1996 12: 79-87. http://www.researchgate.net/publication/285131261_Isotopic_ages_of_metavolcanic_rocks_and_metacryst_mylonite_in_the_Badu_Group_in_Southwestern_Zhejiang_Province_in_Chinese

      Li X H. Cretaceous magmatism and lithospheric extension in southeastChina[J]. Journal of Asian Earth Sciences, 2000, 18: 293-305. doi: 10.1016/S1367-9120(99)00060-7

      Li Z X, Li X H. Formation of the 1300 km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model[J]. Geology, 2007, 35: 179-182. http://adsabs.harvard.edu/abs/2007Geo....35..179L

      Li Z X, Li X H, Chung S L, et al. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plateboundary[J]. Tectonophysics, 2012, 532/535: 271-290. doi: 10.1016/j.tecto.2012.02.011

      Ling M X, Wang F Y, Ding X, et al. Cretaceous ridge subduction along the Lower Yangtze River Belt, EasternChina[J]. Economic Geology, 2009, 104: 303-321. doi: 10.2113/gsecongeo.104.2.303

      Liu L, Xu X, Xia Y. Cretaceous Pacific plate movement beneath SE China: evidence from episodic volcanism and relate dintrusions[J]. Tectonophysics, 2014, 614: 170-184. doi: 10.1016/j.tecto.2013.12.007

      Liu L, Xu X S, Xia Y. Asynchronizing paleo-Pacific slab rollback beneath SE China: Insights from the episodic Late Mesozoic volcanism[J]. Gondwana Research, 2016, 37: 397-407. doi: 10.1016/j.gr.2015.09.009

      Liu Y, Gao S, Hu Z. Continental and oceanic crust recycling induced melt-peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantlexenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571. http://petrology.oxfordjournals.org/content/51/1-2/537

      Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

      Mahoney J J, Coffin M F. Plume/lithosphere interaction in the generation of continental and oceanic flood basalts: Chemical and isotopicconstraints[C]//Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. American Geophysical Union, 1997: 335-355.

      Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to thepresent[J]. Island Arc, 1997, 6: 121-142. doi: 10.1111/j.1440-1738.1997.tb00043.x

      Meen J K, Eggler D, Ayers J C. Experimental evidence for very low solubility of rare earth elements in CO2 rich fluids at mantle condition[J]. Nature, 1989, 340: 301-303. doi: 10.1038/340301a0

      Meng L F, Li Z X, Chen H L, et al. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model[J]. Lithos, 2012, 132/133: 127-140. doi: 10.1016/j.lithos.2011.11.022

      Müller D, Groves D I. Potassic igneous rocks and associated gold-copper mineralization[M]. Springer Berlin Heidelberg, 1995, 56(1): 249-225.

      Pearce J A. Basalt geochemistry used to investigate past tectonic environments on Cyprus[J]. Tectonophysics, 1975, 25(1/2): 41-67. http://www.onacademic.com/detail/journal_1000035690008610_5e4f.html

      Peccerillo A, Taylor R. Geoehemistry of Eoceno calc-alkaline volcanic rocks from the Kastamawarea, northernTurkey[J]. Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745

      Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Longman Scientific & Technical, New York, 1993: 1-352.

      Salters V J M, Stracke A. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems, 2004, 5, Q05004, doi:050 10.01029/02003GC000597.

      Schiano P, Clocchiatti R, Joron J L. Melt and fluid inclusions in basalts and xenoliths from Tahaa Islands, Society archipelago: evidence for a metasomatized uppermantle[J]. Earth Planet Science Letters, 1992, 111: 69-82. doi: 10.1016/0012-821X(92)90170-Z

      Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Sauders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society of London, Special Publication, 1989, 42: 313-345.

      Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the westPacific[J]. Earth Planet. Sci. Lett., 2007, 262(3/4): 533-542. http://www.onacademic.com/detail/journal_1000035379349610_9214.html

      Taylor S R, Mclennan S M. The continental Crust: Its compositions and evolution[M]. Palo Alto, CA: Blackwell Scientific, 1985.

      Wang C M, Zhang D, Wu G G, et al. Zircon U-Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: implications for a continental arc to intra-arc rift setting[J]. Journal of Earth System Science, 2013, 122(3): 809-830. doi: 10.1007/s12040-013-0302-2

      Wang G G, Ni P, Zhao C, et al. A combined fluid inclusion and isotopic geochemistry study of the Zhilingtou Mo deposit, South China: implications for ore genesis and metallogenic setting[J]. Ore Geol. Rev., 2017, 81: 884-897. doi: 10.1016/j.oregeorev.2015.11.023

      Wang X L, Shu L S, Xing G F, et al. Post-orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800-760 Ma volcanicrocks[J]. Precambrian Res., 2012, 222: 404-423. http://www.sciencedirect.com/science/article/pii/S0301926811001367

      Wang Y B, Zeng Q D, Liu J M, et al. Porphyry Mo and epithermal Au-Ag-Pb-Zn mineralization in the Zhilingtou polymetallic deposit, South China[J]. Mineralium Deposita, 2020, 55(7): 1385-1406. doi: 10.1007/s00126-019-00942-z

      Wang Y J, Fan W M, Guo F, et al. Geochemistry of Mesozoic maficrocks adjacent to the Chenzhou - Linwu fault, South China: Implication for the lithospheric boundary between the Yangtze and CathaysiaBlocks[J]. International Geology Review, 2003, 45(3): 263-286. doi: 10.2747/0020-6814.45.3.263

      Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

      Workman R K, Hart, S R. Major and trace element composition of the depleted MORB mantle(DMM)[J]. Earth and Planetary Science Letters, 2005, 231: 53-72. doi: 10.1016/j.epsl.2004.12.005

      Wu F Y, Li X H, Yang J H, et al. Discussions on the petrogenesis of granites[J]. Acta Petrol. Sin., 2007, 23: 1217-1238. http://www.oalib.com/paper/1492686

      Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234: 105-126. doi: 10.1016/j.chemgeo.2006.05.003

      Xie X, Xu X S, Zou H B, et al. Early J2 basalts in SE China: incipience of large-scale late Mesozoic magmatism[J]. Sci. China Earth Sci., 2006, 49(8): 796-815. doi: 10.1007/s11430-006-0796-4

      Xu J K. Characteristics of Zhilingtou Au-Ag deposit in Zhejiang Province[J]. Contributions to Geology and Mineral Resources, 1989, 4(1): 1-13.

      Xu X S, O'Reilly S Y, Zhou X M, et al. The crust of Cathaysia: age. assembly and reworking of two terranes[J]. Precambrian Research, 1996, 158(1): 51-78. http://www.xueshufan.com/publication/1991575260

      Yu J H, O'Reilly S Y, Zhou M F, et al. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China: implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Res., 2012, 222/223: 424-449. doi: 10.1016/j.precamres.2011.07.014

      Zeng Q D, Wang Y B, Zhang S, et al. U-Pb and Re-Os geochronology of the Tongcun molybdenum deposit and Zhilingtou gold-silver deposit in Zhejiang Province, Southeast China, and its geological implications[J]. Resourse Geol., 2012, 63: 99-109. http://ir.iggcas.ac.cn/bitstream/132A11/8559/1/1158.pdf

      Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China[J]. Journal of Petrology, 2006, 47(10): 1997-2019. doi: 10.1093/petrology/egl034

      Zheng Y F. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003

      Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Res., 2008, 163(3/4): 351-383. http://www.sciencedirect.com/science/article/pii/S030192680800017X

      Zhou J C, Wang X L, Qju J S. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: coeval arc magmatism and sedimentation[J]. Precambrian Res., 2009, 170: 27-42. doi: 10.1016/j.precamres.2008.11.002

      Zhou X M, Li W X. Origin of Late Mesozoic igneous rock in SE China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326: 269-287. doi: 10.1016/S0040-1951(00)00120-7

      Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 2006, 29: 26-33. doi: 10.18814/epiiugs/2006/v29i1/004

      蔡明海, 何龙清, 刘国庆, 等. 广西大厂锡矿田侵入岩SHRIMP锆石U-Pb年龄及其意义[J]. 地质论评, 2006, (3): 409-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200603020.htm
      陈必河. 宁远保安地区基性-超基性火山岩基本特征[J]. 湖南地质, 1994, 13(4): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ404.000.htm
      陈荣, 周金城. 浙东早白垩世复合岩流和岩墙中蕴含的壳幔作用信息[J]. 地质评论, 1999, 45: 784-795. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1113.htm
      陈卫锋, 陈培荣, 徐夕生, 等. 华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约[J]. 中国科学(D辑), 2005, 35(11): 1007-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200511000.htm
      程彦博, 毛景文, 陈懋弘, 等. 云南个旧锡矿田碱性岩和煌斑岩LA-ICP-MS锆石U-Pb测年及其地质意义[J]. 中国地质, 2008, 35(6): 1138-1149. doi: 10.3969/j.issn.1000-3657.2008.06.011
      程裕淇. 中国区域地质概论[M]. 北京: 地质出版社, 1994: 1-517.
      戴宝章, 蒋少涌, 赵葵东, 等. 俯冲带火山岩硼及其同位素特征: 华南中生代玄武岩初步研究[J]. 地球学报, 2005, 26(增刊): 105-108. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509001035.htm
      郭锋, 范蔚茗, 林舸. 湘南中生代玄武岩浆成因与岩石圈-软流圈相互作用[J]. 矿物岩石地球化学通报, 1998, 17(1): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH801.000.htm
      郭小飞, 王庆龙, 荆一洪, 等. 赣南西华山成矿花岗岩锆石U-Pb年代学和Hf同位素特征及其地质意义[J]. 地质与勘探, 2022, 58(3): 585-596. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202203010.htm
      黄国祥. 新田宁远道县一带玄武质火山岩的地球化学研究[J]. 湖南地质, 1989, 8(3): 33-38, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ198903006.htm
      贾大成, 胡瑞忠, 卢焱. 湘东南玄武质岩石地球化学特征及构造环境[J]. 吉林大学学报(地球科学版), 2002, 32(3): 209-214. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200203000.htm
      李昌年, 钟称生, 王方正, 等. 桂北-湘南中生代玄武质岩石及其深源包体的地球化学性质和岩石成因探讨[J]. 岩石矿物学杂志, 2001, 20(2): 112-122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200102001.htm
      李水如, 王登红, 梁婷, 等. 广西大明山钨矿区成矿时代及其找矿前景分析[J]. 地质学报, 2008, (7): 873-879. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200807003.htm
      李赛, 段先哲, 牛苏娟, 等. 华南中生代玄武岩地球化学特征机器地球动力学意义[J]. 地质与勘探, 2022, 58(5): 1001-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202205008.htm
      李武显. 浙闽沿海地区晚中生代火成岩成因及构造制约[D]. 南京大学博士学位论文, 1999.
      李子颖, 李秀珍, 林锦荣. 试论华南中新生代地幔柱构造/铀成矿作用及起找矿方向[J]. 铀矿地质, 1999, (1): 9-17.
      刘浪, 刘德民, 邵俊琦, 等. 云南会泽地区玄武粗安岩年代学、地球化学及构造演化[J]. 中国地质, 2020, 47(3): 673-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003010.htm
      刘茜. 江西盛源铀矿田安山岩的年代学和地球化学特征[D]. 东华理工大学硕士学位论文, 2013.
      卢清地, 朱根灵, 秦正永. 福建中—新生代玄武岩的地球化学特征及其成因[J]. 中国区域地质, 2000, 19(1): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200001013.htm
      毛建仁. 中国东南大陆中新生代岩浆作用与地幔演化的动力学[J]. 火山地质与矿产, 1994, 15(2): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199402000.htm
      毛建仁, 厉子龙, 叶海敏. 华南中生代构造-岩浆活动研究: 现状与前景[J]. 中国科学(D辑), 2014, 44(12): 2593. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201412001.htm
      毛建仁, 陶奎元, 邢光福, 等. 中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J]. 地球学报, 1999, 20(3): 253-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199903006.htm
      毛景文, Stein H, 杜安道, 等. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示[J]. 地质学报, 2004, 78(1): 121-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200401014.htm
      毛景文, 谢桂青, 郭春丽, 等. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景[J]. 岩石学报, 2007, 23(10): 2329-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm
      倪春中, 张世涛, 刘春学. 个旧锡矿高松矿田节理发育特征与成矿分析[J]. 有色金属(矿山部分), 2013, 65(2): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU201302010.htm
      秦来勇, 韦可利, 冯国玉, 等. 广西大厂锡矿田新类型矿化体的发现及其地球化学特征[J]. 有色金属(矿山部分), 2010, 62(5): 18-22, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU201005007.htm
      孙建东, 李海立, 陆凡, 等. 赣西蒙山岩体地球化学、锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 地质与勘探, 2022, 58(1): 96-106. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202201009.htm
      孙卫东, 凌明星, 杨晓勇, 等. 洋脊俯冲与斑岩铜金矿成矿[J]. 中国科学(D辑), 2010, 40: 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002001.htm
      谢窦克, 马荣生. 华南大陆地壳生长过程与地幔柱构造[M]. 北京: 地质出版社, 1996.
      谢窦克, 毛建仁, 彭维震, 等. 华南岩石层与大陆动力学[J]. 地球物理学报, 1997: 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1013.htm
      谢家莹, 陶奎元, 尹家衡, 等. 中华人民共和国地质矿产部地质专报三: 岩石矿物地球化学第22号: 中国东南大陆中生代火山地质及火山侵入杂岩[M]. 北京: 地质出版社, 1996: 1-277.
      谢昕, 徐夕生, 邹海波, 等. 中国东南沿海中—新生代玄武岩微量元素和Nd-Sr-Pb同位素研究[J]. 岩石学报, 2001, 17(4): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200104011.htm
      谢昕, 徐夕生, 邹海波, 等. 中国东南部晚中生代大规模岩浆作用序幕: J2早期玄武岩[J]. 中国科学(D辑), 2005, 35(7): 587-605. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200507000.htm
      徐夕生, 谢昕. 中国东南部晚中生代-新生代玄武岩与壳幔作用[J]. 高校地质学报, 2005, 11(3): 318-334. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503004.htm
      徐先兵, 李源, 薛德杰, 等. 福建泉州晚中生代伸展构造变形特征与年代学制约[J]. 地球科学——中国地质大学学报, 2014, 39(1): 45-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201401005.htm
      杨帆, 黄小龙, 李洁. 华南长城岭晚白垩世斜斑玄武岩的岩作用过程与岩石成因制约[J]. 岩石学报, 2018, 34(1): 157-171. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201801014.htm
      杨锋, 冯佐海, 康志强, 等. 广西中部大明山钨矿白云母40Ar/39Ar定年及其地质意义[J]. 地质通报, 2011, 30(9): 1429-1433. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20110912&flag=1
      王德滋, 周金城, 邱检生, 等. 东南沿海早白垩世火山活动中的岩浆混合及壳幔作用证据[J]. 南京大学学报(地球科学), 1994, 6(4): 315-325.
      王京彬. 道县虎子岩岩体及其包体的地球化学特征和构造意义[J]. 湖南地质, 1991, 10(1): 52-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ199101010.htm
      王玺. 华北中部吕梁地区古元古代构造演化的年代学与地球化学制约[D]. 南京大学博士学位论文, 2014.
      王永彬. 浙江省治岭头岩浆热液-浅成热液多金属成矿系统研究[D]. 中国科学院大学博士学位论文, 2014.
      杨金豹, 赵志丹, 莫宣学, 等. 湖南道县虎子岩碱性玄武岩及其基性捕虏体成因和地质意义[J]. 岩石学报, 2015, 31(5): 1421-1432. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201505017.htm
      章邦桐, 陈培荣, 孔兴功. 赣南临江盆地余田群双峰式火山岩的Rb-Sr年代学研究[J]. 中国地质, 2002, 29(4): 351-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200204002.htm
      张达, 李芳, 贺晓龙, 等. 华南重要成矿区带中生代构造变形及其控岩控矿机理[J]. 地质力学学报, 2021, 27(4): 497-528. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202104002.htm
      张德全, 丰成友, 李大新, 等. 紫金山地区斑岩-浅成热液成矿系统的成矿流体演化[J]. 地球学报, 2005, 26(2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200502004.htm
      张树明, 王方正. 玄武岩在研究岩石圈深部过程及构造背景中的应用[J]. 地球科学进展, 2002, 17(5): 685-692. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200205010.htm
      张招崇, 王福生, 郝艳丽. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J]. 地质学报, 2004, 78(2): 171-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200402004.htm
      张招崇, 王福生, 郝艳丽. 峨眉山大火成岩省中的苦橄岩: 地幔柱活动证据[J]. 矿物岩石地球化学通报, 2005, 24(1): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200501004.htm
      赵振华, 包志伟, 张伯友. 湘南中生代玄武岩类地球化学特征[J]. 中国科学, 1998, 4(S2): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2001.htm
      赵振华, 王强, 熊小林. 俯冲带复杂的壳幔相互作用[J]. 矿物岩石地球化学通报, 2004, 23(4): 277-284. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200404001.htm
      郑永飞, 陈伊翔. 大陆俯冲带复杂的壳幔相互作用[J]. 地球科学, 2019, 44(12): 3961-3983.
      周金城, 陈荣. 闽东南晚中生代壳幔作用地球化学[J]. 地球化学, 2001, 30(6): 547-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200106006.htm
    图(14)  /  表(4)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-10-25
    • 修回日期:  2023-03-20
    • 网络出版日期:  2023-08-15
    • 刊出日期:  2023-05-14

    目录

      /

      返回文章
      返回