Remote sensing & engineering geology survey technology for detection of occupied space by urban building foundation
-
摘要:
城市建筑基础占用了大量的地下空间资源,这部分空间资源的三维分布信息对城市地下空间利用规划必不可少。但这方面的信息往往分散在各个工程建设机构中,不易获取。为解决建筑基础占用地下空间信息难以获取的问题,需探索出一种高效准确的探测技术。通过参考建筑地基基础计算方法,研究出一种建筑地基基础占用空间的测算方法:采用高分辨率遥感信息探测获取地面建筑相关参数,收集分析工程地质勘察资料获取相关岩土参数;将遥感探测、工程勘察获取的参数与建筑基础占用空间的测算方法结合,形成了一套用于测算建筑地基基础占用空间的遥感解译-地质工程相结合的探测技术。在郑州航空港区应用结果表明,该技术操作方便、高效快捷、探测结果准确,能够满足地下空间利用规划需要,有广阔的推广应用前景。
-
关键词:
- 建筑地基基础占用空间 /
- 地下空间资源 /
- 遥地耦合探测 /
- 遥感解译 /
- 岩土工程
Abstract:The foundation of urban building occupies and uses numerous underground resources of space.Therefore, it is essential and significant to use the information of underground space resources' three-dimensional distribution for the urban underground space utilization planning.Nevertheless, the information in this respect is often scattered among various engineering construction institutions, which makes them uneasy to obtain.In order to tackle the problem hard to get the access of some information about underground space occupied by building foundation, it is necessary to explore an efficient and accurate technology for detection.By referring to the calculation method of the rock foundation, a method was developed and advanced to calculate the space occupied by building a foundation.High-resolution remote sensing information was adopted to obtain relevant parameters of ground buildings, collect engineering and geological survey data, and analyze the relevant data to acquire geotechnical parameters.By combining the parameters obtained by remote sensing detection and engineering survey with the calculation method of the space occupied by building foundation, a set of detection technique with the combination of remote sensing interpretation and geological engineering was formed and developed to measure the space occupied by building foundation.The application results in Zhengzhou Airport Area indicate that the technology is convenient to operate, efficient, effective, and accurate.It can completely fulfill the needs of underground space utilization planning with broad prospects for promotion and application.
-
班公湖-怒江结合带(BNS)位于青藏高原北部, 西起班公湖, 向东经改则、东巧、丁青与昌宁-孟连带相连, 向西延伸向克什米尔, 与东地中海特提斯蛇绿岩相连, 在中国境内长达2000km, 是青藏高原一条重要的结合带[1]。班公湖-怒江结合带中存在规模巨大的蛇绿岩、增生杂岩, 以及夹持其中的残余弧或岛弧变质地块, 发育韧性剪切带、逆冲断层、构造混杂岩、复杂褶皱等多种构造行迹, 沿断裂还发育晚白垩世-新近纪陆相火山岩、新生代陆相走滑拉分盆地和第四纪谷地[2]。为更好地认识班公湖-怒江结合带内物质的形成机制及相关的构造背景, 需要对其开展深入的研究。
通过对沉积岩中的碎屑锆石进行U-Pb定年分析, 可有效地探讨其源区并开展历史时期的古大陆重建。本文对该地区早白垩统多尼组(原1:25万区调划为上三叠统巫嘎组)砂岩的碎屑锆石开展了形态学及U-Pb年代学研究, 为揭示班公湖-怒江缝合带内该地层单元的物源区提供新的证据, 同时为探讨班公湖-怒江结合带的构造演化史提供一定的依据。
1. 地质特征
多尼组出露于改则县南西的洞错一带(图 1), 呈近东西向带状分布, 区域上为一套灰色-深灰色含煤碎屑岩地层。岩性主要为泥岩、砂岩、板岩、页岩、粉砂岩、石英砂岩、长石石英砂岩, 局部含火山岩, 产植物、菊石、双壳类、腹足类、珊瑚、层孔虫、海胆、腕足类、介形类等化石。根据野外实测剖面特征, 研究区多尼组主要岩性为深灰色、灰色泥质粉砂岩、粉砂岩, 局部夹灰色钙质岩屑石英砂岩、长石石英砂岩及少量灰岩等, 在灰岩中局部可见生物碎屑, 未见完整化石。
2. 样品采集与分析方法
样品采集于西藏改则县洞错乡南约15km处欧仁一带的PM009地层剖面上。样品岩性主要为灰色中细粒长石石英砂岩, 主要由石英(84%)、长石(13%)、岩屑(2%)、胶结物等组成, 颗粒大小以0.15~ 0.60mm为主, 分选性好, 磨圆度一般, 呈次棱角状, 次圆状。石英主要为单晶石英, 长石类以斜长石为主, 岩屑成分主要为灰岩、泥岩、粉砂岩等, 孔隙式胶结(图 2)。
样品锆石的分离和挑选由廊坊市地岩矿物分选有限公司完成, 在双目镜下挑选出晶形和透明度好的锆石颗粒, 粘贴在环氧树脂表面, 抛光后将锆石进行透射光、放射光和阴极发光显微照相。锆石制靶及阴极发光图像制备由北京中美美科科技有限公司完成, LA-ICP-MS锆石U-Pb定年测试分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。其中LA-ICP-MS锆石U-Pb同位素年龄分析仪器为Elan6100DRC型激光剥蚀系统, 激光器为193nmArF准分子激光器。激光剥蚀斑束直径为32μm, 激光剥蚀深度为20~40μm。实验中采用氦气为剥蚀物质的载气, 采用标准锆石91500为外标, 采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610为内标。详细的实验原理、流程和仪器参数见Yuan等[3]的文献。
3. 分析结果
多尼组砂岩碎屑锆石U-Pb年龄数据见表 1。在多尼组砂岩样品中, 随机挑选71粒锆石进行分析。从阴极发光(CL)图像(图 3)看出, 锆石颗粒大小在50~180μm之间。研究表明, 不同成因的锆石具有不同的Th/U值, 岩浆锆石的Th/U值较大(一般大于0.4);而变质锆石的Th/U值较小(一般小于0.1)[4]。多尼组砂岩碎屑锆石的Th/U值较大, 51颗锆石的Th/U值大于0.4, 平均值约为0.64, 说明锆石大部分为岩浆成因, 部分可能为变质成因。
表 1 洞错地区多尼组砂岩碎屑锆石U-Th-Pb同位素年龄数据Table 1. Detrital zircons U-Th-Pb data of sandstones in the Duoni Formation from Dongcuo area4. 分析与讨论
4.1 测年结果
对于年轻锆石而言, 207Pb/206Pb年龄误差较大, 而对于古老锆石而言, 206Pb/238U年龄的误差较大。本文在年龄选取时, 对小于1000Ma的锆石, 选取206Pb/238U计算年龄值; 年龄大于1000Ma的锆石, 选取207Pb/206Pb计算年龄值[5]。从碎屑锆石年龄分布频率直方图(图 4)可以看出, 多尼组砂岩碎屑锆石年龄值分布在125~3261Ma之间。其中125~1000Ma的锆石有37粒, 最年轻年龄值为125Ma(测点号为PM009/26-17, 和谐度为97%); 大于1000Ma的年龄值为34个, 最老年龄值为3261Ma(测点号为PM009/26-35, 和谐度为96%)。碎屑锆石主要年龄区间(或峰值)为3261Ma、2739~2335Ma、1880~ 1750Ma、1006~657Ma、577~510Ma、456~409Ma和252~202Ma(表 1)。
图 4 青藏高原碎屑锆石U-Pb年龄频率图(据参考文献[15]修改)Figure 4. Age distributions of detrital zircons from the Tibetan Plateau4.2 讨论
多尼组的碎屑锆石年龄数据跨度较大, 不同的年龄峰值代表不同的地质意义。
(1) 3261Ma, 大于3000Ma的碎屑锆石在样品中仅出现1粒, 表明物源区存在古老地壳的残留[6], 为研究班怒带物源区的形成和演化奠定了物质基础。
(2) 2739~2335Ma年龄组包含10颗碎屑锆石, 代表物源区可能存在构造-岩浆事件。从全球地质背景看, 华北、北美、瑞芬及其他克拉通在2.5Ga左右发生了大规模的拼合事件(如Grenville事件、Pan-Afriean事件等), 形成有记载的最古老的超级大陆[7]。近年来, 众多学者在羌塘盆地发现1.8~ 2.7Ga的锆石, 如盆地中央隆起带差桑-茶布一带的戈木日群[8], 盆地西南部龙木错-双湖缝合带南侧荣玛温泉地区石英岩[9], 以及羌塘盆地北部唐古拉山温泉地区雁石坪群[10]。暗示羌塘盆地有太古宙的地壳物质, 支持羌塘盆地存在前寒武纪结晶基底的可能性。这也说明, 研究区多尼组的物源很可能为北部的南羌塘地块。
(3) 1880~1750Ma年龄组包含16颗碎屑锆石, 指示源区存在古元古代早期的构造热事件。研究表明[11-12], Columbia超级大陆各个组成陆块是在2.1~ 1.8Ga碰撞事件中拼合在一起的, 并在中元古代早-中期Columbia超级大陆边缘向外增生, 随后开始裂解, 1880~1750Ma可能也是羌塘结晶基底的主期变质年龄。
(4) 1006~657Ma年龄组包含13颗碎屑锆石, 该期是全球构造运动演化的一系列重大热事件时期, Grenvillian碰撞造山期(1000~900Ma)形成了罗迪尼亚超大陆, 在850~750Ma开始隆升、裂解[13]。在700Ma发生分解, 反映了早期的泛非碰撞, 中国大陆主要的构造表现为普遍存在张裂, 在羌塘结晶基底的戈木日群中发现1016~929Ma的热事件, 说明此时羌塘地块存在构造热事件[1]。
(5) 577~510Ma年龄组包含5颗碎屑锆石, 指示了新元古代晚期的一次构造热事件, 该组年龄值可能是泛非造山运动(550±100Ma)在物源区的记录。
(6) 456~409Ma年龄组包含8颗碎屑锆石, 可能指示了冈瓦纳大陆北缘在早泥盆世-奥陶纪的增生过程[14]。
(7) 252~202Ma年龄组包含5颗碎屑锆石, 指示拉萨地块与羌塘地块之间发生了俯冲消减及碰撞与缝合作用。
(8) 最小年龄125Ma和126Ma, 可能代表该套地层的沉积时代, 说明该套地层于早白垩世沉积形成。
班公湖地区中生代沙木罗组和日松组碎屑锆石显示, 其沉积物的物源区可能为北部的羌塘地块[1]。商旭地区中生代沉积物中含有部分来自其北部南羌塘地块中的物质, 暗示班公湖-怒江洋壳在中生代向北俯冲[15]。南羌塘与特提斯喜马拉雅沉积变质岩的碎屑锆石年龄具有相似的频率分布特征, 且二者的主要年龄峰值为530Ma、950Ma, 其与高喜马拉雅新元古代沉积变质岩碎屑锆石的年龄主峰一致, 表明其在古生代与高喜马拉雅相邻; 同时, 拉萨地块与澳大利亚西部的碎屑锆石具有一致的年龄峰值1170Ma, 表明拉萨地块可能在石炭纪-二叠纪与澳大利亚西北部毗邻[16]。从锆石年龄分布频率图可见, 研究区碎屑锆石年龄分布直方图与南羌塘更具相似性, 西藏洞错地区班公湖-怒江结合带早白垩世沉积物的物源可能来自北部的南羌塘地块。
5. 结论
(1) 班公湖地区早白垩世多尼组砂岩碎屑锆石LA-ICP-MS U-Pb测年结果显示, 碎屑锆石最年轻颗粒的年龄值为125Ma, 说明其形成时代晚于早白垩世; 最老碎屑锆石年龄值为3261Ma, 表明物源区存在古老地壳的残留。
(2) 将研究区早白垩世碎屑锆石的年龄分布频率图与南部的拉萨地块及北部的南羌塘地块对比, 其与南羌塘地块更具相似性, 说明研究区的早白垩世沉积物的物源可能来自北部的南羌塘地块。
-
表 1 天然地基土承载力修正系数[8]
Table 1 Correction factors for bearing capacity of natural foundation
土的类别 ηb ηd 淤泥和淤泥质土 0 1.0 人工填土
e或IL大于等于0.85的黏性土0 1.0 红粘土 含水比αw>0.8 0 1.2 含水比αw≤0.8 0.15 1.4 大面积压
实填土压实系数大于0.95、粘粒含量≥10%的粉土 0 1.5 最大干密度大于2100 kg/m3
的级配砂石0 2.0 e及II均小于0.85的黏性土 0.3 1.6 粉砂、细砂(不包括很湿与饱和时的稍密状态) 2.0 3.0 中砂、粗砂、砾砂和碎石土 3.0 4.4 表 2 建筑物荷载效应组合经验值[12]
Table 2 Empirical value of load effect combination of buildings
上部建筑结构类型 建筑物荷载效应组合
经验值/(kN·m-2)备注 框架结构 11~14 当建筑物高度较大时(大于20层);可取上限值,较低时取下限值 框架-剪力墙结构 12~15 剪力墙结构 14~17 框架-核心筒结构 13~15 表 3 建筑物地基基础占用地下空间V地基基础计算数学模型
Table 3 Calculation formula of underground space resources occupied by building foundation
基础类型 地基处理类型 建筑物地基基础占用地下空间范围(V地基基础) 箱/筏形基础 复合地基 V地基基础 =(q∗A′∗Nfak+ηbγ(b−3)+ηdγm(d−0.5)−γGd)∗(d+Z复合 ) 箱/筏形基础 天然地基 V地基基础 =(q∗A′∗Nfak+ηbγ(b−3)+ηdγm(d−0.5)−γGd)∗(d+Z天然 ) 独立或条形基础 天然地基 V地基基础 =A′∗(d+Z天然 ) 二层以下一般的民用建筑独立或条形基础 天然地基 V地基基础 =A′∗(d+Z天然 ) 表 4 研究区遥感探测获取建筑物信息
Table 4 Building information acquired from remote sensing in study area
建筑物类型 建筑数量/栋 建筑高度/m 建筑横截面积/m2 高层商业建筑 35 40~60 974~2469 多层商业建筑 107 15~24 2294~9830 高层民用建筑 936 36~60 483~3979 多层民用建筑 289 10~18 245~2322 工业厂房 249 8~12 556~78503 仓储设施 219 6 5139~22145 表 5 研究区岩土工程参数
Table 5 Geotechnical engineering parameters of the study area
层位 时代 岩土名称 底板埋深/m 厚度/m 平均重度/(kN·m-1) 地基承载力/kPa 1-1 Qheol 粉砂 0~1.7 - - - 1-2 Qh 粉土 0.6~11.8 0.6~11.8 19.26 120~140 1-3 Qh 粉土夹粉砂 1.6~20.7 1.2~8.9 19.75 120~160 1-4 Qh 粉土 1.9~12.2 0.9~7.2 20.02 110~150 1-5 Qh 细砂 4.2~18.6 1.4~10 20.20 140~190 1-6 Qh 细砂 5.1~19.3 1.2~4.8 19.76 190~340 2-1 Qp3 粉砂 1.8~5.7 1.8~3.2 20.28 100~140 2-2 Qp3 粉土 1.6~21.4 0.7~11.7 19.91 100~170 2-3 Qp3 粉砂 3.4~32.6 1.6~15.3 20.00 150~220 2-4 Qp3 粉土 5.2~30.1 1.1~13.2 20.50 120~190 2-5 Qp3 粉砂 7.8~40 1.4~14.6 20.16 180~290 2-6 Qp3 粉质粘土 12.4~35.5 1.7~10.3 20.22 150~240 2-7 Qp3 粉土 14.1~37.6 1.4~14.2 20.36 170~280 2-8 Qp3 粉砂 20.4~54 1.3~16.8 19.97 250~320 2-9 Qp3 粉质粘土 25.4~36.9 3.2~11.5 20.42 220~300 3-1 Qp2 粉土 19~36.5 1.5~6 20.13 210~280 注:Qheol—全新统;Qh—全新统;Qp3—上更新统;Qp2—中更新统 表 6 研究区不同建筑物地基基础类型
Table 6 Foundation types of different buildings in the study area
建筑物类型 建筑物结构 主要地下设施 地基处理类型 基础类型 高层商业建筑 框架-剪力墙结构 一或两层地下设施 CFG桩复合地基 箱/筏形基础 多层商业建筑 框架结构 两层地下设施 天然地基 箱/筏形基础 高层民用建筑 框架-剪力墙结构 一或两层地下设施 CFG桩复合地基 箱/筏形基础 多层民用建筑 框架结构 单层地下设施 天然地基 独立或条形基础 工业厂房 砼框架 无 天然地基 独立或条形基础 仓储设施 砼框架 无 天然地基 独立或条形基础 表 7 典型建筑物地基基础占用地下空间量计算结果
Table 7 Calculation results of underground space oecupied by typical building foundation
表 8 典型建筑物地基基础占用地下空间量计算结果与实际施工情况对比
Table 8 Comparison between calculation results of underground space occupied by typical building foundation and actual construction situation
建筑名称 地基基础影响深度测算结果/m 实际施工情况/m 误差范围
/%占用地下空间测算结果/m3 实际施工情况
/m3误差范围/% XX公租房 23.1 21.95 5.24 15322 16078 -4.72 XX商业楼 19.5 20.3 -3.94 34504 35720 -3.40 XX公寓楼 20.9 20.5 1.95 18365 18612 -1.33 XX企业总部 22.6 23 -1.74 42016 43151 -2.63 XX学校 9.0 9.5 -5.26 8352 8816 -5.26 XX厂房 7.2 7.5 -4.00 72000 75000 -4.00 表 9 郑州市航空港区建筑物地基基础占用地下空间资源量
Table 9 Resources of underground space occupied by building foundation in the Zhengzhou airport area
分区 主要建筑类型 占用深度范围 占用地下空间资源量/104 m3 A区 高层商用/民用建筑 地下0~25m 5765 B区 多层商业建筑 地下0~15m 510 C区 多层民用建筑 地下0~10m 279 D区 工业厂房 地下0~7m 1550 E区 物流仓储 地下0~5m 413 合计 8518 -
Admiraal H, Cornaro A. Why underground space should be included in urban planning policy-and how this will enhance an urban underground future[J]. Tunnelling and Underground Space Technology, 2016, 55: 214-220. doi: 10.1016/j.tust.2015.11.013
Broere W. Urban underground space: solving the problems of today's cities[J]. Tunnelling&Underground Space Technology, 2016, 55: 245-248. http://www.sciencedirect.com/science/article/pii/S0886779815302923
Nelson P P. A framework for the future of urban underground engineering[J]. Tunnelling and Underground Space Technology, 2015, 55: 32-39. http://www.sciencedirect.com/science/article/pii/S0886779815301784
Bobylev N. Transitions to a High Density Urban Underground Space[J]. Procedia Engineering, 2016, 165: 184-192. doi: 10.1016/j.proeng.2016.11.750
钱七虎. 迎接我国城市地下空间开发高潮[J]. 岩土工程学报, 1998, (1): 112-113. doi: 10.3321/j.issn:1000-4548.1998.01.026 童林旭. 城市可持续发展的安全保障问题[J]. 城市发展研究, 1999, (6): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CSFY199906000.htm 罗秀兰. 高层建筑之地下空间权利冲突探析[J]. 中国土地科学, 2015, 29(5): 70-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZTKX201505010.htm 王直民, 鲍海君, 黄莉. 城市地下空间开发利用中的桩基冲突及其规制[J]. 上海国土资源, 2018, 39(3): 73-77. doi: 10.3969/j.issn.2095-1329.2018.03.015 杨晓刚, 王睿, 黄伟亮. 基于国内典型城市对比的地下空间开发利用现状及问题分析[J]. 地学前缘, 2019, 137(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201903012.htm 朱合华, 丁文其, 乔亚飞, 等. 简析我国城市地下空间开发利用的问题与挑战[J]. 地学前缘, 2019, 137(3): 30-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201903006.htm 周圆心, 何静, 徐旸. 基于遥感影像的城市地下空间资源量估算方法[J]. 城市地质, 2017, 12(3): 87-90. doi: 10.3969/j.issn.1007-1903.2017.03.017 何静, 郑桂森, 周圆心, 等. 城市地下空间资源探测方法研究及应用[J]. 地质通报, 2019, 38(9): 1571-1580. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190915&flag=1 陈志龙, 刘宏. 城市地下空间总体规划[M]. 南京: 东南大学出版社, 2011: 37. 贾宗团. 房屋建筑工程地基基础设计问题探析[J]. 工程建设与设计, 2016, (11): 16-18. doi: 10.3969/j.issn.1007-9467.2016.11.005 滕延京, 王卫东, 康景文, 等. 基础工程技术的新进展[J]. 土木工程学报, 2016, 49(4): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201604002.htm GB/T 15968-2008, 遥感平面影像图制作规范[S]. 中国: 中国国家标准化管理委员会, 2008. 田峰, 陈冬花, 黄新利, 等. 基于形态学阴影指数的高分二号影像建筑物高度估计[J]. 遥感技术与应用, 2017, 32(5): 844-850. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201705008.htm 李嘉良, 张超, 齐红甲. 遥感影像提取建筑物高度的方法[J]. 河北联合大学学报(自然科学版), 2013, (2): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-HBLG201302027.htm GB 50007-2011. 建筑地基基础设计规范[S]. 中国: 中华人民共和国住房和城乡建设部, 2012. GB 50352-2019, 民用建筑设计统一标准[S]. 中国: 中华人民共和国住房和城乡建设部, 2019. JGJ 79-2012, 建筑地基处理技术规范[S]. 中国: 中华人民共和国住房与城乡建设部, 2012. 张俊红. 高层建筑岩土工程勘察工作量布置及评价若干问题探讨[C]//天津青年科技论坛. 天津市科协, 2012. 陈建华. 浅谈建筑桩基岩土工程勘察工作布置[J]. 甘肃科技, 2011, 27(6): 123-124. doi: 10.3969/j.issn.1000-0952.2011.06.044 陈涛. 建筑结构荷载取值经验[EB/OL]. (2014). [2020-03-21]. https://wenku.baidu.com/view/1c55a4397fd5360cbb1adb39.html.