LA-ICP-MS zircon U-Pb age of A-type granite from the Shibanjing area of middle Beishan orogenic belt, Inner Mongolia, and its constraint on closure time of Beishan Ocean
-
摘要:
石板井A型花岗岩体位于内蒙古北山造山带中段,岩性组成以正长花岗岩为主,二长花岗岩次之。LA-ICP-MS锆石U-Pb测年获得该岩体的侵位年龄为395.6±4.9 Ma(MSWD=3.6,n=15),时代为早泥盆世。岩石属偏铝-弱过铝质高钾钙碱性系列,具有高硅(SiO2=72.71%~76.43%),富碱(K2O+Na2O=7.80%~9.23%),低铝(Al2O3=12.09%~13.73%),贫镁(MgO=0.06%~0.51%)和钙(CaO=0.44%~1.69%),K2O>Na2O的特点;稀土元素配分曲线呈轻稀土元素富集的右倾型,形态呈"海鸥式"分布,Eu强烈亏损(δEu=0.02~0.35,平均0.16);富集高场强元素Zr、Hf、U、Th和大离子亲石元素Rb、K等,而元素P、Ti、Ba、Sr明显亏损。上述地球化学特征指示该岩体属A型花岗岩,源于下地壳在高温条件下部分熔融及其后长石、磷灰石、榍石等的分离结晶。构造判别图解指示具有A2型花岗岩的特征,形成于后碰撞伸展构造环境,指示牛圈子-洗肠井蛇绿岩带所代表的北山洋闭合时限在早泥盆世之前,早泥盆世该区的构造已由挤压体制转变为伸展体制。
Abstract:The Shibanjing A-type granite intrusion is located in the middle section of the Beishan orogenic belt of Inner Mongolia.Its lithologic composition is dominated by syenogranites, followed by monzogranite.The age of the granite obtained by LA-ICP-MS zircon U-Pb dating is 395.6±4.9 Ma(MSWD=3.6, n=15), suggesting Early Devonian.The rocks belong to the meta-aluminium-weak peraluminous high potassium calc-alkaline series and are characterized by high silicon(SiO2=72.71%~76.43%), rich alkali(K2O+Na2O=7.80%~9.23%), low aluminum(Al2O3=12.09%~13.73%), poor magnesium(MgO=0.06%~0.51%), calcium(CaO=0.44%~1.69%)and K2O > Na2O.The chondrite-normalized REE patterns of the granite belong to the "seagull" pattern of the right-type, with significant negative Eu anomalies(δ Eu=0.02~0.35, averaging 0.16).The granitic rocks are enriched in high field strength elements(e.g., Zr, Hf, U and Th)and large ion lithophile elements(e.g., K and Rb)but depleted in P, Ti, Ba, Sr.All these characteristics resemble features of A-type granites which originated from the partial melting of lower crust under high temperature conditions and the subsequent fractional crystallization of feldspar, apatite, titanite and some other rocks.The tectonic discriminant diagram indicates that it has the characteristics of A2 granite, which was formed in the post-collision extension tectonic environment, indicating that the closure time of the Beishan Ocean represented by the Niuquanzi-Xichangjing ophiolite belt was prior to the Early Devonian, and that the structure of the area in the Early Devonian had changed from a compressional system to an extensional system.
-
Keywords:
- Beishan orogenic belt /
- A-type granite /
- zircon U-Pb dating /
- post-collision /
- Beishan Ocean
-
班公湖-怒江结合带(BNS)位于青藏高原北部, 西起班公湖, 向东经改则、东巧、丁青与昌宁-孟连带相连, 向西延伸向克什米尔, 与东地中海特提斯蛇绿岩相连, 在中国境内长达2000km, 是青藏高原一条重要的结合带[1]。班公湖-怒江结合带中存在规模巨大的蛇绿岩、增生杂岩, 以及夹持其中的残余弧或岛弧变质地块, 发育韧性剪切带、逆冲断层、构造混杂岩、复杂褶皱等多种构造行迹, 沿断裂还发育晚白垩世-新近纪陆相火山岩、新生代陆相走滑拉分盆地和第四纪谷地[2]。为更好地认识班公湖-怒江结合带内物质的形成机制及相关的构造背景, 需要对其开展深入的研究。
通过对沉积岩中的碎屑锆石进行U-Pb定年分析, 可有效地探讨其源区并开展历史时期的古大陆重建。本文对该地区早白垩统多尼组(原1:25万区调划为上三叠统巫嘎组)砂岩的碎屑锆石开展了形态学及U-Pb年代学研究, 为揭示班公湖-怒江缝合带内该地层单元的物源区提供新的证据, 同时为探讨班公湖-怒江结合带的构造演化史提供一定的依据。
1. 地质特征
多尼组出露于改则县南西的洞错一带(图 1), 呈近东西向带状分布, 区域上为一套灰色-深灰色含煤碎屑岩地层。岩性主要为泥岩、砂岩、板岩、页岩、粉砂岩、石英砂岩、长石石英砂岩, 局部含火山岩, 产植物、菊石、双壳类、腹足类、珊瑚、层孔虫、海胆、腕足类、介形类等化石。根据野外实测剖面特征, 研究区多尼组主要岩性为深灰色、灰色泥质粉砂岩、粉砂岩, 局部夹灰色钙质岩屑石英砂岩、长石石英砂岩及少量灰岩等, 在灰岩中局部可见生物碎屑, 未见完整化石。
2. 样品采集与分析方法
样品采集于西藏改则县洞错乡南约15km处欧仁一带的PM009地层剖面上。样品岩性主要为灰色中细粒长石石英砂岩, 主要由石英(84%)、长石(13%)、岩屑(2%)、胶结物等组成, 颗粒大小以0.15~ 0.60mm为主, 分选性好, 磨圆度一般, 呈次棱角状, 次圆状。石英主要为单晶石英, 长石类以斜长石为主, 岩屑成分主要为灰岩、泥岩、粉砂岩等, 孔隙式胶结(图 2)。
样品锆石的分离和挑选由廊坊市地岩矿物分选有限公司完成, 在双目镜下挑选出晶形和透明度好的锆石颗粒, 粘贴在环氧树脂表面, 抛光后将锆石进行透射光、放射光和阴极发光显微照相。锆石制靶及阴极发光图像制备由北京中美美科科技有限公司完成, LA-ICP-MS锆石U-Pb定年测试分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。其中LA-ICP-MS锆石U-Pb同位素年龄分析仪器为Elan6100DRC型激光剥蚀系统, 激光器为193nmArF准分子激光器。激光剥蚀斑束直径为32μm, 激光剥蚀深度为20~40μm。实验中采用氦气为剥蚀物质的载气, 采用标准锆石91500为外标, 采用美国国家标准物质局人工合成硅酸盐玻璃NIST SRM610为内标。详细的实验原理、流程和仪器参数见Yuan等[3]的文献。
3. 分析结果
多尼组砂岩碎屑锆石U-Pb年龄数据见表 1。在多尼组砂岩样品中, 随机挑选71粒锆石进行分析。从阴极发光(CL)图像(图 3)看出, 锆石颗粒大小在50~180μm之间。研究表明, 不同成因的锆石具有不同的Th/U值, 岩浆锆石的Th/U值较大(一般大于0.4);而变质锆石的Th/U值较小(一般小于0.1)[4]。多尼组砂岩碎屑锆石的Th/U值较大, 51颗锆石的Th/U值大于0.4, 平均值约为0.64, 说明锆石大部分为岩浆成因, 部分可能为变质成因。
表 1 洞错地区多尼组砂岩碎屑锆石U-Th-Pb同位素年龄数据Table 1. Detrital zircons U-Th-Pb data of sandstones in the Duoni Formation from Dongcuo area4. 分析与讨论
4.1 测年结果
对于年轻锆石而言, 207Pb/206Pb年龄误差较大, 而对于古老锆石而言, 206Pb/238U年龄的误差较大。本文在年龄选取时, 对小于1000Ma的锆石, 选取206Pb/238U计算年龄值; 年龄大于1000Ma的锆石, 选取207Pb/206Pb计算年龄值[5]。从碎屑锆石年龄分布频率直方图(图 4)可以看出, 多尼组砂岩碎屑锆石年龄值分布在125~3261Ma之间。其中125~1000Ma的锆石有37粒, 最年轻年龄值为125Ma(测点号为PM009/26-17, 和谐度为97%); 大于1000Ma的年龄值为34个, 最老年龄值为3261Ma(测点号为PM009/26-35, 和谐度为96%)。碎屑锆石主要年龄区间(或峰值)为3261Ma、2739~2335Ma、1880~ 1750Ma、1006~657Ma、577~510Ma、456~409Ma和252~202Ma(表 1)。
图 4 青藏高原碎屑锆石U-Pb年龄频率图(据参考文献[15]修改)Figure 4. Age distributions of detrital zircons from the Tibetan Plateau4.2 讨论
多尼组的碎屑锆石年龄数据跨度较大, 不同的年龄峰值代表不同的地质意义。
(1) 3261Ma, 大于3000Ma的碎屑锆石在样品中仅出现1粒, 表明物源区存在古老地壳的残留[6], 为研究班怒带物源区的形成和演化奠定了物质基础。
(2) 2739~2335Ma年龄组包含10颗碎屑锆石, 代表物源区可能存在构造-岩浆事件。从全球地质背景看, 华北、北美、瑞芬及其他克拉通在2.5Ga左右发生了大规模的拼合事件(如Grenville事件、Pan-Afriean事件等), 形成有记载的最古老的超级大陆[7]。近年来, 众多学者在羌塘盆地发现1.8~ 2.7Ga的锆石, 如盆地中央隆起带差桑-茶布一带的戈木日群[8], 盆地西南部龙木错-双湖缝合带南侧荣玛温泉地区石英岩[9], 以及羌塘盆地北部唐古拉山温泉地区雁石坪群[10]。暗示羌塘盆地有太古宙的地壳物质, 支持羌塘盆地存在前寒武纪结晶基底的可能性。这也说明, 研究区多尼组的物源很可能为北部的南羌塘地块。
(3) 1880~1750Ma年龄组包含16颗碎屑锆石, 指示源区存在古元古代早期的构造热事件。研究表明[11-12], Columbia超级大陆各个组成陆块是在2.1~ 1.8Ga碰撞事件中拼合在一起的, 并在中元古代早-中期Columbia超级大陆边缘向外增生, 随后开始裂解, 1880~1750Ma可能也是羌塘结晶基底的主期变质年龄。
(4) 1006~657Ma年龄组包含13颗碎屑锆石, 该期是全球构造运动演化的一系列重大热事件时期, Grenvillian碰撞造山期(1000~900Ma)形成了罗迪尼亚超大陆, 在850~750Ma开始隆升、裂解[13]。在700Ma发生分解, 反映了早期的泛非碰撞, 中国大陆主要的构造表现为普遍存在张裂, 在羌塘结晶基底的戈木日群中发现1016~929Ma的热事件, 说明此时羌塘地块存在构造热事件[1]。
(5) 577~510Ma年龄组包含5颗碎屑锆石, 指示了新元古代晚期的一次构造热事件, 该组年龄值可能是泛非造山运动(550±100Ma)在物源区的记录。
(6) 456~409Ma年龄组包含8颗碎屑锆石, 可能指示了冈瓦纳大陆北缘在早泥盆世-奥陶纪的增生过程[14]。
(7) 252~202Ma年龄组包含5颗碎屑锆石, 指示拉萨地块与羌塘地块之间发生了俯冲消减及碰撞与缝合作用。
(8) 最小年龄125Ma和126Ma, 可能代表该套地层的沉积时代, 说明该套地层于早白垩世沉积形成。
班公湖地区中生代沙木罗组和日松组碎屑锆石显示, 其沉积物的物源区可能为北部的羌塘地块[1]。商旭地区中生代沉积物中含有部分来自其北部南羌塘地块中的物质, 暗示班公湖-怒江洋壳在中生代向北俯冲[15]。南羌塘与特提斯喜马拉雅沉积变质岩的碎屑锆石年龄具有相似的频率分布特征, 且二者的主要年龄峰值为530Ma、950Ma, 其与高喜马拉雅新元古代沉积变质岩碎屑锆石的年龄主峰一致, 表明其在古生代与高喜马拉雅相邻; 同时, 拉萨地块与澳大利亚西部的碎屑锆石具有一致的年龄峰值1170Ma, 表明拉萨地块可能在石炭纪-二叠纪与澳大利亚西北部毗邻[16]。从锆石年龄分布频率图可见, 研究区碎屑锆石年龄分布直方图与南羌塘更具相似性, 西藏洞错地区班公湖-怒江结合带早白垩世沉积物的物源可能来自北部的南羌塘地块。
5. 结论
(1) 班公湖地区早白垩世多尼组砂岩碎屑锆石LA-ICP-MS U-Pb测年结果显示, 碎屑锆石最年轻颗粒的年龄值为125Ma, 说明其形成时代晚于早白垩世; 最老碎屑锆石年龄值为3261Ma, 表明物源区存在古老地壳的残留。
(2) 将研究区早白垩世碎屑锆石的年龄分布频率图与南部的拉萨地块及北部的南羌塘地块对比, 其与南羌塘地块更具相似性, 说明研究区的早白垩世沉积物的物源可能来自北部的南羌塘地块。
致谢: 中国地质调查局天津地质调查中心王惠初研究员、张永高级工程师等在工作过程中给予了大力支持;在野外工作中得到河北省区域地质调查院魏文通高级工程师的帮助;评审专家对文章提出了诸多宝贵意见,在此一并表示衷心感谢。 -
图 6 石板井地区正长花岗岩和二长花岗岩A/CNK-A/NK图解(底图据参考文献[24])
Figure 6. A/CNK-A/NK diagram of syenogranite and monzogranite in Shibanjing area
图 7 石板井地区正长花岗岩、二长花岗岩稀土元素球粒陨石标准化配分图(a)和微量元素原始地幔标准化蛛网图(b)(标准化值据参考文献[25])
Figure 7. Chondrite-normalized REE patterns(a)and primitive-mantle normalized spider diagrams(b)of syenogranite and monzogranite in Shibanjing area
图 8 石板井二长花岗岩、正长花岗岩10000×Ga/Al-Nb(a)和10000×Ga/Al-Zr图解(b)(底图据参考文献[31])
Figure 8. 10000×Ga/Al-Nb(a) and 10000×Ga/Al-Zr(b) diagram of syenogranite and monzogranite in Shibanjing area
图 9 石板井二长花岗岩、正长花岗岩Nb-Y-Ce(a)、Nb-Y-Ce(b)和Y/Nb-Rb/Nb(c)图解(底图据参考文献[36])
Figure 9. Nb-Y-Ce(a), Nb-Y-Ce(b) and Y/Nb-Rb/Nb(c) diagrams of syenogranite and monzogranite in Shibanjing area
表 1 石板井地区二长花岗岩LA-ICP-MS锆石U-Th-Pb同位素分析结果
Table 1 LA-ICP-MS zircon U-Th-Pb data for the monzogranite in Shibanjing area
样品号 含量/10-6 同位素比值 年龄/Ma Pb U 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/
206Pb1σ 208Pb/
232Th1σ 232Th/
238U1σ 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/
206Pb1σ 1 424 6666 0.0646 0.0009 0.4864 0.0068 0.0546 0.0008 0.0235 0.0009 0.222 0.001 403 6 402 6 397 31 2 83 976 0.0623 0.0007 0.4828 0.0066 0.0562 0.0008 0.0369 0.0013 0.856 0.006 390 4 400 5 460 32 3 33 403 0.0648 0.0010 0.4878 0.0120 0.0546 0.0019 0.0231 0.0011 1.101 0.008 405 6 403 10 396 77 4 191 2523 0.0607 0.0007 0.4696 0.0081 0.0561 0.0007 0.0592 0.0017 0.395 0.010 380 5 391 7 458 28 5 48 612 0.0622 0.0007 0.4788 0.0066 0.0558 0.0007 0.0417 0.0011 0.572 0.006 389 4 397 5 446 27 6 70 888 0.0646 0.0008 0.4857 0.0113 0.0546 0.0016 0.0216 0.0007 1.042 0.004 403 5 402 9 394 65 7 187 2968 0.0640 0.0008 0.4937 0.0072 0.0559 0.0007 0.0237 0.0006 0.215 0.002 400 5 407 6 450 26 8 67 931 0.0640 0.0010 0.4813 0.0079 0.0545 0.0012 0.0249 0.0007 0.613 0.003 400 6 399 7 394 51 9 60 754 0.0610 0.0006 0.4861 0.0086 0.0578 0.0009 0.0152 0.0003 1.788 0.014 382 4 402 7 523 34 10 62 823 0.0624 0.0007 0.4757 0.0066 0.0553 0.0008 0.0370 0.0008 0.560 0.001 390 5 395 5 425 33 11 77 981 0.0641 0.0007 0.4825 0.0072 0.0546 0.0007 0.0228 0.0006 1.010 0.001 400 4 400 6 397 31 12 157 2302 0.0648 0.0007 0.4945 0.0126 0.0554 0.0013 0.0260 0.0012 0.401 0.002 405 4 408 10 427 53 13 176 2285 0.0647 0.0007 0.4878 0.0081 0.0547 0.0008 0.0197 0.0005 1.050 0.016 404 5 403 7 400 32 14 154 2226 0.0646 0.0007 0.4850 0.0077 0.0544 0.0007 0.0176 0.0004 0.653 0.012 404 5 402 6 388 28 15 91 1171 0.0630 0.0007 0.4781 0.0093 0.0550 0.0008 0.0283 0.0008 0.829 0.005 394 5 397 8 413 33 表 2 石板井地区二长花岗岩、正长花岗岩主量、稀土和微量分析结果
Table 2 Analytical results of major, trace elements and REE concentrations of the syenogranite and monzogranite in Shibanjing area
岩性 正长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 正长花岗岩 二长花岗岩 二长花岗岩 二长花岗岩 样品编号 YQ0145-1 TL19YQ1 PM02-YQ2 PM27YQ1 PM27YQ2 PM06YQ1 PM06YQ2 SYQ3 PM02-YQ4 PM02-YQ6 SiO2 75.34 76.43 75.57 75.98 76.05 74.91 75.68 73.52 72.71 75.41 TiO2 0.10 0.11 0.19 0.05 0.05 0.15 0.10 0.25 0.27 0.06 Al2O3 12.40 12.41 12.09 12.72 12.64 12.25 12.67 13.73 13.62 13.01 Fe2O3 0.81 1.14 2.04 0.27 0.40 1.09 0.63 0.04 1.13 1.13 FeO 0.90 0.25 0.28 0.75 0.60 0.62 1.11 1.00 0.80 0.14 MnO 0.02 0.01 0.00 0.02 0.03 0.03 0.02 0.02 0.02 0.01 MgO 0.06 0.12 0.13 0.08 0.19 0.13 0.08 0.24 0.51 0.10 CaO 0.79 0.44 0.81 0.80 0.86 0.76 0.81 1.52 1.69 0.84 Na2O 3.45 2.98 3.05 3.58 3.47 4.00 3.66 2.53 2.72 3.75 K2O 5.35 5.49 4.81 5.00 4.84 5.22 4.71 5.89 5.08 4.64 P2O5 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.04 0.05 0.01 H2O+ 0.46 0.40 0.61 0.40 0.38 0.41 0.36 0.71 0.55 0.40 H2O- 0.16 0.18 0.24 0.12 0.26 0.13 0.11 0.21 0.23 0.12 烧失量 0.73 0.57 0.93 0.72 0.81 0.75 0.48 1.06 1.26 0.83 总计 99.96 99.96 99.93 99.99 99.98 99.96 99.96 99.84 99.87 99.94 TFeO 1.64 1.28 2.14 1.00 0.96 1.61 1.69 1.05 1.85 1.17 Mg# 5.69 14.04 9.63 11.87 26.12 12.81 7.69 29.53 33.10 13.34 K2O/Na2O 1.55 1.84 1.58 1.40 1.39 1.30 1.29 2.33 1.87 1.24 A/CNK 0.96 1.07 1.03 1.00 1.01 0.90 1.01 1.03 1.04 1.02 TZr/℃ 800.23 840.94 841.53 703.63 710.32 806.59 841.58 809.72 800.42 778.85 La 35.70 133.26 55.74 28.11 24.15 60.06 39.08 65.33 66.08 16.50 Ce 100.67 298.72 96.04 60.88 50.77 122.54 87.68 113.19 115.50 31.24 Pr 15.40 34.20 13.46 7.10 6.06 15.84 15.80 14.08 14.52 4.20 Nd 68.54 128.33 49.73 24.41 21.33 57.17 69.12 45.34 48.74 15.88 Sm 20.83 21.75 10.09 5.44 4.55 11.18 22.13 7.05 8.47 3.68 Eu 0.13 0.51 0.91 0.07 0.14 0.46 0.16 0.83 0.87 0.30 Gd 16.63 16.43 9.12 4.85 3.92 9.83 16.00 7.22 8.02 3.10 Tb 3.84 2.67 1.75 0.90 0.71 1.68 3.77 0.94 1.25 0.66 Dy 23.41 13.08 10.75 5.48 4.09 9.70 23.44 4.54 6.73 4.45 Ho 4.36 2.29 2.13 1.06 0.82 1.82 4.24 0.87 1.19 0.88 Er 10.77 6.38 5.74 2.86 2.26 5.13 10.48 2.55 3.12 2.39 Tm 1.71 0.94 0.83 0.53 0.42 0.72 1.45 0.35 0.40 0.37 Yb 9.66 5.69 5.58 3.00 2.52 4.98 8.93 2.41 2.53 2.28 Lu 1.56 1.07 0.97 0.47 0.41 0.94 1.70 0.53 0.56 0.60 ∑REE 313.21 665.30 262.84 145.13 122.15 302.04 303.97 265.23 277.99 86.52 LREE/HREE 3.35 12.70 6.13 6.59 7.07 7.68 3.34 12.67 10.67 4.88 δEu 0.02 0.08 0.28 0.04 0.10 0.13 0.03 0.35 0.32 0.26 (La/Yb)N 2.65 16.79 7.16 6.73 6.88 8.65 3.14 19.44 18.70 5.19 Y 102.95 62.79 56.46 30.07 23.51 46.94 94.82 24.58 29.38 21.76 Rb 231.28 206.40 147.68 228.96 222.24 213.71 199.11 253.05 210.55 158.66 Sr 5.06 11.82 39.86 8.16 24.94 22.07 14.12 110.58 114.20 107.23 Ba 5.00 25.68 180.08 19.74 66.65 57.41 27.72 584.65 568.09 153.40 Ta 1.90 0.66 1.13 2.60 2.17 1.27 1.18 1.68 1.50 0.60 Nb 29.12 12.71 13.64 19.49 17.81 17.96 26.58 15.94 17.17 13.06 Hf 7.57 8.91 10.28 2.66 2.55 9.29 10.97 6.25 5.18 6.78 Zr 197.72 267.29 279.08 57.26 61.51 233.99 291.70 206.05 184.82 143.82 V 19.06 24.11 3.09 20.35 22.40 5.03 3.30 11.31 15.38 4.69 Ni 0.32 0.19 0.59 0.06 0.54 0.50 0.99 0.99 1.86 0.78 Co 0.04 0.01 0.85 0.21 0.38 0.68 0.43 1.63 2.72 0.62 Cs 3.56 1.19 2.10 5.48 4.36 3.64 3.15 5.18 3.64 1.42 Pb 35.09 26.80 10.71 41.92 44.02 28.05 22.63 22.31 16.79 15.46 Th 36.17 29.98 15.02 25.60 31.75 20.78 31.38 28.22 30.88 32.14 U 3.71 3.35 1.71 3.24 2.30 2.75 5.02 2.82 2.95 2.99 Cr 5.12 4.97 3.83 4.26 4.57 4.04 3.93 5.05 7.87 4.85 Ga 25.34 23.48 17.10 17.79 19.39 20.44 22.93 16.62 17.06 17.70 10000*Ga/Al 3.83 3.55 2.64 2.62 2.87 3.13 3.40 2.26 2.33 2.55 注:Mg#=n(Mg)/(n(Mg)+n(Fe));A/CNK=Al2O3/(Na2O+CaO+K2O);TZr为计算的锆石饱和温度;δEu= EuN/((SmN+GdN)/2);主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
左国朝, 何国琦.北山板块构造及成矿规律[M].北京:北京大学出版社, 1990:1-226. 李锦轶, 张进, 杨天南, 等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版), 2009, 39(4):584-605. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200904002 杜玉良, 殷先明, 冯治汉, 等.北山地区中生代构造-岩浆活动与成矿[J].西北地质, 2009, 42(2):48-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200902003 Xiao W J, Mao Q G, Windley B F, et al.Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J].American Journal of Science, 2010, 310(10):1553-1594. doi: 10.2475/10.2010.12
刘雪亚, 王荃.中国西部北山造山带的大地构造及其演化[J].地学研究, 1995, 28(1):37-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002240926 何世平, 任秉琛, 姚文光, 等.甘肃内蒙古北山地区构造单元划分[J].西北地质, 2002, 35(4):30-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200204004 聂凤军, 江思宏, 白大明, 等.北山地区金属矿床成矿规律及找矿方向[M].北京:地质出版社, 2002:1-408. 龚全胜, 刘明强, 李海林, 等.甘肃北山造山带类型及基本特征[J].西北地质, 2002, 35(3):28-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200203004 杨合群, 李英, 李文明, 等.北山成矿构造背景概论[J].西北地质, 2008, 41(1):22-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200801002 贺振宇, 宗克清, 姜洪颖, 等.北山造山带南部早古生代构造演化:来自花岗岩的约束[J].岩石学报, 2014, 30(8):2324-2338. http://www.cqvip.com/QK/94579X/201408/661925033.html 郑荣国, 吴泰然, 张文, 等.北山地区月牙山-洗肠井蛇绿岩的地球化学特征及形成环境[J].地质学报, 2012, 86(6):961-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201206010 余吉远, 李向民, 王国强, 等.甘肃北山地区辉铜山和帐房山蛇绿岩LA-ICP-MS锆石U-Pb年龄及地质意义[J].地质通报, 2012, 31(12):2038-2045. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201212013 李向民, 余吉远, 王国强, 等.甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义[J].地质通报, 2012, 31(12):2025-2031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201212011 王国强, 李向民, 徐学义, 等.甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义[J].岩石学报, 2014, 30(6):1685-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201406011 周国庆, 陈小明, 赵建新, 等.内蒙古石板井-小黄山与蛇绿岩相伴的变质岩及其演化[J].高校地质学报, 2001, 7(3):229-344. 杨合群, 李英, 赵国斌, 等.北山蛇绿岩特征及构造属性[J].西北地质, 2010, 43(1):26-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201001002 徐学义, 何世平, 王洪亮, 等.中国西北部地质概论—秦岭、祁连、天山地区[M].北京:科学出版社, 2008:1-347. 孟贵祥, 吕庆田, 严加永, 等.北山内蒙古地区铁矿成矿特征及其找矿前景[J].矿床地质, 2009, 28(6):815-829. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200906010 廖云峰, 胡新茁, 程海峰, 等.内蒙古月牙山蛇绿岩的岩石学、地球化学特征及其地质意义[J].地质通报, 2016, 35(8):1243-1254. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20160805&flag=1 Liu Y S, Gao S, Hu Z C, et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology, 2009, 51:537-571. https://academic.oup.com/petrology/article/51/1-2/537/1463381
Ludwig K R.Isoplot/EX version 2.49.A geochronological toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Center Special Publication No.1a, 2003:1-56.
Middlemost E A K.Naming materials in the magma/igneous rock system[J].Earth Science Research, 1994, 37:215-224. http://www.sciencedirect.com/science/article/pii/0012825294900299
Maniar P D, Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of American Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Thompson R T.British Tertiary volcanic province[J].Scottish Journal of Geology, 1982, 18:49-107. doi: 10.1144/sjg18010049
Sun S S, Mc Donough W F.Chemical and isotopic system atics of oceanic basalts:implications for mantle compositi on and processes[J].London:Geological Society Special Publication, 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
贾小辉, 王强, 唐功建.A型花岗岩的研究进展及意义[J].大地构造与成矿, 2009, 33(3):465-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200903017 吴锁平, 王梅英, 戚开静.A型花岗岩研究现状及其述评[J].岩石矿物学杂志, 2007, 26(1):57-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200701009 King P L, White A J R, Chappell B W, et al.Characterization and origin aluminous A Type granites from Lachlan Fold Belt.Southeastern Australia[J].J.Petrol., 1997, 38(3):371-391. doi: 10.1093/petroj/38.3.371
王强, 赵振华, 熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学杂志, 2000, 19(4):297-306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200004002 李小伟, 莫宣学, 赵志丹, 等.关于A型花岗岩判别过程中若干问题的讨论[J].地质通报, 2010, 29(2/3):278-285. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2010020312&flag=1 Whalen J B, Currie K L, Chappell B W.A-type granites:Geochemical characteristics, discrimination and petrogenesis[J].Contrib.Mineral.Petrol., 1987, 95:407-419. doi: 10.1007/BF00402202
Watson E B, Harrison T M.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J].Earth and Planetary Science Letters, 1983, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X
Loiselle M C, Wones D R.Characteristics of anorogenic granites[J].Geological Society of America(Abstracts with Programs), 1979, 11:468. http://ci.nii.ac.jp/naid/10019593683
Pearce J A, Harris N B W, Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Eby G N.The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J].Lithos, 1990, 26(1/2):115-134. http://www.sciencedirect.com/science/article/pii/002449379090043Z
Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J].Geology, 1992, 20(7):641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Turner S P, Foden J D, Morrison R S.Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway Ridge, South Australia[J].Lithos, 1992, 28(2):151-179. https://www.sciencedirect.com/science/article/abs/pii/002449379290029X
韩宝福, 王式洗, 江博明.新疆乌伦古河碱性花岗岩Nd同位素特征及其对显生宙地壳生长的意义[J].科学通报, 1997, 42(17):1829-1832. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199717011 Harris C, Marsh J S, Milner S C.Petrology of the alkaline core of the Messum igneous complex, Namibia:Evidence for the progressively decreasing effect of crustal contamination[J].Journal of Petrology, 1999, 40:1377-1397. doi: 10.1093/petroj/40.9.1377
Mingram B, Trumbull R B, Littman S, et al.A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia:Evidence for mixing of crust and mantle-derived components[J].Lithos, 2000, 54:1-22. doi: 10.1016/S0024-4937(00)00033-5
Yang J H, Wu F Y, Chung S L, et al.A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence[J].Lithos, 2006, 89:89-106. doi: 10.1016/j.lithos.2005.10.002
CollinsW J, Beams S D, White A J R, et al.Nature and origin of A-type granites with particular reference to south eastern Australia[J].Contrib.Mineral.Petrol., 1982, 80:189-200. doi: 10.1007/BF00374895
Clemens J D, Holloway J R, White A J R.Origin of A-type granites:Experimental constraints[J].American Minerologist, 1986, 71:317-324. http://www.researchgate.net/publication/279898234_Origin_of_an_A-type_granite_experimental_constraints
Anderson J L, Bender E E.Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America[J].Lithos, 1989, 23:19-52. doi: 10.1016/0024-4937(89)90021-2
Creaser R A, Price R C, Wormald R J.A-type granites revisited:Assessment of a residual source model[J].Geology, 1991, 19:163-166. doi: 10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Frost C D, Frost B R.Reduced rapakivi-type granites:The tholeiite connection[J].Geology, 1997, 25:647-650. doi: 10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
Wu F Y, Sun D Y, Li X H, et al.A-type granites in Northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology, 2002, 187:143-173. doi: 10.1016/S0009-2541(02)00018-9
Wilson B M.Igneous Petrogenesis:A Global Tectonic Approach[M].London:Unwin Hyman, 2007:1-466.
Creaser R A, Price R C, Wormald R J.A-type granites revisited:assessment of a residual-source model[J].Geology, 1991, 19(2):163-166. http://adsabs.harvard.edu/abs/1991Geo....19..163C
Green T H.Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J].Chemical Geology, 1995.120:347-359. doi: 10.1016/0009-2541(94)00145-X
Hofmann A W.Chemical differentiation of the Earth:The relationship between mantle, continental crust, and oceanic crust Earth Planet[J].Sci.Lett., 1988, 90:297-314. http://www.sciencedirect.com/science/article/pii/0012821X8890132X
Rapp R P, Watson E B.Dehydration melting of metabasalt at 8~32kbar:Implications for continental growth and crust-mantle recycling[J].Journal of Petrology, 1995, 36(4):891-931 doi: 10.1093/petrology/36.4.891
吴福元, 李献华, 杨进辉, 等.花岗岩成因研究的若干问题[J].岩石学报, 2007, 23(6):1217-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 洪大卫, 王式洸, 韩宝福, 等.碱性花岗岩的构造环境分类及其鉴别标志[J].中国科学(B辑), 1995, 25(4):418-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500247293 Batchelor R A, Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology, 1985, 48, (1):43-55. http://www.sciencedirect.com/science/article/pii/0009254185900348
左国朝, 刘义科, 刘春燕.甘新蒙北山地区构造格局及演化[J].甘肃地质学报, 2003, 12(1):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gsdzxb200301001 陈超, 修迪, 潘志龙, 等.北山造山带中部早古生代伸展构造体制:来自石板井辉长岩的年代学及地球化学证据[J].地质学报, 2017, 91(8):1661-1673. http://www.cnki.com.cn/Article/CJFDTotal-DZXE201708001.htm 何世平, 周会武, 任秉琛, 等.甘肃内蒙古北山地区古生代地壳演化[J].西北地质, 2005, 38(3):6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200503002 孙立新, 张家辉, 任邦方, 等.北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J].岩石矿物学杂志, 2017, 36(2):131-147. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201702001 杨合群, 赵国斌, 李英, 等.新疆-甘肃-内蒙古衔接区古生代构造背景与成矿的关系[J].地质通报, 2012, 31(2/3):413-421. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2012020326&flag=1 修迪, 陈超, 专少鹏, 等.北山石板井地区英云闪长岩-石英闪长岩体锆石U-Pb年龄、成因及对古洋盆俯冲作用时限的制约[J].地质通报, 2018, 37(6):975-986. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180602&flag=1 专少鹏, 陈超, 申宗义, 等.北山地区早古生代洋盆俯冲记录—来自石板井高镁闪长岩的年代学、地球化学证据[J].岩石矿物学杂志, 2018, 37(4):533-546. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201804002 程先钰, 任邦方, 田健, 等.内蒙古北山白云山蛇绿混杂岩带南部锡林柯博组碎屑岩地球化学特征、源区属性及构造意义[J].地质通报, 2020, 39(6):893-904. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200609&flag=1 张元元, 郭召杰.甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J].岩石学报, 2008, 24(4):803-809. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804019 潘志龙, 张欢, 陈超, 等.内蒙古北山敖包呼图仁斑状正长花岗岩锆石U-Pb年龄、Lu-Hf同位素组成及其地质意义[J].地质科学, 2017, 52(1):301-316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201701021 程海峰, 廖云峰, 徐旭明, 等.内蒙古1: 5万1524.6高地、二龙包西、高地、炮台山西幅区域地质矿产调查报告.2015. 潘志龙, 魏文通, 刘增效, 等.内蒙古1: 5万基东、尖山、蒜井子、三道明水幅区域地质矿产调查报告.2016. 陈超, 赵华平, 张金龙, 等.内蒙古1: 5万西林陶勒、梧桐井、石桩子井、石板井幅区域地质矿产调查报告.2017. 陈超, 刘增校, 潘志龙, 张欢, 张金龙.1: 5万石板井等四幅区域地质图.2016. 潘志龙, 陈超, 刘增校, 张欢, 王硕.1: 5万基东等四幅区域地质图.2015.